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Abstract: This study investigated the relationship between personality states and driving behavior
from a dynamic perspective. A personality baseline was introduced to reflect the driver’s trait level
and can be used as a basic reference for the dynamic change of personality states. Three kinds
of simulated scenarios triggered by pedestrian crossing the street were established using a virtual
reality driving simulator. Fifty licensed drivers completed the driving experiments and filled in
the Neuroticism Extraversion Openness Five-Factor Inventory (NEO-FFI) questionnaire to measure
the drivers’ personality baselines. Key indicators were quantified to characterize the five types
of personality states by K-means clustering algorithm. The results indicated that the high-risk
situation had a greater impact on the drivers, especially for drivers with openness and extroversion.
Furthermore, for the drivers of extroverted personality, the fluctuation of personality states in the
high-risk scenario was more pronounced. This paper put forward a novel idea for the analysis
of driving behavior, and the research results provide a personalized personality database for the
selection of different driving modes.

Keywords: dynamic personality; driving behavior; personality baseline; K-means clustering
algorithm; simulated scenarios

1. Introduction

Motor vehicle traffic accidents and fatalities represent a serious problem in terms of road traffic
safety. In China, it was reported that there were 58,091 fatalities and 227,438 people injured in
216,178 motor vehicle traffic accidents recorded in 2018. These accidents led to estimated direct
economic costs (e.g., property damage and medical costs) of USD 188 million [1].

Previous studies have revealed that a large percentage of motor vehicle traffic accidents are
caused by drivers [2–4]. Therefore, research on drivers’ driving behavior has always been a hot
spot in the field of road traffic safety [5]. Personality traits have long been recognized as important
individual factors that are closely linked with risky driving behaviors and traffic accidents [6–9].
The theory of personality traits believes that traits are the basic characteristics that determine individual
behavior [10,11]. For each driver, personality traits remain relatively stable; however, when affected
by a specific driving situation, there will be a certain change of personality state, which is known as
dynamic personality [12–15]. Accordingly, studying the relationship between dynamic personality
states and driving behavior in specific driving situations may help to comprehensively understand the
reasons for different driving performance of individuals, so as to provide new insight into the design
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of driving education and accident prevention interventions, and to establish a personalized personality
database for the selection of driving modes.

Self-reported questionnaires are often used to analyze the correlation between personality and
specific driving performance [16–22]. Using the scales for measuring personality traits and risky
driving behaviors, Zhang et al. found that agreeableness and conscientiousness were negatively
correlated with hostile aggression and acts of revenge committed by the drivers themselves, while
neuroticism was positively correlated with aggressive driving [23]. Dahlen et al. analyzed 308 drivers
and found that drivers with low agreeableness were more likely to engage in aggressive driving
behavior [24]. Allowing for the fact that the correlation research to date has completely relied on
self-reported results, the authenticity and accuracy of these questionnaire results should be further
considered. To solve this problem, kinematic parameters recorded in a real situation joined with a
self-reported questionnaire were used to analyze driving behavior [25]. Eboli et al. investigated the
correlation between drivers’ conditions and their driving behavior using the questionnaire and the
driving data of 30 paths. They found that self-reported results could not be reliable; an objective
measure including not only abstract parameters but scales gave more reliable results [26].

As the research in this area has progressed, researchers have further attempted to analyze the
relationship between personality and driving behavior in typical situations. However, it is hard to
obtain large amounts of data owing to the danger of some scenarios in actual driving environments.
Considering that it can simulate actual driving scenarios and eliminate the interference of external
factors, virtual reality driving simulators have been used to collect driving data [27–30]. Using a driving
simulator, Linkov et al. designed three driving scenarios with different speed limits to evaluate the
relationship between driver personality and their speed. They found that the correlation between speed
and conscientiousness was significant and consistent with the results of previous questionnaires [31].
Zicat et al. characterized driving ability using driving speed indicators on a simulator, and the
results showed a significant relationship between the anxious, angry personality traits and the speed
of young drivers [32]. Riendeau et al. attempted to evaluate the relationship between personality
and objective driving results based on simulated driving data. They found that extroversion and
neuroticism were significantly correlated with unsafe driving [33]. However, they only considered
the connection between speed and personality, and ignored the driver’s own responsiveness and
other vehicle indicators except for speed. In this paper, a risk-free simulated driving scenario was
first established to quantitatively analyze the correlation between the representative indicators and
personality using the cluster analysis model. The driving indicators used included the reaction ability
and two indicators derived from speed. The K-means clustering method was chosen as the clustering
learning algorithm, as it allows scalability and efficiency to be maintained when dealing with large
datasets [34,35].

Mainstream personality research still focuses on the study of non-dynamic and inter-group
differences, which is called the traditional approach to personality [36,37]. This approach can be useful
in studying the influence of personality on behavior, but neglects the dynamic changes of personality
states. In order to solve this problem, psychologists introduced the dynamic system into personality
research, including a set of interactive personality elements that lead to the effective and cognitive
performance of behavior and characteristics [38,39]. Sosnowska et al. proposed a comprehensive
method of personality expression to coordinate the dynamic and stable aspects of personality based on
the personality dynamics model. This method captures a trajectory of personality state through three
parameters: baseline, variability, and attractiveness. This dynamic approach to personality offers a
consensual paradigm of personality with the potential to advance our understanding and knowledge of
individual differences [36]. However, the researches only proposed this dynamic theoretical framework,
which has yet to be introduced into the field of traffic safety. Therefore, the dynamic personality
theory in psychology was grafted to the analysis of driving behavior in this paper. Considering that
dynamic personality is closely related to situation and time [40,41], and specific scenarios have different
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influences on drivers’ personality states, we chose the risk scenarios evoked by a pedestrian crossing
the street as the examples for analysis.

The specific objectives of this study were as follows.

• In the risk-free scenario, personality baselines were firstly measured by the NEO-FFI questionnaire.
We aimed to establish the correspondence between driving indicators and the “Big Five” personality
traits in a quantitative manner using the K-means clustering method.

• In the risk scenarios, the objective was to analyze the influence of specific driving situations and
time on the personality states of different drivers from a dynamic perspective, combined with the
thresholds of each indicator.

The remainder of the paper is organized as follows. Section 2 introduces the sample, NEO-FFI
scale, and K-means clustering theory, and presents the processes used to analyze driving behavior.
Section 3 describes the design of the risk-free and high- and low-risk simulated driving scenarios.
In Section 4, the thresholds of three indicators corresponding to each personality were first obtained
using the K-means clustering method, based on the actual driving data in the risk-free scenario.
Secondly, the dynamic approach to personality was integrated into the research method to analyze the
changes of each driver’s personality states with situation and time in the high- and low-risk scenarios.
Finally, the conclusion is presented in Section 5.

2. Methods

2.1. Sample

The participants were 50 professional drivers who had a motor vehicle driver’s license.
They were recruited through researchers’ personal contacts and through advertisements on the
internet. Participants included 29 male and 21 female drivers, and had a mean age of 35.4 years (SD =

10.1). One participant was not included in the analysis because he completed only part of the study
due to simulator sickness.

2.2. NEO-FFI

At present, the Big Five personality traits are often measured using the NEO Personality Scale;
these include neuroticism (N), extroversion (E), openness (O), agreeableness (A), and conscientiousness
(C) [42]. The specific characteristics are described in Table 1. Currently, there are two commonly used
versions of the scale: NEO-PI-R (Revised Neuroticism Extraversion Openness Personality Inventory)
and NEO-FFI (Neuroticism Extraversion Openness Five-Factor Inventory). NEO-PI-R contains
240 items, while NEO-FFI is simplified from NEO-PI-R through the analysis of project factor and has
60 items [43]. Both of them are significantly related, equally reliable and effective, and are widely used
as personality rating scales all over the world. Since there are fewer test items and the evaluation time
is shorter, we used NEO-FFI to determine the personality baselines of drivers.

Table 1. Big five personality and corresponding characteristics.

Personality Characteristics

Neuroticism Anxiety, hostility, and impulsiveness [44]
Extroversion Excitement seeking, activity, and warmth [44]

Openness Fantasy, actions, and ideas [44]
Conscientiousness Order, dutifulness, and self-discipline [45]

Agreeableness Trust, altruism, and compliance [45]

There are 60 items on the NEO-FFI scale, 12 for each personality trait, and each item is answered
using a five-point Likert scale, ranging from “strongly disagree” to “strongly agree”. Cronbach’s alphas
were 0.65 for neuroticism, 0.80 for extraversion, 0.55 for openness, 0.71 for agreeableness, and 0.85 for
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conscientiousness [44,45]. The purpose of this questionnaire was to measure the driver’s personality
baseline, which reflects the person’s trait level and can be used as a basic reference point for evaluating
the dynamic change of personality states [36].

2.3. The Theory of K-Means Clustering

Based on the principle of distance similarity, the K-means clustering algorithm divides two groups
of samples with small distance into the same cluster, and finally forms different clusters from all the
sample data with similar distances to obtain compact and independent categories [34]. First, k groups
of initial clustering centers are randomly selected from the input data set, and then, according to the
principle of distance proximity, the appropriate distance formula is used to calculate the distance
between each data object and the k cluster centers, after which the data are divided into the cluster
domains where the nearest cluster centers are located. Finally, a cluster composed of the cluster center
and all data objects assigned to the center is formed. After all data are allocated successfully once,
the average value of all data objects in each cluster is calculated repeatedly to obtain the new cluster
center, i.e., k group clustering is obtained.

The termination conditions of the algorithm are as follows.

1. There is no or minimum number of data objects reassigned to different clusters;
2. There is no or minimum number of clustering centers changing again;
3. The square of the local error is the smallest.

The calculation formula of error sum of squares J is shown in Equation (1). The effect of clustering
is negatively correlated with the value of J. The smaller the value is, the better the clustering effect of
the data is.

J =
k∑

j=I

∑
u∈c j

d
(
Xu, m j

)
(1)

m j, representing the clustering center vector, is represented by Equation (2).

m j =
1

N j

∑
u∈c j

Xu (2)

where Xu is the vector of all attributing values of data u; m1, m2, · · ·mk is the vector set corresponding
to the clustering center of group k; c j is the clustering domain of clustering center m j; and N j is the
number of all the data in the clustering domain c j.

After comprehensive analysis, a state wherein the cluster centers are maintained unchanged
is chosen as the termination condition of the algorithm, where the vector distance is obtained by
calculating the distance between the data and the centroid.

There are many distance formulas, such as Euclidean distance and cosine distance. The selection
of different calculation formulas will influence the results of distance calculation, thus affecting the
clustering effects. The idea of Euclidean distance comes from the actual distance between two points
in Euclidean space, which is a common rule of distance measurement. In the case of data with low
dimensionality, the Euclidean distance algorithm can classify quickly because of its simple algorithm.
In this paper, considering that the clustering dimension was only three dimensions, the Euclidean
distance was adopted.

d(A, B) =
√
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2 (3)

where A = (x1, y1, z1), B = (x2, y2, z2), and d(A, B) is the distance between the two points A and B in
Euclidean space.
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2.4. Analysis of Driving Behavior

We designed the simulated driving scenes according to the phenomenon of a pedestrian crossing
the street in a real driving environment, and invited the drivers to carry out the simulated driving
experiments and to fill in the NEO-FFI scale. Dozens of parameters were recorded in the virtual
reality driving simulator, including time, driving speed, the value of steering velocity, etc. After the
comprehensive analysis of all the driving data, the indexes with large significant differences were
selected. The thresholds of driving indexes corresponding to the Big Five personality states were then
obtained using the K-mean clustering model. Based on the thresholds, we analyzed the changes of
personality states in different risk scenarios.

We designed a set of complete processes to analyze the correlation between personality states and
driving behavior from the dynamic perspective, as is shown in Figure 1.
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Note: NEO-FFI: Neuroticism Extraversion Openness Five-Factor Inventory.

3. Design of the Experiments

In this paper, the simulated experiments were carried out using the UC-win/Road.13.0 driving
simulator at the Intelligent Transportation research center, Shandong University of Science and
Technology. The driving simulation hardware equipment consisted of three networked computers and
interfaces such as steering system, pedal, automatic shift, etc. The traffic environment was projected
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onto a large visual screen, which consisted of three sub-screens providing a driving view of 135 degrees.
The resolution of the scene was 1920 × 1080, and the refresh rate ranged from 20 to 60 Hz depending
on the complexity of the traffic environment. The simulator recorded changes of horizontal and
longitudinal driving indexes such as position coordinates, speed, and acceleration of the target vehicle.
According to the theory of dynamic personality, we used the dynamic changes of indexes to reflect
personality states.

3.1. Design of Typical Driving Scenarios

The experimental scenarios included risk-free and risk scenarios, in which the road was a two-lane
urban road with high visibility and low traffic flow. According to the degree of conflict between vehicle
and pedestrian, the risk scenarios were divided into low- and high-risk scenarios. The design of the
three kinds of scenarios was as follows.

3.1.1. Risk-Free Scenario

The experiment in the risk-free scenario was used to record the basic vehicle control ability and the
reaction ability of drivers in a normal driving environment. The road was a four-lane dual carriageway
with a lane width of 3.5 m, and the free traffic flow of the road was set to simulate the actual road
conditions. Specifically, the maximum speed in the speed limit segment was 40 km/h, while it was
60 km/h for the other segments. The segment settings in the risk-free scenario are shown in Figure 2,
and “intersec1”, “2”, and “3” represent the first, second, and third intersection, respectively. “CF”
stands for car following, “CL” for lane changing, and the instructions for CL and CF appeared randomly.
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3.1.2. Risk Scenarios

In the high-risk scenario, the blocking of the right obstacle (the bus parked in front of the station)
caused a blind area for drivers in the process of driving. When the pedestrian crossed the road in front
of the bus, the driver was at high risk due to the lack of warning and their fast speed. In the low-risk
situation there was no obstacle obstruction for drivers, so the risk of interaction with the pedestrian
was lower than that in the high-risk scenario. The specific scenario settings were as follows.

1. Low-risk scenario

The design of the scenario is shown in Figure 3, and the experiment was set as follows: at the
beginning of the experiment, the driver started to accelerate with a speed limit of 50 km/h. When the
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driver reached 105 m, the pedestrian was triggered to cross the street horizontally from the bus stop at a
speed of 2 m/s. At this time, the driver was supposed to adjust their driving behavior. After interacting
with the pedestrian, the driver continued to drive forward.
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2. High-risk scenario

The specific design is shown in Figure 4: a bus with a width of 2.5 m was parked in front of the
bus stop at 145 m, with the right side of the bus 0.2 m away from the kerbside; that is, the pedestrian
walked 2.7 m in front of the bus. The width of the experimental vehicle was 2 m. Similarly to the
low-risk scenario, at the beginning of the experiment, the driver also accelerated to 50 km/h, and when
the car reached 105 m, the pedestrian crossed the road in a straight line with a uniform speed of 2 m/s
from the bus stop. That is to say, it took 1.35 s for the pedestrian to pass the cover of the bus and
enter the driver’s field of vision. At this time, the driver was supposed to adjust their specific driving
behavior so as to avoid conflict.
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3.2. Experimental Procedure

Volunteers participated in the driving experiments on the driving simulator. First, the research
staff explained the design and purpose of the driving experiments to the drivers. In order to eliminate
the unrealistic feeling of the simulated scene, the drivers participated in adaptive training and driving
situational immersion training before the formal experiment to help them integrate into the simulated
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driving environment, and then filled in the NEO-FFI questionnaire. After this warm-up drive,
participants completed the risk-free, high-risk, and low-risk simulated driving tests and, at the same
time, the staff recorded the drivers’ corresponding driving behaviors in real time. The duration time of
a complete experiment was 1 h.

4. Discussion

4.1. Risk-Free Driving Scenario

After the integrity analyzing and filtering processing of the original driving data collected from
the risk-free scenario experiments, 646 groups of available sample data were obtained. SPSS.24 was
used to analyze the significant differences of each group’s data, and the reaction time (RT), the standard
deviation of speed (SDS), and the difference of average velocity (∆v) with large significant differences
were determined as the cluster indicators. The descriptions of the three indexes are shown in Table 2.
K-means clustering method was carried out to obtain the thresholds of the three indexes corresponding
to different personality traits.

Table 2. Descriptions of the cluster indexes.

Index Symbolic
Representation Description

Response time RT

This index was used to represent the driver’s reaction ability.
The reaction time specifically refers to the time interval experienced
by the driver from the time of the start of the stimulation to the time
when he makes response.
For example, the reaction time can refer to the time interval from the
time when the brake light of front vehicle is on to when the driver
steps on the brake pedal.

Standard deviation
of speed SDS This indicator was used to characterize the degree of speed

fluctuations in each segment, specifically the standard deviation.

Difference of
average velocity ∆v This indicator was used to characterize the difference in mean

velocity between each segment and the entire driving process.

Note: RT: response time; SDS: standard deviation of speed; ∆v difference of average velocity.

4.1.1. Analysis of Driving Characteristics Based on K-Means Clustering Algorithm

According to the Big Five personality traits, the number of clusters k of the K-means clustering
algorithm was set to five, meaning that based on the driving data, we divided the drivers’ personality
states into five types. The clustering results are shown in Figure 5, and the basic characteristics of the
five types of personality state are shown in Table 3.

We divided the five kinds of personality state into two segments according to the changes of SDS.
The first segment included conscientiousness, extroversion, and agreeableness, and the level of

SDS was low. For conscientiousness, the difference of average velocity was small, while the reaction
time was middling, indicating that the driving style was stable and rigorous, and the drivers tended to
drive safely. The extroverted personality state had a strong response ability, but ∆v was larger and in a
positive trend, showing that drivers with this state were expert in interacting with their surroundings.
Thirdly, the speed fluctuation associated with agreeableness was higher than that for the first two types
of personality. ∆v showed a negative trend, and the reaction ability was weak, illustrating that the
driving style was gentle and not impatient, and the driving performance was friendly.

The second segment included neuroticism and openness, with high levels of SDS. ∆v associated
with neuroticism was positive and had a large range, while the reaction ability was strong.
These observations indicate that drivers in neurotic states were highly susceptible to the influence of
external situations, and there was a tendency towards reckless driving. For openness, the response
ability was weak and the reaction time was long. However, the change range for ∆v was lower than
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that for neurotic personality and tended towards negative development, illustrating that this kind of
personality state was not sensitive to the driving environment.
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Table 3. The basic characteristics of five types of personality states.

K-Mean Center of the Cluster Minimum/Maximum of the Indexes

Personality RT SDS ∆v RT SDS ∆v

Conscientiousness 2.570 2.342 −1.947 2.15/3.91 0/6.787 −4.941/4.749
Extroversion 2.043 3.862 8.962 0.6/2.81 0.625/8.956 4.876/16.189

Agreeableness 2.987 2.797 −9.107 3.45/5.1 0.842/14.031 −15.457/−5.007
Neuroticism 2.525 12.543 11.392 0.8/3.03 7.672/15.497 −4.032/18.607

Openness 3.314 10.945 −1.529 2.8/5.44 6.579/12.864 −9.762/4.897

4.1.2. Analysis of Dynamic Personality Based on Personality Baseline

Based on the results of personality clustering in the previous section, we plotted the changes of
the drivers’ personality states on a graph. Taking Driver 1 as an example, whose personality baseline
was extroversion, we can see the changing line of personality states in the driver’s continuous driving
experiment in Figure 6a. In the whole process, as shown in Figure 6b, the state of extroversion accounted
for 66%, while conscientiousness and agreeableness accounted for 11% and 23%, respectively.

Specifically, the driver was in good spirits at the beginning of the driving experiment. As we
can see from Figure 1, the first segment of the driving experiment was free driving, in which the
internal speed limit was 60 km/h, and the dominant personality state was extroversion. The second
segment was the speed limit stage, and the driver controlled the speed well in the state of agreeableness.
When entering the lane-changing stage, the driver was supposed to interact with the surrounding
vehicles. At this time, the driver became rigorous in driving and his personality state was conscientious.
After the lane-changing was completed, the state returned to the baseline, i.e., extroversion, until the
end of the driving experiment.
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4.2. Risky Driving Scenarios

The data recorded in the 150 m before and after the interaction between the experimental vehicle
and the pedestrian were mainly analyzed. As shown in Figure 7, we divided the data into six 50 m
segments, numbered 1 to 6. A description of each segment is shown in Table 4.
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Table 4. Description of each segment in risk scenarios.

Segment Description

1 The tested driver starts to drive with speed limit of 50 km/h
2 Maintain or adjust speed

3

1OWhen the driver reaches 105 m, the pedestrian starts to cross the street
2O The interaction stage between driver and pedestrian. The driver adjusts driving

behavior to Avoid collision
3O The interaction is completed, and the driver continuously slows down or maintains the

original behavior
4 Return to acceleration
5 Continue driving
6 Continue driving

4.2.1. The Traditional Approach to Personality in High- and Low-Risk Scenarios

After data processing, it was found that the indexes in Segments 2 to 5 showed significant changes.
Therefore, we mainly analyzed the driving characteristics and changes of personality states in Segments
2, 3, 4, and 5 in this section.

The traditional approach to personality was adopted to analyze SDS and ∆v of the drivers in
high- and low-risk scenarios, assuming that the personality states remained stable and unchangeable.
The personality state of each driver was determined according to both the NEO-FFI scale and the
driver’s performance in the risk-free driving scenario. Table 5 shows the calculated corresponding
values of ∆v and SDS for the five types of personalities in Segments 2, 3, 4, and 5. Due to the interaction
with the pedestrian in Segment 3, where the driving characteristics of drivers changed to a large extent,
we took segment 3 as an example for detailed explanation (Figures 8 and 9).

Figure 8 shows the comparison of ∆v in the high- and low-risk scenarios. The comparative analysis of
the personality states showed that, except for the conscientious personality, the ∆v of the other four types of
personality was greater in the high-risk scenario. In addition, when calculating the difference of this index
between high- and low-risk scenarios, for drivers with extroversion and openness, the index difference
was 7.86 and 5.894, respectively, followed by conscientiousness, which was 4.468. However, there was little
difference for agreeableness and neuroticism. In terms of inter-group (inter-personality), in the low-risk
scenario, the average speed difference of drivers with extroversion was the lowest, while agreeableness and
neuroticism scored higher than conscientiousness and openness. In the high-risk scenario, the ∆v scores of
the four types other than conscientiousness were higher.Int. J. Environ. Res. Public Health 2020, 17, 430 12 of 17 
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Table 5. Values of driving indexes in each segment for high- and low-risk driving scenarios.

Index Segment

Extroversion Conscientiousness Agreeableness Neuroticism Openness

Risk Scenario Risk Scenario Risk Scenario Risk Scenario Risk Scenario

Low High Low High Low High Low High Low High

Difference of
average

velocity (∆v)

2 9.89 11.774 5.111 9.565 15.742 14.117 12.475 12.913 12.45 15.742
3 −1.874 −9.734 −4.083 0.358 −5.759 −8.607 −7.324 −10.332 −3.9 −9.794
4 −12.597 2.221 −0.542 −11.67 −4.43 2.65 −2.009 0.843 −8.328 −2.192
5 7.695 15.208 6.123 1.032 5.964 13.488 11.981 17.24 7.579 15.832

Standard
deviation of
speed (SDS)

2 0.741 0.657 2.082 0.589 0.594 1.356 0.301 4.669 0.76 0.829
3 4.483 5.669 1.722 2.403 4.28 5.166 4.86 5.035 4.413 6.452
4 9.254 8.073 2.542 6.566 6.085 8.135 8.638 8.501 8.576 7.12
5 1.77 1.062 2.331 2.982 1.534 1.941 1.574 1.867 1.996 2.529

Figure 9 shows the comparison of SDS in the two risk scenarios. In terms of intra-group
comparison, the differential score of SDS for drivers with openness was the highest among the five
types of personality (2.039). Extroversion followed with 1.186, while there was little difference in
the performance of conscientiousness, agreeableness, and neuroticism states. From the comparison
between groups, in the low-risk scenario, the speed of the conscientiousness state was much lower
than that of the other four types of personalities, for which the performances were relatively consistent.
In the high-risk scenario, the level of speed fluctuation associated with conscientiousness was slightly
improved, but still lower than other personality states, while the open and extroverted personalities
produced higher speed fluctuations. In summary, it can be seen that the high-risk situation provided a
greater degree of stimulation for the drivers of all five types of personality, especially influencing the
speed of the open and extroverted personalities.

By analyzing the values of each indicator, we found that in addition to the above conclusions,
the values of the indexes in this section were not completely consistent with the threshold results
obtained in the risk-free scenario. The reason, is that we assumed the personality states remained
stable and unchangeable, and neglected that the behavior of pedestrian crossing the street may have
had a certain impact on the personality states of the driver. This further illustrates that when studying
driving behavior, we should examine the specific driving situation and study the driver’s personality
and driving style from a dynamic point of view, so as to better understand the reasons for different
driving reactions.
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4.2.2. Analysis of Dynamic Changes of Personality States in High- and Low-Risk Scenarios

In the analysis of the risk-free scenario, we found that during extended periods of driving,
the driver may show a series of dynamic changes in personality states related to driving time and
driving situation, such as intersections. Similarly, in the interaction with the pedestrian, even if the
driving distance was short, the personality states fluctuated due to the different influences of high-
and low-risk scenarios on drivers of different personality states. It can be seen from the above that
Driver 1 had a more extroverted personality state in the risk-free scenario. Therefore, this section takes
this driver as an example with which to analyze the changes of personality states of a driver with an
extroverted personality baseline.

Figures 10 and 11 show the personality state changes of Driver 1 in high- and low-risk scenarios
related to the driving distance and driving time, respectively. Table 6 shows changes in the specific
personality states and data of relevant indexes. This section includes data from both high- and
low-risk scenarios.
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Table 6. Changes in personality states and data of relevant indexes in high- and low-risk scenarios.

Scenario Segment Distance Time Personality State SDS Average
Speed

Max.
Speed

Min.
Speed

High-risk
scenario

2 100 3.5–7.05 Extroversion 0.565 51.475 52.402 50.571

3
2O 138 9.70 Extroversion 0.366 52.227 52.593 51.231

145 10.25 Conscientiousness 3.819 45.100 50.410 39.037
3O 150 10.77 Agreeableness 4.522 30.544 37.247 23.750

4 200 17.60 Agreeableness 9.306 26.815 43.303 13.210
5 250 21.45 Conscientiousness 1.960 47.052 50.385 43.509

Low-risk
scenario

2 100 3.57–7.25 Extroversion 1.858 48.358 49.426 42.766

3
2O 131 10.25 Extroversion 1.598 38.307 42.498 36.860

145 15.35 Agreeableness 9.217 9.178 36.161 0.000
3O 150 16.85 Agreeableness 1.137 12.355 14.248 10.451

4 200 23.85 Conscientiousness 6.679 25.719 34.637 14.389
5 250 28.57 Extroversion 1.826 38.339 40.839 34.720

Note: Bold indicates the time taken for the driver to complete each key driving segment when driving in high-
and low-risk scenarios. Segments “2”to “5” correspond to the specific segments in the risk scenario respectively,
and both sub-segments 2O and 3O belong to the segment 2. The description of each segment can be seen in Table 4.

In the high-risk scenario, when the driver reached 105 m (7.37 s), the pedestrian began to cross
the street. As the bus obscured the driver’s optical line of sight, the tested driver could not see
the pedestrian and continued to drive at a high speed. After 1.35 s, the pedestrian walked past the
bus and came into the driver’s view. At this time, the driver reached 125 m and made the braking
response quickly and cautiously at 138 m (9.70 s), where the personality state showed conscientiousness.
Because of the high speed, the interaction distance and time between the pedestrian and the driver
were shorter and the collision risk was higher than in the low-risk scenario. After adjusting the
speed, the driver interacted with the pedestrian at 145 m; although the risk was high, there was no
collision, and the personality state was agreeableness. Due to the intense driving, the driver maintained
agreeableness to 200 m (17.60 s), then gradually returned to his normal state, and carefully accelerated
to 250 m where the personality state was conscientiousness. The driver finally completed the driving
at 21.45 s.

In the low-risk scenario, the pedestrian began to cross the street at 7.72 s, and the driver had a better
line of sight because there was no obstruction in the scene. When the driver saw the pedestrian at 131 m
(10.25 s), he was farther away from the pedestrian and traveling at a lower speed, and there was plenty
of time to make the deceleration adjustment. In this process, the driver maintained his personality
baseline, i.e., extroversion. Before the driver reached 145 m (15.35 s), the pedestrian had safely
passed through the driving lane, so the interactive risk was low, and the driver’s personality state was
agreeableness. The driver continued to drive, cautious in the process of acceleration due to the influence
of pedestrian crossing behavior, and showed the state of conscientiousness. After entering Segment 5,
the speed fluctuation value of the driver was low, the personality state returns to extroversion, and the
driver reached 250 m at 28.57 s.

To sum up, it is not difficult to see that in the high-risk scenario, the blocking of view by the bus
in front of the bus stop had a great impact on the driving behavior of drivers, and the changes of
personality states were also more abundant. Therefore, we believe that in the same driving scene,
when evaluating the reasons for different performances of drivers, the impact of specific situations on
the drivers’ personality states in addition to driving ability and experience cannot be underestimated.

5. Conclusions

In this paper, we addressed the relationship between personality states and driving behavior
from the dynamic perspective, and selected risk scenarios triggered by a pedestrian crossing the street
as the research background. We identified three indicators to characterize personality, and K-means
clustering algorithm was used to obtain thresholds for each index. On this basis, we analyzed the
dynamic changes of personality states in the risk scenes.
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The results showed that even in the risk-free scenario, specific driving operations such as
car-following and lane-changing can still exert influence on personality state, which is in line with
the theory of dynamic personality. When the changes of personality states in risky scenarios were
compared, the results showed that in the high-risk scenario, the driver’s personality states changed
more abundantly, and the time required to restore the personality baseline was also longer.

This paper provides a novel idea for the analysis of driving behavior, which fully combines the
dynamic change of personality states with analysis of the driving environment. After analyzing the
changing patterns of personality states, fundamental education could be provided for drivers to reduce
the proportion of risky driving behavior and improve road safety.

Although this paper involved extended research, there were still some limitations that should be
acknowledged. We considered two risk scenarios, but there are many other risk scenarios that were
not considered. We will analyze the impact of risk degree of scenarios on personality states in the
future. In addition, because of the small sample size, the representative change rules of the five kinds
of personality state could not be summarized. Due to the short test, a potential bias could have been
introduced by individual learning processes. In future research, it will be necessary to expand the
sample coverage and to extend the experimental period.
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