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Abstract: It is estimated that approximately 10% of healthcare system expenditures are wasted due to
medical fraud and abuse. In the medical area, the combination of thousands of drugs and diseases
make the supervision of health care more difficult. To quantify the disease–drug relationship into
relationship score and do anomaly detection based on this relationship score and other features, we
proposed a neural network with fully connected layers and sparse convolution. We introduced a
focal-loss function to adapt to the data imbalance and a relative probability score to measure the
model’s performance. As our model performs much better than previous ones, it can well alleviate
analysts’ work.
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1. Introduction

In China, the health care market is worth more than 2 trillion yuan per year. Besides the
considerable market, Chinese national health care security administration randomly inspected 197
thousand of medical institutions and found that nearly 1/3 of them had existing health care violations
in 2018, China [1]. It is estimated that approximately 10% of healthcare expenditure is wasted due to
health care abuse or fraud behavior, which makes it an essential issue for health care systems.

Usually, inappropriate healthcare behavior includes system error, medical abuse, and healthcare
fraud [2]. With the development of health care settlement system, the settlement process gets more
faultless, but still it cannot prevent intentional deception.

Generally, medical abuse means that healthcare service providers offer unnecessary medical
treatments or services to the patient, to get more profit or kickbacks. Healthcare fraud is an intentional
deception used, which is intended to obtain unauthorized benefits [2]. Usually, it is implemented
by an intentional “patient” or a group of malicious “patient” rather than a medical service provider,
which gets more complex to supervise. In recent days, it was reported that a family pretended to be
sick for dozens of diseases and asked for hundreds of pills per day, and it turned out that they had
frauded the healthcare funds for 400 thousand in a year. [3] Since healthcare fraud is more harmful to
health insurance funds, the laws of most countries/regions define it as illegal. Both healthcare fraud
and the milder medical abuse damage the health insurance system and finally result in the harm of
social welfare.

Medical abuse and healthcare fraud behaviors are slightly different from typical medical behaviors,
as a professional data analyst can discriminate between the abnormal suspect and regular records by
reviewing multiple dimension records. However, as the participation rate is more than 95% and the
daily records go over 100 thousand, facing such a massive number of records, data analysts cannot
comprehensively review all of the records [4].
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With the help of machine learning, we can train a model to classify the abnormal records by
learning samples’ characteristics. In order to find fraudulent behaviors, there are several main
difficulties to deal with:

(1) There is no exact rule which can clearly distinguish the abnormality of medical insurance
transactions. Moreover, the number of abnormal records is tiny compared to the massive number
of regular treatment records. For those two reasons above, the relatively small dataset of labeled
abnormal records limit the algorithm accuracy.

(2) Due to the influence of various concomitant diseases, patient characteristics, doctor preferences,
and additional noise factors in medical treatment records, the situation is complicated, making
the anomaly challenging to find out [5].

(3) Because intentional deception fraudsters often use multiple methods to conceal their fraudulent
behaviors behind enormous usual transaction data, traditional means based on rules are
challenging to find fraudsters and hard to cover the updated fraud behaviors.

(4) The frequent changes upon the medical insurance drugs list or disease relations, call for in time
updating the logic of anomaly detection. Additionally, as a result of massive data, it will take
much time to perform retraining or redetection to update the anomaly detection system.

For those reasons listed above, the real-world healthcare scenario is so complex that many
reasonable behaviors seem abnormal, and hence the abnormal detection system in the healthcare
domain is known as hard to develop and apply. In order to get rid of this dilemma, we tried to use a
machine learning method (neural network) to detect medical fraud cases. The results proved that our
model can indeed significantly alleviate the analysts’ work.

In our work, we used neural networks to understand the combination of disease and prescription,
which plays a significant role in medical abuse or fraudulent behavior. After the construction of feature
engineering, we applied an outlier detection model to find suspicious anomaly records. In the last
place, medical data analysts re-checked those suspicious records and made analysis. The result of the
experiment shows that our model can improve the discover rate of abnormal health care behavior.

2. Related Work

Traditionally speaking, in the healthcare anomaly detection area, machine learning applications
can be divided into supervised learning and unsupervised learning. Typically, supervised learning
requires data-label for training, while unsupervised learning does not.

Supervised learning application algorithm applied in anomaly detection includes neural network
classification, genetic algorithms, support vector machines, decision trees, KNN, etc. [6]. Supervised
learning algorithms generally get better performance in detecting known patterns of fraud and
abuse than the unsupervised learning algorithms, which are usually partitioning, agglomerative,
or probabilistic, etc. [7].

However, a supervised learning algorithm depends heavily on datasets [8]. As the healthcare
scenario is complicated, a dataset is usually not comprehensive, which often causes the result to be
seriously over-fitted in real-world scenarios. For example, in the literature [9], through the study
of thousands of diabetes data, they used 9 financial features to build a decision tree and obtained
99% abnormal behavior detection rate on the experimental data set. The anomaly detection system
implemented in [10] implements the classification based on the local labeled data set which was
idealized. Literature [11] uses the Bayesian network in anomaly detection on simulated data, proving
the feasibility of the Bayesian network in the field of medical insurance anomaly detection. The real
environment is often more complicated than the simulated data or partial data, so those algorithms are
hard to be implemented.

The unsupervised method theoretically needs to prove the consistency problem of outliers and
anomaly. Literature [12] analyzes the dental outpatient records in Australia. The anomaly of local
outliers was studied and found that part of the data anomalies is caused by direct or indirect misuse
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or fraud behavior, which proves the feasibility of outlier detection in medical insurance abnormal
behavior detection.

Therefore, unsupervised learning is currently widely used for abnormal data identification of
medical insurance transactions. The main methods of unsupervised learning include clustering
algorithms such as K-means and Dbscan, algorithms based on probability density function estimation,
and others using the isolation forest approach.

In recent years, people have made a series of new research in this field. R. Ikono et al. (2019) [13]
reviewed 88 articles from journal articles, conference minutes, and books based on the research
question’s relevance. The results of this review indicate that traditional fraud detection methods were
difficult to be implemented in the healthcare system, as new fraud patterns continue to evolve to
circumvent fraud detection methods.

Part of the emerging research focuses on constructing a complex framework that can describe
the relationship between multiple entities (such as patients, doctors, services, etc.), and hopes to dig
out the ins and outs of medical insurance fraud. Ekin, Tahir et al. (2019) [14] proposed a hierarchical
model to help the investigators’ group medical procedures and identify the hidden patterns among
providers and medical procedures. Irum Matloob et al. (2020) [15] proposed a framework to computes
association scores for three entities (patient, doctor, service), and use G-means clustering over the
scores to predict whether a case is a fraud or not.

In contrast, our paper proposes a new model to identify outliers from a simple disease–drug
relationship, so as to directly find medical insurance fraud in prescription records. The type of data
required by our new method is simple, so the amount of data required is relatively less, and the
prescription record contains less privacy and is easier to obtain than the record of the relationship
between patients, doctors, and services. Moreover, as the information is deeply hidden in dozens of
features, which was challenging to use, those algorithms’ effectiveness was poor, and the researches
are hard to be implemented to the real scenery. We sacrificed the precision for a recall trade-off to solve
these problems. Therefore, our model is more practical.

2.1. Entities and Data Claim

As in the digital health care system in Zhejiang Province, China, the database contains encrypted
personal information, medical information, payment settlement information, and so on, mainly as
Table 1:

Table 1. Main data structure in the digital healthcare system.

Personal Attributes Payment Detail Settlement Detail Hospitalized Detail

Person ID Detail-ID Settlement-ID Hospitalized-ID
Sex Person ID Person ID Person ID
Age Insurance pay Total cost Type

Medical insurance usage Drug name Type of insurance Department code
Outpatient amount Number of medications Medical insurance costs Hospitalized days

Hospitalized amount . . . . . . . . .

We got about 7.37 million encrypted treatment records beginning from 2014 on 300,000 people
sampled from Hangzhou, Zhejiang, China.

Treatment records have several characteristics as below:

(1) The sample number varies from disease to disease; the number of treatment records for some rare
diseases is one hundred thousandth of the number of records for the most common diseases.

(2) Diseases might be a combination of primary disease, chronic disease, and concurrent disease,
which will change the relationship between the disease and prescription.

(3) Both the number of disease categories and the number of drug categories are more than
20 thousand.
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(4) Due to the differences between different regions and hospitals’ built-in systems, the content’s
coding methods or even databases have various structures, causing the record’s format to be
inconsistent and invalid.

(5) Performance optimization design can result in lots of separated data tables, complex relationship
connections, and redundant relationships.

For those reasons listed above and the data unevenness, we limit the problem’s complexity by
constraining the categories of disease and drug. However, although we constrained the drug and
disease categories into the most common 1000th, there is a severe distribution unevenness in the
dataset, as the top 1 disease has nearly 1.2 million treatment records, while the 1000th disease only has
only 10 thousand records. Figure 1 shows the top 10 diseases with records count, which indicates that
chronic diseases get higher incidence than others.
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Figure 1. The top 10 disease record count distributions.

We used the adjustment factor to tune the down sample and up sample rate. Each disease’s target
sample count will be the original count multiplying the factor, which is intended to approach the 1000
diseases’ average records count. For those rare diseases with factor larger than 10, we clipped the
factor under 10 to avoid overfit in the model. The top 10, 100, 500, 1000 diseases’ numbers are shown
in Figure 2.
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2.2. Modelling

The features we designed was mainly based on analysts’ experiences, including personal
information, history health-care behavior, and so on. Among feature parts we generate the features as
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Table 2. In order to get better result during outlier detection, we filtered the features into 20 features
depending on mutual information base on 1000 manual labeled records.

Table 2. Main features.

Dimension Attributes Description

Fee

Total amount Total amount during last year

Total health-care pay Total health-care fund paid amount
during last year

Total self-pay Total health-care fund paid amount
during last year

Total amount of medicine Total cost of medicine during last year
Average amount Average amount during last year
Average self-pay Average self-pay during last year

Average medicine fee Average medicine fee during last year
Maximum self-pay Maximum self-pay during last year

Total amount percent in all patients
. . .

Rank percent sort by total amount in
all patients

Frequency/Hospital
Total visit times Total hospital visits times last year

Average gap Average gap between hospital visits
Hospital count Total visited hospital count last year

Personal information

Age
Health-care type

Gender
Total balance

. . . Other description

Treatment detail

Primary disease
Secondary disease

Prescription Prescription drugs list

Maximum amount of single drugs Maximum amount of single drugs
prescription

One of the most important features we needed was the disease–prescription relation score, as the
relation was hard to be quantified, we designed a multi-label classification model to quantify the
relation between 0–1.

First of all, considering the large number of categories and possibilities by the combination,
we finally clipped the disease and drug categories into the most common 1000th, which cover the
71% records. In this way, the rest of 29% records containing uncommon disease/drug cannot be
detected, but as the anomaly detection task is low-recall, the sacrifice for better learning of disease–drug
combinations can improve the overall recall. After necessary data cleaning for missing and invalid,
we got about 5 million available treatment records. During the preprocessing, we transferred those
original records into formatted features, encoded those features, applied one-hot code to the disease
and prescription, and then overlaid disease’s or drug’s one-hot vectors to present the combination of
concurrent diseases or drugs.

We proposed a multi-label relative classification method using a neural network with fully
connected layers and sparse convolution for better comprehension. Because the output medicine
correlates with each other, rethink [16] architecture was applied before the output layer, which improves
the model’s performance. The whole network mainly consists of 7 layers. The first layer fully connects
the input into 512 dimensions. The next two layers are convolution layers that encode the input
from 512 dimensions into 16 × 16 × 8 and 4 × 4 × 32. The next three layers convert it back into 1000
dimensions before the output rethink rnn was applied.

We use the Formula (1) to calculate the loss of multi-label classification, yk means the ground truth
in feature k, and σ(lk) means the sigmoid of output lk. However, for the reason that the distribution
of 1000-dimension output vector tends to be zero, we used focal loss for the equalization, which
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were calculated as Formula (2), in which α is used to adjust the imbalance and γ called the focusing
parameter, which is set to 2.0 in our work in order to increase the loss of difficult features:

Loss = −
m∑
k

[yklog(σ(lk)) + (1− yk)log(1− σ(lk))] (1)

FocalLoss = −αt(1− pt)
γ log(pt) (2)

Because the influence between output labels is relatively small, training was performed as
a sigmoid multi-label training. However, the actual score was based on relative probability and
then calculated the score as formula below, which is the average probability of ground truth label.
In Formula (3), yk means the predicted label of feature k among all feature m, and ygt_k means the
ground-truth of each feature.

p =

∑m
k ykygt_k∑m

k yk
(3)

We tested this relationship score model using the random split test set. We tested several
algorithms, including multilabel decision tree (ML-DT), rank SVM, as showed in Table 3, using the
neural network gets lowest one-error, which indicates the comprehensive to this relationship was best.
The average probability of the sum of 1000 features of drugs in a single sample in the test set was
0.006. On the contrast, the average probability calculated by the formula above is 0.453, which means
the target’s drug got more average likelihood than other drugs (the likelihood is hundreds of times
of others). Compared with the average probability of 1000 classes, it indicated that the model had
already obtained the disease–drug relationship, and there was no obvious overfitting of positive and
negative samples.

Table 3. Multilabel algorithms’ result.

Algorithm One-Error Coverage

ML-DT 0.670 25.801

Rank SVM 0.733 36.962

NN 0.427 13.431

Then we used the formula above to obtain the correct prediction score of each record, which
stands for the disease–drug relationship score, then combined it with personal information, historical
transaction information, and other features to perform outlier detection. The feature generation step
can be concluded in Figure 3.
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In order to generate as much as features to find out what might be related to the medical abuse
or fraudulent behavior, based on the advice of analysts, we manually designed some quantitative
characteristics derivative from the original data such as personal payment ratio, medical fund usage
limit, personal credit score, and cumulative outpatient visit count.

After generating about 12 other features using feature combination, along with the relationship
score we used covariance and mutual information scores to explain the features’ correlation. Then we
remove redundant and no-obvious features, and finally got the most relevant features: medical
insurance pay rate, patients’ out-of-pocket payment rate, disease–prescription match score, frequency
of outpatient visit, hospital location, and patient credit score.

As is shown in Figure 4, we found that in our dataset, the accuracy of clustering (K-means and
Dbscan) is much lower than the isolation forest [17] method.
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3. Results

Because there were no available labeled datasets the same as Zhejiang province’s health care
system, we randomly sampled a dataset from the database and then labeled it, which contained 100
known abuse/fraud records and another 900 known regular records.

We tested the result using the traditional rule and sorts, and it only gets 24% among the top 100
records. In contrast, we tested several outlier detection algorithms using the features generated in
Figure 3, the result as Table 4.

Table 4. Detection rate of different algorithms.

Algorithm Detection Rate (DR)

Traditional rule sorts 24.0%

K-means 35.0%

DBScan 33.0%

Isolation Forest 47.0%

LocalOutlierFactor 45.0%

The traditional methods mainly include percentiles and other statistical factors, then sort the final
weight-sum score and get the most abnormal records. The rest of the algorithm was based on the
normalized features generated as in Table 2 in the previous section. In order to simulate the anomaly
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detection in the real-world (which usually checks the specific rate of all samples due to the massive
data), we used metrics called Detection rate (DR), which indicates the actual anomaly samples counts
in the top 10% of overall samples. K-means and DBscan were based on the most common Euclidean
distance and got a 35% and 33% detection rate. We find that the Isolation Forest does the best detection
among the top 100 records, which got 47% accuracy in the top 100 scores. The Isolation Forest algorithm
intends to build several trees which split the similar samples and gather similar samples. As a result of
few available samples, we set the estimators in the forest to 100, and the sample number was 256 on
whole features with a random shuffle. We believed that the Isolation Forest was better in searching and
dealing with irrelevant attributes, which resulted in the highest score. As Figure 5 shows, the Isolation
Forest based on the comprehensive features with disease–drug relation scores gets a higher detection
rate than traditional means.
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We unsampled the 1000 records with 10× SMOTE on both normal/abnormal records for a better
test of our detection model, tested K-means, and Isolation Forest on this 10 k SMOTE dataset. The result
was shown in Table 5:

Table 5. Detection rate of different algorithms on the SMOTE 10 k dataset.

Algorithm Detection Rate (DR) @10%

K-means 38.1%

Isolation Forest 45.2%

In the SMOTE 10 k dataset, the Isolation Forest using the same parameters (estimators and sample
number) gets a lower detection rate compared to the original 1 k dataset. However, the K-means gets
higher in contrast, which may indicate that the distribution tended to be a global anomaly.

Among the first 100 records (with highest relative probability scores), our model detected 55
actual abnormal ones, which means that healthcare data analysts only need to check the top 100 records
scored by our model and will find the 55-abnormal behavior. By contrast, 550 of that or even more
(according to the abnormal rate) would be needed to check without our model. In conclusion, our
method can concentrate the abnormal records and help save the manual check effort.

After the above experimental steps on the original 7.37 million anonymized healthcare records,
we obtained suspected abnormal records under the abnormal rate of one ten-thousandth. Since the
whole records were too numerous to examine, we sampled 500 consecutive samples every 20% of data
order by abnormal score then made manual labeling, and we found that the relationship between the
abnormality and the actual abnormal ratio is as shown in Table 6, where the number of abnormal
behaviors is more noticeable than origin data.
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Table 6. Abnormal Score vs. Actual Abnormal ratio.

Abnormal Score Actual Abnormal/Samples

Top 0.01% 24/500
Top 20.01%–Top 20.02% 2/500
Top 40.01%–Top 40.02% 3/500
Top 60.01%–Top 60.02% 2/500
Top 80.01%–Top 80.02% 1/500

Random 0.01% except top 1% 1/500, 2/500, 2/500

Our anomaly detection system is not only effective but also efficient. The feature extraction module
takes 25 min @ 1080ti for training on 7 million treatment records. Retraining is needed only when there
are large-scale changes in drug/disease. Additionally, the inference time complexity corresponds to the
number of samples linearly, about 1 min @ 5 million data. The outlier detection time complexity is
linear also.

4. Discussion

During the process of manual labeling, we found that different data analysts have different
concepts of abnormal and they are constrained by their domain knowledge of disease or prescription,
which will result in the inconsistency of results.

There are several patterns which can be found in the final abnormal records:

1. Drug dosage abuse

In some cases, during the treatment, there exist much more drug dosages than usual, and usually,
the drug belongs to a local pharmaceutical factory and gets a high price.

2. Duplicate test

A patient takes the generally unnecessary same test multiple times. For example, in one of the
abnormal records, a patient was charged 3 times for testing antibody to hepatitis B surface antigen
(HBsAb) by a medical service provider in a single treatment.

3. Unrelated drugs

Medical provider provides unrelated drugs, which will show low disease/drug relation score in
the record. For example, one of the Chinese patent drugs for trauma was applied to a patient
with influenza.

4. Unrelated service

Several medical services are frequently happened in health care abuse, like medical massage
aimed for pulling muscle but used in cold treatment.

5. Drugs with similar effects abuse

Some records appear that excessive drugs and dosages with similar effects were used for a single
treatment. Usually, it relates to medical providers’ abuse.

6. Excessive outpatient frequency

Some records show that the patient does excessive outpatient behaviors. For example, a malicious
user visited different hospitals on average twice a day, and every time he asked the doctor for
pseudoephedrine hydrochloride prescriptions.

While reviewing the abnormal data, we found that the records whose prescription includes Chinese
traditional patent medicines made by the local pharmaceutical factory are more likely to be abusive.
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Meanwhile, we noticed that the abnormal rate in pharmacies and private hospitals is higher than that
of official public hospitals, which may indicate that those places need to be specially supervised.

In conclusion, those main kinds of abnormal records have a commonality that the summary price
of treatment is more than other records, whose average amount was five times more than regular
records. The overall average amount for a single treatment is 300 yuan per outpatient record. We
found that the most typical of those abnormal behaviors is drug dosage abuse, and usually, the drug
dosage abuse behavior’s drug has a high price, which directly related to the profit or kickback.

5. Conclusions and Future Work

We provided a model that can detect abnormal records in the healthcare area, using outlier
detection and an end-to-end multi-label prediction method for disease–prescription correlation scores.
The most significant advantages of this model are that it requires a simple data type, provides admirable
practicability, achieves better accuracy and recall compared to the traditional rule-based method, which
alleviates data analysts’ work.

When we tried to improve the performance of the model, we restricted the range of data as we
limited the number of drugs and diseases to less than 1000. As a side-effect of accuracy improvement,
this anomaly detection system can only detect about 71% of records. Due to the unlabeled dataset’s
constraints and the massive amount of data, we can only verify the sampled result and check on our
1000 records dataset or do level-sample tests, which are not comprehensive enough to cover every
disease and drug.

Meanwhile, the limitation of our paper is that due to privacy and security issues involved, we
failed to obtain enough training data thoroughly. The medical history is incomplete, and the dataset
contains serious noise even though we do data clean for several times. The results contain misjudgment
and can only be an assistant tool for data analysts for efficiency. We need to endure more effort to
ask for access to databases stored in government, hospitals, and relative institutions as it is playing
a pivotal role in building a perfect model. On the other hand, in order to balance the skewed label
classes, we tried the adjustment factor to tune the downsample and upsample rate, which produced
an acceptable result. However, there remain more techniques to enhance the performance, such as
SMOTE, threshold moving, or transform the supervised classification problem to an unsupervised
anomaly detection problem.
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