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Abstract: Some of the most devastating natural events on Earth, such as earthquakes and tropical
cyclones, are prone to trigger other natural events, critical infrastructure failures, and socioeconomic
disruptions. Man-made disasters may have similar effects, although to a lesser degree. We investigate
the space of possible interactions between 19 types of loss-generating events, first by encoding possible
one-to-one interactions into an adjacency matrix A, and second by calculating the interaction matrix
M of emergent chains-of-events. We first present the impact of 24 topologies of A on M to illustrate
the non-trivial patterns of cascading processes, in terms of the space of possibilities covered and of
interaction amplification by feedback loops. We then encode A from 29 historical cases of cascading
disasters and compute the matching matrix M. We observe, subject to data incompleteness, emergent
cascading behaviors in the technological and socioeconomic systems, across all possible triggers
(natural or man-made); disease is also a systematic emergent phenomenon. We find interactions
being mostly amplified via two events: network failure and business interruption, the two events
with the highest in-degree and betweenness centralities. This analysis demonstrates how cascading
disasters grow in and cross over natural, technological, and socioeconomic systems.

Keywords: catastrophe dynamics; absorbing Markov chain; topology; natural hazard; anthropogenic
hazard; network failure; business interruption; disease; critical infrastructure; social unrest

1. Introduction

As humans increase their impact on the planet, the risk associated with natural and man-made
hazards can be amplified by emerging chains-of-events [1–8]. With rapid urbanization and lifeline
connectivity growth, secondary, tertiary, quaternary, and further consequences of initial triggers are
likely to occur more often, and more severely. Despite being among the highest-impact threats that
society faces, the range of possible domino effects remains mostly unforeseen and unmodelled, due to
the interacting process being highly complex, inter-systematic, and only partially experienced. This
issue has been recognized recently as a barrier to proper multi-risk governance [9–11].

Some of the most devastating initial triggers include earthquakes and tropical cyclones, due to
the tremendous energy they release and their wide spatial footprints [12]. Common secondary effects
include other natural events, such as landslides and tsunamis [13], as well as critical infrastructure
failures, such as industrial accidents and network breakdowns [14]. All those events and their
consequences may further lead to socioeconomic disruptions, such as business interruption, social
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unrest, healthcare degradation, and economic crisis. The most recent infamous example of such
consequences is the COVID-19 pandemic [15].

Although the ultimate goal of catastrophe risk assessment should be the probabilistic quantification
of all physically imaginable interactions between the natural, built and cyber environments, and this at
a global scale, the scope is so vast that a brick-by-brick approach should be favored at the present time.
Directions being currently investigated include: (i) site-specific multi-risk engineering modelling at the
local level [7,16]; (ii) detailed exploration of a given interaction system, e.g., a natural system [2] or a
natural–technological interface (i.e., Natech) [6]; (iii) detailed exploration of the full chain-of-events
cross-system for a given trigger, e.g., an earthquake [5,13,17]; and (iv) general rules of catastrophe
dynamics based on theory and on simplified, generic perils and interactions [4,18,19]. We will
here follow the latter approach. In particular, we are interested in exploring the space of possible
cascading effects by learning from concepts of system dynamics, interaction-graph topology, and
empirical analysis.

2. Materials and Methods

2.1. Catastrophe Dynamics

We employ the term “catastrophe dynamics” as it is used in [18], which describes an approach
to understand and quantify all direct and indirect interactions between events during the temporal
development of a catastrophe via system dynamics. It is only loosely related to “catastrophe theory”,
which studies specific potential functions [20]. With catastrophes here defined as the accumulation of
individual, loss-generating events that interact with each other, we assume that the dynamic process is
described by the following linear differential Equation:

d
→

X(t)
dt

= Q
→

X(t) (1)

In which the dynamics of the vector
→

X of events is fully described by the transition rate matrix Q that

encodes all possible one-to-one direct/infinitesimal interactions. The propagator for
→

X(t)→
→

X(t + τ)

can be written as P(τ) = exp(Qτ), with the entries pi j(τ) interpreted as the conditional probability
of event j being triggered by event i for a period of τ. This study presumes that we have a direct
estimate on the adjacency matrix, defined as A := P(τ = 1) = exp(Q), i.e., the matrix exponential of
Q [21]. This presumption indicates that the probabilities for events i→ j within a unit amount of time
can be estimated, a construction that does not influence the generality of this study. It also assumes
that Q is constant (i.e., stationary one-to-one interactions) and that probabilities are conserved with

n∑
j=1

pi j(τ) = 1, or equivalently,
n∑

j=1
qi j = 0, where qi j denotes entries of the rate matrix Q.

This study aims at investigating emergent cascading patterns as the catastrophe’s dynamics evolve,
given the specification of a (nperils + 1) × (nperils + 1) adjacency matrix A. As the individual one-to-one
interactions between the events generated by nperils perils are a priori independent, we define an
outflow event as a last matrix entry for conservation of probabilities with conditional probability

1−
nperils∑
j=1

pi j. We also fix the last row of A, pnperils+1 = (0, . . . , 0, 1), i.e., the outflow event does not trigger

any real event but itself. This means that a catastrophe will naturally die off, with the outflow event
representing an absorbing state in Markov chain jargon. For convenience, we also define the reduced
nperils × nperils adjacency matrix A without the outflow event (absorbing state).

The event interactions, which are encoded in A, can be represented by a graph G with a vertex set
V of events and an edge set E of one-to-one interactions. Figure 1 shows an example of an interaction
network encoded in A and displayed as G, in the case of a hydro-dam catastrophe system that includes
both natural and technological hazards [4,22]. Each event can lead to dam failure along the chain
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of interactions. In the present study, we will use a wider event “grain” with all the elements of a
hydro-dam concatenated within a so-called critical infrastructure failure (see Section 2.2). We will
also solely consider loss-generating, triggering events and no event that could inhibit another event
(naturally of via a mitigation measure).
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Figure 1. Illustration of how event interactions can lead to the catastrophic failure of a hydro-dam: (a)
Interactions encoded in an adjacency matrix A following [4,22]; (b) Interactions described in a graph G.

Graphs can be described by various centrality measures, the most important ones being in-degree,
out-degree, closeness, and betweenness [23]. Degree centrality of a vertex is the number of edges
incident on the node; closeness centrality of a vertex is the average of the shortest path lengths from
the vertex to all other vertices in the network; betweenness centrality of a vertex is the number of
the shortest paths that pass through that vertex. In catastrophe dynamics, the main triggering events
(or sources) are represented by high out-degree and closeness centralities; the main triggered events
(or sinks) by a high in-degree centrality, and the main catalysts that promote cascading by a high
betweenness centrality [16].

Applications in which catastrophic interactions are encoded in an adjacency matrix are as varied
as in disease spread forecasting and risk mitigation [18,24], tramway infrastructure risk assessment [25],
hydro-dam failure analysis [22], volcanic eruption post-crisis assessment [7], modeling of road network
disruption by floods [26], or ecological disaster modeling [27]. The system’s dynamics is usually
simulated, although an analytical solution to the final state can also be estimated [21]. While the
analysis of the matrix power Aτ (or A

τ
) for τ→∞ (i.e., discrete case, see [18] for the continuous

case) suffices to explore the full space of possible interactions in a topological sense, we are here also
interested in evaluating how a catastrophe can be amplified [19] in terms of chain-of-events length. This
can be computed via the concept of fundamental matrix [21], which captures the frequency/intensity of
each transition event before resting at the absorbing state.

With G finite, we can define the fundamental matrix

N
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(I−A)−1 = I +
∞∑
τ=1

Aτ = I + A + A2 + · · · = I + M (2)

With the entry ni j, the expected number of times the chain-of-events reaches event j given that
the catastrophe starts with event i and I the identity matrix. All events here represent transient states
prior to the absorbing state being entered [21]. We then introduce the “interaction matrix” M, which
excludes the step τ = 0 that is independent of the topology of interactions. If A encodes 1→ 2 and
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2→ 3 , M additionally describes the chain 1→ 2→ 3 . As τ increases, non-trivial patterns may emerge
in M depending on the topology of A. This will be investigated in Section 3.1. Note that the reduced
nperils × nperils interaction matrix M, without the outflow event (absorbing state), will be displayed
alongside A in the next two figures.

2.2. Historical Data Encoding

A wide variety of perils exist, which follow different processes and scales. Various taxonomies
have been proposed [2,7] and we here adapt and extend the one described in [4]. The list of perils, 19
in total with short descriptors and identifiers, is given in Table 1. Natural events have a geological,
geomorphological, hydrological, meteorological, biophysical, ecological, or extraterrestrial origin;
anthropogenic events have a technological, economical, or social origin (no distinction is made between
accidental and malicious).

Table 1. A generic taxonomy of perils.

ID Peril Including

NATURAL

Geological and Geomorphological

EQ Earthquake Shaking, fault rupture, ground displacement, subsidence
VE Volcanic eruption Explosive or effusive
MS Mass slide Landslide, rockfall, avalanche, mudslide, liquefaction

Hydrological

FL Flood River flooding, tsunami, storm surge, flash flood

Meteorological

WS Windstorm Tropical cyclone, extratropical windstorm, winter storm, tornado
OS Other storm Rainstorm, hailstorm, thunderstorm (lightning), ice storm, snowstorm, sandstorm, haze
EW Extreme weather Drought, heat wave, frost, extreme temperature gradient

Biophysical and Ecological

WF Wildfire Bushfire, forest fire
DI Disease Outbreak, epidemic, pandemic

Extraterrestrial

AI Asteroid impact Asteroid or comet, impact or air blast
GS Geomagnetic storm N/A

ANTHROPOGENIC (Accidental or Malicious)

Technological

FI Fire N/A
CF Critical infrastructure failure Explosion, toxic release (chemical, radioactive), water release (dam/levee break, overtopping)
NF Critical network failure In transportation, water and gas, electricity blackout, cyber-attack

Economical

BI Business interruption In industry, agriculture, tourism, etc.
EC Economic crisis Recession, depression, financial crisis, hyperinflation

Social

SU Social unrest Riot, strike, vandalism, looting
HD Healthcare degradation No rescue, security or access to hospital, unsanitary conditions, starvation (famine)
CO Conflict War, revolt, revolution, terrorism

Any taxonomy, by construction, is subjective. We attempted to limit possible discrepancies by
keeping event classes as generic as possible, discriminated by different physical processes, and as
close as possible as proposed classes in the literature [2,4,7]. We also narrowed the study to events
which have an impact from the scale of a city to that of a continent, are relatively sudden and not
excessively rare. Hence, we did not consider common or freak accidents (road, domestic, workplace
events), long-term trends related to climate change [28] and ecological disasters [27], or speculative
and existential risks [29]. As the focus of our work is on hazard and risk interactions, we also defined
events so that there can be a clear, explicit one-to-one interaction between two events. All events, direct
or indirect, also lead to direct losses defined in terms of casualties and/or economic losses.
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Historical cases of catastrophes amplified by cascading effect abound. Table 2 lists some of
the most infamous but also other, less known cases that provide some evidence for other potential
interactions. Our aim is to explore the space of possibilities for cascading disasters on Earth, first by
determining which cells of A are non-zero and second by calculating M. Note that quantifying such
interactions in terms of explicit conditional probabilities pi j would require large databases, which are
usually only limited to secondary effects, e.g., landslides and tsunamis triggered by earthquakes [5,13].
We follow a binary approach instead, with pi j either 0 or non-zero (see Section 4.1 on a discussion of
such a limitation). The literature sources that led to Table 2 are given in Appendix A.

Table 2. List of infamous catastrophes with rich and/or peculiar chains-of-events.

Catastrophe 1 Observed Cascading Effects 2 Proposed Encoding 3

NATURAL TRIGGER

Earthquake (EQ) as initial trigger

2011 Tohoku, JP

EQ→ great tsunami→ nuclear disaster→
blackouts, global nuclear energy turn-around
⇒ decline in global automobile production
⇒ significant fluctuations in global

financial markets

(EQ, FL); (FL, CF); (CF, NF);
(CF, BI)

2008 Wenchuan, CN

EQ→ landslides→ landslide lakes→
downstream flooding

EQ→ energy networks outage→ industrial
production interrupted

EQ→ derailments→ tanks collapse→ fire
EQ→ landslides→ roads damaged→

rescues delayed
EQ→ chemical plant failure (toxic release)→

health issues
EQ→many businesses damaged

(EQ, MS); (MS, FL); (FL; FL);
(EQ, NF); (NF, BI); (NF; CF);
(CF, FI); (MS, NF); (NF, HD);
(EQ, CF); (CF, DI); (EQ, BI)

2004 Sumatra, ID

EQ→ tsunami→ poor sanitation, lifelines ↓,
tourism, fishing and farming ↓

EQ→ great aftershocks
EQ→ volcanic eruption

(EQ, FL); (FL, NF); (FL, HD);
(FL, BI); (EQ, EQ); (EQ, VE)

1994 Northridge, US EQ→ landslide→ Valley Fever outbreak (EQ, MS); (MS, DI)

1923 Kanto, JP

EQ→water network ↓ → fires→ social unrest
(Koreans attacked on false rumors)

EQ→ water network ↓ → unsanitary conditions→
typhoid and dysentery

⇒ ideological, political and societal reforms⇒
World War II

(EQ, NF); (NF, FI); (FI, SU);
(NF, HD); (HD, DI)

1906 San Francisco, US EQ→water and gas network ↓ → fires
⇒ 1907 Financial Panic (EQ, NF); (NF, FI)

Volcanic eruption (VE) as initial trigger

2010 Eyjafjallajokull, IS VE→ air travel disruption→ airline bankruptcies (VE, NF); (NF, BI)

2002 Stromboli, IT
VE→ collapse of volcano side→ tsunami→ island

closed to tourism (VE, MS); (MS, FL); (FL, BI)

1783 Laki, IS

VE→ extreme weather fluctuations→ agriculture ↓
VE→ poisonous cloud→ sickness

VE→ poisonous cloud→ agriculture ↓ (cattle mass
death, scorched vegetation)→ famine

⇒ climate change, 1789 French Revolution

(VE, EW); (EW, BI); (VE, OS);
(OS, DI); (OS, BI); (BI, HD)

Mass slide (MS) as initial trigger

1963 Vajont, IT MS→ tsunami on artificial lake→
dam overtopping (MS, FL); (FL; CF)
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Table 2. Cont.

Catastrophe 1 Observed Cascading Effects 2 Proposed Encoding 3

Flood (FL) as initial trigger

2011 Thailand
FL→manufacturing sector ↓ → GDP ↓

FL→manufacturing sector ↓ → supply chain ↓ →
international import sector ↓ → GDP ↓

(FL, BI); (BI, ES); (BI, NF);
(NF, BI)

Windstorm (WS) as initial trigger

2017 Hurricane Harvey,
US

WS→ rainfall event→ fluvial inundation→
transportation network ↓ → emergency response

service ↓

(WS, OS); (OS, FL); (FL, NF);
(NF, HD)

2012 Hurricane Sandy,
US

WS→ storm surge→ electric network ↓ → health
care facility evacuated

WS→ storm surge→ power plants ↓ → electric
network ↓ → other lifelines and supply chains ↓

(WS, FL); (FL, NF); (NF; HD);
(FL, BI); (BI, NF); (NF, NF)

2005 Hurricane Katrina,
US

WS→ storm surge→ levee failure→
business interruptions

WS→ storm surge→ levee failure→ electrical cell
phone stations ↓ → rescue, medical care, security

scarce→ violence and looting

(WS, FL); (FL; CF); (CF, BI);
(CF, NF); (NF, HD); (HD, SU)

Other storm (OS) as initial trigger

2008 southern China ice
storm, CN

OS→ roads, trains and flights ↓ → supply chains of
energy and food ↓ → power plants shut down,

food shortage
⇒ consumer price index ↑ nationwide

(OS, NF); (NF, NF); (NF, BI);
(NF, HD)

1977 New York City
thunderstorm, USA

OS→ blackout→ airports closed, rescue units and
hospital operations hampered

OS→ blackout→ looting and arson→ fires→
businesses damaged

(OS, NF); (NF, NF); (NF, HD);
(NF; SU); (SU, FI); (FI, BI)

Extreme weather (EW) as initial trigger

2006–2010 Syrian
drought, SY

EW→ crop failure→malnutrition→ diseases
EW→ crop failure→ food price ↑ → violence

⇒ 2011-present Syrian civil war

(EW, BI); (BI, HD); (HD, DI);
(BI, ES); (ES, SU)

Wildfire (WF) as initial trigger

2019–2020 bushfires, AU

WF→ further bushfires
WF→ transportation and production ↓ →

logistics, tourism ↓
WF→ smoke-related diseases

(WF, WF); (WF, NF); (WF, BI);
(NF, BI); (BI, BI); (WF, DI)

Disease (DI) as initial trigger

2020 COVID-19

DI→ healthcare system ↓
DI→ travel restriction→ tourism, energy,

manufacturing sectors ↓ → GDP ↓, financial crisis
DI→ travel restriction→ tourism ↓ →

agriculture sector ↓
DI→ travel restriction→ domestic violence

DI→ secondary diseases

(DI, HD); (DI, NF); (NF, BI);
(BI, ES); (BI, BI); (NF, SU);

(DI, DI)

Asteroid impact (AI) as initial trigger

1908 Tunguska, RU AI→ large fires ignited near ground zero
AI→ hurricane-force winds (AI, WF); (AI, WS)

Geomagnetic storm (GS) as initial trigger

1989 Québec, CA GS→ power blackouts→ loss of sales→ GDP loss (GS, NF); (NF, BI); (BI, ES)
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Table 2. Cont.

Catastrophe 1 Observed Cascading Effects 2 Proposed Encoding 3

ANTHROPOGENIC TRIGGER

Fire (FI) as initial trigger

1986 Basel, CH FI→ chemicals released→
water supply suspended (FI, CF); (CF, NF)

Critical infrastructure failure (CF) as initial trigger

1986 Chernobyl, UA
CF→ radiation-related diseases,

agricultural crops ↓
CF→ nuclear fire

(CF, DI); (CF, BI); (CF, FI)

1984 Bhopal, IN

CF→ gas-related diseases→workforce incapable
of work, food supply shortages→ food price ↑,

transportation ↓
CF→ vegetable crops affected, protests

and violence

(CF, DI); (DI, BI); (BI, ES);
(BI, NF); (CF, BI); (CF, SU)

1976 Seveso, IT CF→ chemical lesions, contaminated crops (CF, DI); (CF, BI)

Network failure (NF) as initial trigger

2003 blackout, IT NF→ Internet network ↓ → further power
stations breakdown (NF, NF); (NF, NF)

2003 blackout, US NF→ subway and water systems ↓, perishable
food lost at restaurants and stores (NF, NF); (NF, BI)

Social unrest (SU) as initial trigger

1992 Los Angeles riot, US
SU→ Fires→ number of businesses lost

SU→ “mini-malls” destroyed, burglaries and
vigilantes, health and fire service hampered

(SU, FI); (FI, BI); (SU, BI);
(SU, SU); (SU, HD)

Conflict (CO) as initial trigger

11 September 2001
terrorist attack, US

CO→ business (World Trade Center, airlines,
tourism) ↓ → slight decrease in GDP

CO→ “War on Terror”, 2003 US/Iraq war
(CO, BI); (BI, ES); (CO, CO)

1 Catastrophe date, location and country ISO code; 2 one-to-one interactions (→) used for encoding while other
multi-variate consequences (⇒) only mentioned—Symbols ↑ and ↓ mean rise and fall/shutdown, respectively;
3 subject to interpretation, here kept as generic as possible.

3. Results

We apply the rules of catastrophe dynamics to better understand the range of possible cascading
effects. We first explore how different one-to-one interaction topologies yield emergent cascading
behaviors based on Equation (2) (Section 3.1). Once understood at a general level, we investigate the
topology of one-to-one interactions derived from historical data (Table 2) to identify in a semi-quantitative
way how the space of possibilities expands in realistic conditions and in which cases feedback loops
leading to risk amplification can be expected (Section 3.2).

3.1. Topological Characteristics of Cascading Effects

We test 24 different topologies of one-to-one interactions in a 10× 10 square matrix A with constant
conditional probability pi j = p fixed for all non-zero entries (the matching matrix A with outflow
event for conservation of probabilities is thus of dimensions 11× 11). The selected topologies, shown
in Figure 2, represent a wide range of possible configurations with different (no-trivial) emergent
properties in the interaction matrix M (or M on the figure). The topological configurations were defined
with the following logic: the patterns increase in complexity per descending row in Figure 2, starting
with events triggering themselves (diagonal Aii, 1-to-1 interactions), followed by cases of only one
trigger or of only one triggered event (1-to- n or n-to-1 interactions), and then by cases of two triggers or
two triggered events (2-to-n or n-to-2 interactions). Starting with row 3 of Figure 2, any event can be a
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trigger and/or be triggered, with the number of possibilities increasing on average in subsequent plots
(n-to-n interactions). We also included gaps in the patterns of each configuration in order to investigate
the role of specific indices of A. No automated rule was applied with the role of Figure 2 solely to
illustrate how M can derive from A geometrically. We used max τ = 10 at which time step most
emergent cascades (i.e., matrix M) have stabilized (although cases 1–20 were already stable at τ = 3).
The graphs G of the various matrices A can be found in Appendix B for different centrality measures
(Appendix B: Figures A1–A4). We observe two cascading phenomena, an increase of the space of
possibilities and an amplification of some interactions. Although these results simply derive from the
matrix power and summation operators Equation (2), some of the emerging patterns are non-trivial:Int. J. Environ. Res. Public Health 2020, 17, x 8 of 22 
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(i) The feasible set of interactions expands in the subspace (i, j) (mostly represented in blue in
Figure 2) as soon as event i triggers a chain of at least one event (excluding i and j), which finally
reaches event j. This yields to all possible permutations of (i, j) being explored, i.e., the cardinality of
the set of cascades increases. It follows that emerging cascades (see cases 7–8, 12–13) remain rare when
the number of triggers and/or triggered events is low (cases 1–13). As the numbers of potential triggers
and triggered events increase, more transitions become feasible (cases 14–15, 20, 22–23). For random
configurations of one-to-one interactions (cases 21a–b), the feasible set of transitions can rapidly expand
by the merging of several subspaces being explored. In short, as physical couplings increase, cascades
become richer, and multi-risk assessment more prone to negative surprises if the underlying models
fail to correctly encode the interactions related to intermediary events between i and j. The impact on
overall risk may remain limited however due to the exponential decay of triggering probabilities at
each step of the stochastic process (pi j < p represented in blue in Figure 2).

(ii) Amplification effects (represented in warm colors in Figure 2) occur as soon as an event can
trigger itself (case 1). Such feedback loop pii > 0 further amplifies, via propagation, the other events
that it can trigger (compare cases 3–5 to non-amplification cases 2–4, the same rule being observed for
more complex topologies, such as cases 6–15). When there is no such feedback loop, amplification also



Int. J. Environ. Res. Public Health 2020, 17, 7317 9 of 21

occurs if event j is triggered by an event i that triggers an intermediary event, which also triggers j,
the best examples being cases 17 and 19. Finally, both possibilities can combine their effec ts for further
amplifications (cases 16 and 18, extreme cases 22–24). The less trivial behaviors are observed in cases
14–15 and 20–21. For multi-risk assessment, the amplification can be understood as an increase in the
re-occurrence of event j in a catastrophic chain of events starting with event i. As a corollary, losses
associated to the said event accumulate as well, leading to catastrophic loss amplification [19].

This semi-quantitative analysis illustrated how both the space of possible cascading effects and
overall loss can increase via a small number of linear algebra rules, albeit in a non-trivial way. We will
now investigate which is the overall configuration of A in reality and which its expected impact is on
cascading disasters on Earth.

3.2. Application to Cascading Disasters Based on Historical Data

We now encode the one-to-one interactions of Table 2 into an adjacency matrix A and compute
the matching interaction matrix M. As in Section 3.1, the interactions, here listed in the last column of
Table 2, are described in a binary approach, pi j fixed to an ad-hoc p if observed and to zero otherwise.
Note that we made the choice to encode interactions based on past observations for the advantage of
being relatively objective. This approach could be complemented by including additional plausible
interactions via expert judgement [7] and reasoned imagination [4]. Although the encoding is likely
incomplete (see Section 4.1), it still represents a reasonable overview of possible interactions across the
natural, technological, and socioeconomic systems, which should be further refined in future works.
Results are shown in Figure 3.Int. J. Environ. Res. Public Health 2020, 17, x 9 of 22 
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Figure 3. Topology of historical catastrophes constructed from Table 2. (a) Reduced adjacency matrix
A; (b) matching reduced interaction matrix M(max τ = 3) showing both an expansion of the transient
interaction set (mostly in blue) and an amplification of certain events for given initial triggers (warm
colors). Warmer colors are proportional to the ad-hoc probability, here fixed to p = 0.1.

We show that the space of possibilities expands, i.e., is enriched by additional transient events,
for the technological and socioeconomic systems for any type of trigger. This is mainly controlled by
network failures (NF) and business interruptions (BI) as they can be triggered by most possible events
and in turn can trigger many events in the technological and socioeconomic systems. Diseases (DI)
also emerge systematically, whichever the initial trigger. The potential of surprising chains-of-events
leading to secondary natural perils is very limited in comparison. We also verify the independence of
extraterrestrial events.



Int. J. Environ. Res. Public Health 2020, 17, 7317 10 of 21

Amplification effects (i.e., increased number of times a cascade goes through event j given the
initial event i) are most pronounced for i an earthquake (EQ) or a network failure (NF). In both
cases, feedback loops can occur such as large aftershocks amplifying risk [17] and cascading network
failures [30]. Moreover, both great earthquakes and lifelines have wide footprints, which can increase
the chance of other feedback effects via various types of intermediary events (see examples in Table 2).
For triggered events j, the main amplification effects are observed for network failures (NF) and
business interruptions (BI) as they can be triggered by many different perils, which, via various paths,
may lead to a repeat of those two events.

Figure 4 finally shows the graph G derived from the empirical adjacency matrix A, illustrating
the complexity and strong coupling of peril interactions. The highest in-degree and betweenness
centralities are observed for network failure (NF) and business interruption (BI), which is in agreement
with the results obtained above. Both events are important targets and catalysts of further interactions
in the catastrophe network, explaining their critical role in cascading. In particular, they both provide
an interface between loss-generating events in the natural system on one side and in the technological
and socioeconomic systems on the other side.Int. J. Environ. Res. Public Health 2020, 17, x 10 of 22 
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4. Limitations and Future Directions

4.1. Incompleteness Issues in Historical Data

This study is based on the analysis of only 29 historical cases of cascading disasters (Table 2).
Although believed to be representative of a relatively large space of physically possible interactions,
other potential interactions, but also perils, are necessarily missing. Moreover, any given one-to-one
interaction present in Table 2 recurs less than 29 times, none being systematic. This is the reason why we
used a binary, semi-quantitative approach by fixing a constant ad-hoc conditional probability p, which
led to an unweighted adjacency matrix. With all interactions considered equal, the ones occurring
rarely take a preponderant role relative to other, more common, interactions. The best example is the
case of a landslide triggering a disease outbreak (1994 Northridge earthquake case, one of the most
peculiar chains-of-events listed in Table 2) which is extremely rare and only included here to show the
extent of possible interactions. Although it is likely to lead to biases in event amplification in Figure 3,
it does not further cascade into M, and hence does not impact on our main conclusions. The other
interactions are unlikely to lead to any significant bias in relative amplification measures.
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Encoding the adjacency matrix with realistic values of pi j will require extensive data mining in
historical records to obtain reliable estimates from a more complete set of data. Such a database has
yet to be built, making our approach a pilot study in the promotion of such development in the near
future. A further level of incompleteness is related to potential intermediary interactions missing in the
encoding of the raw data, as this process is subject to interpretability (the reason why we provide all the
raw data in Appendix A). Here again, the development of a large database will help to identify the best
event granularity and the general physical rules to consider in the definition of one-to-one interactions.

4.2. Beyond One-to-One Links

The full scope of catastrophe dynamics is not limited to the linear dynamic process represented by
Equation (1), which provides only a first-order description. We observed in the literature important
consequences that cannot be described by one-to-one links but by multiple variables (represented by
⇒ in Table 2). For instance, it is sometimes observed that an independent coinciding event amplifies
risk, a textbook example being wind during or just after a non-atmospheric event: wind can amplify
fires following an earthquake (firestorm [31]), wildfires (megafires [32]), or disease spread during a
landslide (dust-borne spore clouds [33]). Rain can trigger a landslide where the soil has first been
destabilized by a wildfire [8] or lahars following a volcanic eruption (e.g., tropical cyclone during the
1991 Mount Pinatubo eruption) [2].

Many one-to-one interactions could be further amplified by underlying conditions. It has,
for example, been suggested that a civilization or society can collapse following a natural catastrophe,
but only if the economic situation of the civilization or society is very weak [34]. Other long-term
drivers such as climate change are also known to amplify those direct interactions by increasing the
available energy by temperature rise [28]. Conflicts (e.g., a war), as observed in historical cases (Table 2),
can be a direct consequence of another conflict (e.g., terrorism). However, as illustrated in Figure 3,
no other chain of one-to-one interactions is likely to lead to conflict. Such an event is more likely to be
triggered by the accumulation of many different, sometimes independent, events.

4.3. The Temporal Evolution of Cascading Phenomena

As temporal processes evolve, so do cascading phenomena: earthquakes could directly trigger
fires prior to the 20th century when households were lighted by candles that could fall due to ground
shaking (e.g., 1755 Lisbon earthquake [35]). Nowadays, direct fires are much less likely, occurring via
critical infrastructure and network failures (e.g., gas leak). In other cases, much more interactions
would be expected today: The 1859 geomagnetic storm (Carrington Event) did not lead to cascades
at the time, but its reoccurring today would cause widespread electrical disruptions and damage,
far more than the 1989 Québec event [36]; it is the same with the 1908 Tunguska airburst, which, if it
had occurred over an urban area [37], would have led to critical chains-of-events as are observed
following other wide-footprint high-energy events.

The limitations described just above and in Section 4.2 show the way to follow in this domain, i.e.,
adding non-linearity to Equation (1) (which could relate, then, more closely to catastrophe theory [20]),
time-dependency in variables and conditional probabilities, as well as developing counterfactuals [38]
in multi-risk. Analytical solutions such as Equation (2) would however become rarer with simulation
approaches more adapted to model non-Markovian processes [17,19,24,39].

4.4. The Concept of Unit Time in the Current Framework

Finally, it is important to mention that the cascading events studied in this paper occur in a
natural physical time scale, and the (physical) time required for each triggering event to happen
varies. For example, the time required for an earthquake to trigger a tsunami can be different from
that to trigger a critical network failure or a landslide. However, in the proposed discrete Markovian
framework, the physical time scale is simplified into the “consecutive trials” in a Markov chain.
In consequence of this simplification, only the causal relationship presented within the original physical
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time is preserved. For instance, the simplification suggests that both the triggering event “A→ B” and
“A→ C” are counted as “a single trial”, with the causal relationship that “A” triggers “B” or “C” being
preserved. To further incorporate the time difference into each event triggering, in future studies, one
could attempt to recover the rate matrix in the continuous master equation—Equation (1)—without
the presumption that adjacency matrix A was directly estimated.

5. Conclusions

We explored the range of potential cascading effects in catastrophes by applying the rules of
system dynamics and by defining finite catastrophic chains-ofevents as absorbing Markov chains. We
first investigated the richness of cascades and amplifying feedback effects by computing the interaction
matrix M, i.e., a variant of the fundamental matrix N, for idealized topologies of one-to-one interactions
encoded in an adjacency matrix A (Section 3.1). We found that cascade patterns rapidly become
non-trivial (Figure 2), which is likely to hamper multi-risk assessment and mitigation when not all
possible interactions have been considered. We then encoded 29 historical catastrophes known for
their cascading behavior (Table 2, Appendix A) in A and computed the matrix M representative of
a general, yet highly simplified, catastrophe dynamical system (Section 3.2). We observed a clear
difference between the natural system and man-made systems (technological and socioeconomic) with
cascades being enriched and amplified mostly via network failure and business interruption, which
bridge the different systems (Figures 3 and 4).

The present analysis should in the future be extended towards a systematic assessment of cascading
effects for all types of perils and full chains of events. The key to such an approach would be the
combined definition and categorization of both events and event-to-event interactions. The generic
perils defined here (Table 1) shall be characterized in physical terms (e.g., energy type, scaling),
and the physics of possible interactions made explicit. A physics-based ontology of peril interactions
would provide the means to build a database with a proper attribute definition for quantitative
multi-risk analysis.
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Appendix A

We here provide the complete data sources on the historical cascading effects summarized in
Table 2, consisting of the following literature sources and quotes:

• 2011 Tohoku earthquake, Japan: “the main quake triggered a massive, destructive tsunami [...] The
violent shock {led} to subsidence of about 1.2 m [and] potentially more severe flood risk [...] in the
future” [40] (p. 35); “Several nuclear power plants and thermal power plants were heavily damaged [...]
causing outages”; earthquake and tsunami affected the transportation system, ruined farmland,
caused decline in global automobile production, and significant fluctuations in the global financial
markets [40] (p. 36); “the cooling system of the first nuclear power plant in Fukushima also stopped
working because of the impact of the tsunami [...] the nuclear accident gradually became a level 7 nuclear
event” [40] (pp. 37–38).

• 2008 Wenchuan earthquake, China: “Landslides and rock avalanches triggered by the earthquake
produced 257 landslide lakes” [41] (p. 209); “Sudden landslide dam failure and resulting outburst floods
were common” [41] (p. 210); “landslides and rock falls [...] hampered search and rescue operations due to
blocked access routes” [42] (p. 243); “The Wenchuan earthquake caused extensive damage to and outage of
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electric-power, gas and water-supply systems, forcing many industrial plants to interrupt production” [42]
(p. 246); “fertiliser plants [...] heavily damaged and are reported to have resulted in significant ammonia,
sulphuric acid and other releases [as well as] breathing difficulties” [42] (p. 247); “Over 138,000 businesses
were damaged during the earthquake, leading to extensive business interruption” [43] (p. 1); “The train,
including 13 tank cars filled with gasoline, derailed and burst into flames Monday in Gansu province when
the quake cut a major rail line” [44]

• 2004 Sumatra earthquake, Indonesia: “earthquake generated the most devastating tsunami [...] More
deaths are possible due to poor sanitation” [45] (p. 543); “The unstable faultline triggered powerful
aftershocks” [45] (p. 544); “The Indian Ocean tsunami severely affected tourism and fishing infrastructure
[, also] utilities and lifelines; transportation networks; and communication” [45] (p. 551); “salt water
contaminated drinking water supplies and farm fields” [45] (p. 553); “Two volcanic eruptions [...] that
followed the disastrous M9.3 earthquake [...] raise the question of whether there eruptions were triggered by
the earthquake. Here we present new evidence to suggest [so]” [46] (p. 539).

• 1994 Northridge earthquake, USA: “additional effect of the rock falls and rosk slides in the Santa Susana
Mountains was an outbreak of valley fever (coccidioidomycosis), which can only be contracted by inhaling
airborne dust containing the fungal spores that cause the disease” [33] (p. S331).

• 1923 Kanto earthquake, Japan: “the force of the earthquake had broken water pipes, it was impossible
for fire fighters to control the outbreak of fires” [31] (p. 880); “rumours alleged that ‘Koreans detonated
bombs which caused the fires’ [...] some vigilantes turned violent and began actively hunting and killing
innocent Koreans” [31] (p. 882); “In the wake of the earthquake, [...] the government considered the
psychological aspects of reinvigorating not just Tokyo, but the entire nation. In order to reach the nation
on an ideological level and ‘renew people’s minds’ [...] for counteracting undesirable social trends” [31]
(p. 891); “Public utilities, including running water, and waste removal services were slow to recover
[following the earthquake]. As a result sanitary conditions deteriorated rapidly [...] Water-borne
infectious diseases spread rapidly [...] (typhoid and dysentery)” [47] (p. 107); ‘Yokohama Burning: The
Deadly 1923 Earthquake and Fire that Helped Forge the Path to World War II’ [48].

• 1906 San Francisco earthquake, USA: “Most of the damage was not done by the tremor itself [...] but
by the fires that followed [...] The combination of close quarters, highly flammable building materials,
and earthquake-damaged water mains hampered the efforts of firefighters” [49] (p. 7); “The quake’s impact
manifested itself in international gold flows [which] threatened the fixed sterling-dollar exchange rate, leading
the Bank of England to raise interest rates and discriminate against American finance bills [and] resulting
contraction pushed the United States into recession, setting the stage for the 1907 Panic” [49] (p. 1).

• 2010 Eyjafjallajokull volcanic eruption, Iceland: “A substantial proportion of the world’s air traffic
descended into disorder [...] Airlines suffered heavy losses and some went bankrupt” [50] (p. 7).

• 2002 Stromboli volcanic eruption, Italy: “The 2002 Stromboli tsunami was a tidal wave caused by a
volcanic eruption [...] The first landslide was around 13:15 [...] The event also forced the Civil Protection to
close the island to the tourists” [51].

• 1783 Laki volcanic eruption, Iceland: “People complained that the haze [triggered by the eruption]
caused weakness, shortness of breath, and throbbing of the heart [...] Lethal sickness in the grazing livestock
[...] in mass deaths [...] livelihood on farming and fishing, the disastrous effects of the eruption led to
a famine [...] sulfur smelling haze caused sickness in humans [...] troublesome headaches, respiratory
difficulties, and asthma attacks [...] dramatic temperature changes over a period of several hours” [52]
(pp. 13-14); “The cold and harsh summer in 1783 was attributed to the presence of the volcanic haze [...]
Severe drought was reported [...] The arrival of spring thaw raised the water of all major rivers in central
and south Europe to such a degree that floods caused enormous property damage” [52] (pp. 15-16); “These
events contributed significantly to an increase of poverty and famine that may have contributed to the
French Revolution in 1789” [53].

• 1963 Vajont landslide, Italy: “The mountainside collapsed [...] Blocking the gorge to depths of as much as
400 m, the landslide traveled to 140 m up the opposite bank [...] Having washed back and forth along both
sides of the valley, a wave of water overtopped the dam” [54] (p. 23).
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• 2011 Thailand floods: “In addition to affected farmland, seven industrial parks were inundated [...] Due
to the damage to these industrial parks, the manufacturing sector contributed to 8.6% of the decline of the
real GDP” [55] (p. 259); “The decrease in production impacted the sales for the trade partners to which
manufactured cars in Thailand are exported” [55] (p. 262).

• 2017 Hurricane Harvey, USA: “The record-breaking rainfall produced by Hurricane Harvey resulted
in catastrophic and prolonged impacts on Houston’s transportation infrastructure, inundating entire
neighborhoods and rendering them inaccessible to emergency response services” [26] (p. 1).

• 2012 Hurricane Sandy, USA: “most damage resulted from storm surge in New York City during Sandy.
The indirect damage due to business interruption resulted primarily from interconnected risks within
infrastructures [...] caused extensive damage to electric transmission and distribution infrastructures
[...] also damaged the region’s petroleum infrastructures [...] The loss of the electricity and fuel sectors
propagated to other sectors. Gas stations in New Jersey could not operate because of the outage. Three
health care facilities in Manhattan and Brooklyn had to emergently evacuate all patients due to the outage
[...] The collapse of power utilities and petroleum infrastructures triggered failures in other infrastructure
systems, such as health care facilities, public transportation systems, the supply of necessities and emergency
facilities” [56] (p. 134).

• 2005 Hurricane Katrina, USA: “Hurricane Katrina makes landfall [...] levee breaches in New Orleans,
allowing the waters of Lake Pontchartrain to flood the city. Communications fail completely as electrical
stations and cell phone base stations are flooded; radio frequencies are overloaded or incompatible for response
agencies [...] Food, water, medical care, security are scarce. Reports of violence, looting break out [...]
Lifeline systems - water, communications, transportation, electrical power, sanitary sewers, gas distribution
systems - are inoperable” [57] (p. 506).

• Great 2008 Chinese Ice Storm: “trains were stranded [...] The disaster damaged 82,000 km of roads
across the country. The rain and snowfall lead to the cancelation of 3840 flights across China [...] With
all transportation systems frozen, supply chains of energy, food, and other vital goods were broken. Coal
reserves reached emergency levels. Power plants had to be shut down. Food shortages occurred [...] The
consumer price index nationwide increased by 34%” [58] (p. 339).

• 1977 New York City lightning: “looting and arson [...] accounted for almost one half of the total economic
costs associated with the blackout [...] The New York airports were ordered closed at 9:57 p.m., only minutes
after the power failure [...] Rescue units were hampered by the inability to obtain fuel dispensed by electric
pumps [...] Several other important hospital operations were hampered as a result of key activities not
supported by emergency power [...] The sequence of events that began with a lightning stroke at 8:37 p.m.
on July 13, 1977” [59] (pp. 44-46).

• Syrian 2006-2010 drought: “When a severe drought began in 2006/2007, the agricultural system in the
northeastern ‘bread basket’ region [...] collapsed [...] between 2007 and 2008, drought was a main factor in
the unprecedented rise in Syrian food prices [...] increase in nutrition-related diseases [and] mass migration
of rural farming families to urban areas ensued [...] The rapidly growing urban peripheries of Syria, marked
by illegal settlements, overcrowding, poor infrastructure, unemployment, and crime, were neglected...
We conclude that human influences on the climate change [leading to the drought] are implicated in the
current Syrian conflict” [60] (pp. 3241–3242).

• 2019-2020 Australian bushfires: “The air quality index [...] hit 2552 or more than 12 times the hazardous
level of 200” [61] “The severity of the crisis has prompted widespread interruptions such as highway
closures, production stoppages, power outages, as well as flight cancellations and delays - all of which
inevitably cause significant disruptions to logistics activity” [62]

• 2020 COVID-19 pandemics: “A global crash in demand from hotels and restaurants has seen prices of
agricultural commodities drop by 20%” [15] (p. 185); “Capital market has also been affected. In the US,
the S&P 500 [...], the Dow Jones Industrial Average and the Nasdaq fell dramatically [...] The COVID-19
pandemic has caused an unprecedented challenge for healthcare systems worldwide” [15] (pp. 187–188);
“Lockdown and social distancing measures to prevent spread of COVID-19 have heightened fears of increased
levels of domestic violence” [15] (p. 190); “Concerns regarding potential neurological complications of
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COVID-19 are being increasingly reported [...] 39 (31%) of 125 patients presented with altered mental
status” [63] (p. 1).

• 1908 Tunguska airburst, Russia: “large fires were ignited near ground zero [...] and spread outward” [37]
(p. 871); “hazard is due to hurricane-force winds [maximum wind speed of 502 mph, 163 mph,
and 70 mph for an overpressure of 50, 5, and 2 psi, respectively]” [37] (p. 873)

• 1989 geomagnetic storm, Canada: “The power blackout due to the March 1989 magnetic storm caused
direct costs of tens of millions of dollars to Hydro-Québec because of damage to equipment and loss of sales.
However, estimates of lost GDP for Québec are many times that” [36] (p. 549).

• 1986 Basel fire, Switzerland: “The majority of the approximately 1250 t of stored chemicals was destroyed
in the fire, but large quantities were introduced into the atmosphere, into the Rhine River through runoff

of the fire-fighting water, and into the soil and groundwater at the site” [Giger, 2009] (p. S98); “As a
precautionary measure, operations at drinking water utilities along the Rhine had to be temporarily
suspended” [64] (p. S98).

• 1986 Chernobyl nuclear disaster, Ukraine: “Immediately following the accident at Chernobyl, humans
exposed to high-level radiation suffered from acute radiation sickness [...] Most of the long-term consequences
of the Chernobyl disaster stem from the inhalation and ingestion of radionuclides generated by the explosion
and nuclear fire” [65] (p. 200); “The genetic consequences of radioactive contamination by the fallout to
agricultural crops after the accident at the Chernobyl NPP in 1986 has been studied [...] Analysis of genetic
variability in three sequential generations of rye and wheat revealed increased cytogenetic damage in plants
exposed” [66] (p. 155).

• 1984 Bhopal chemical industrial accident: “The Bhopal Gas Leak, India 1984 is the largest chemical
industrial accident ever. 520,000 persons were exposed to the gases, and up to 8000 died during the first
weeks” [67] (p. 1); “The gases immediately affected trees [...] vegetable crops all showed signs of being
badly affected” [67] (p. 5, sec. 7.3.6); “75 percent of the workforce was incapable of work, mainly because of
breathlessness” [67] (p. 1, sec. 8.5.2); “The day after the leakage, several thousand Bhopal residents tried
to storm the factory” [67] (p. 1, sec. 8.6.1); “Communications came to a stop. Key-persons for train and
public transports were missing [...] With shops and markets closed, the prices of food went up [...] large
protests to the withdrawal of free distribution of rations were organised. This resulted in police violence and
arrests” [67] (p. 3, sec. 8.6.2).

• 1976 Seveso, Italy: “signs of toxic dermatitis” [68] (p. 329); “measurements showed that 80% or more of
the total TCDD traced adhered to the vegetation (foliage, grass, crops)” [68] (p. 358).

• 2003 electrical blackout, Italy: “the electrical blackout that affected much of Italy on 28 September 2003:
the shutdown of power stations directly led to the failure of nodes in the Internet communication network,
which in turn caused further breakdowns of power stations” [30] (p. 1025).

• 2003 Northeast Blackout, USA: “The blackout caused major disruptions to many facets of life. Commuters
stood trapped in subways for hours, restaurants and grocery stores dispensed masses of unprotected
perishable food, cars waiting for gas backed up in lines stretching around city blocks, and households had to
manage without water service” [69] (p. 184).

• 1992 Los Angeles riots, USA: “The number of fires does not reflect the total number of businesses lost to
fire [...] The mini-malls proved to be frequent targets of the disturbance. In addition to injuries and arson
damage, the Los Angeles Police Department (LAPD) reported 3330 burglaries [...] A Korean radio station
called for Korean vigilantes to patrol the streets [...] Unique to the Los Angeles situation was the manner in
which health and fire personnel delivered services during the unrest. Their speed and effectiveness were
hampered by their need of police protection” [70] (p. 266).

• 2001 9/11 terrorist attacks, USA: “the direct BI losses were only $12 billion [...] reduction in air travel
and related tourism [...] the impact of 9/11 on growth is significant with approximatively a negative
0.5 percentage point impact on GDP per capita growth” [71] (pp. 5–6); “The effective fixing of the meaning
of the September 11 attacks in terms of the “War on Terror” substantially circumscribed political debate,
and we explain why this discourse became dominant. The Bush administration then capitalized on the
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existing portrait of Saddam Hussein to bind Iraq tightly into the War on Terror and thereby silence leading
Democrats and legitimate the war” [72] (p. 409).

Appendix B

The following plots show the in-degree, out-degree, closeness and betweenness centralities,
respectively, of the graphs G(i) representative of the adjacency matrices A(i) of Figure A2. We hereby
verify that all proposed topologies display different network properties. The impact on risk accumulation
of a given event (or vertex) having a high centrality is not explored in the present study as all events are
weighed the same.
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