
International  Journal  of

Environmental Research

and Public Health

Article

An Interdisciplinary Mixed-Methods Approach to
Analyzing Urban Spaces: The Case of Urban
Walkability and Bikeability

Bernd Resch 1,2,* , Inga Puetz 1, Matthias Bluemke 3 , Kalliopi Kyriakou 1 and
Jakob Miksch 1

1 Department of Geoinformatics—Z_GIS, University of Salzburg, 5020 Salzburg, Austria;
inga@deltami.de (I.P.); kalliopi.kyriakou@sbg.ac.at (K.K.); jakob.miksch@sbg.ac.at (J.M.)

2 Institute for Quantitative Social Science, Harvard University, Cambridge, MA 02138, USA
3 GESIS—Leibniz Institute for the Social Sciences, 68159 Mannheim, Germany; matthias.bluemke@gesis.org
* Correspondence: bernd.resch@sbg.ac.at; Tel.: +43-662-8044-7551

Received: 25 July 2020; Accepted: 21 September 2020; Published: 24 September 2020
����������
�������

Abstract: Human-centered approaches are of particular importance when analyzing urban spaces in
technology-driven fields, because understanding how people perceive and react to their environments
depends on several dynamic and static factors, such as traffic volume, noise, safety, urban configuration,
and greenness. Analyzing and interpreting emotions against the background of environmental
information can provide insights into the spatial and temporal properties of urban spaces and
their influence on citizens, such as urban walkability and bikeability. In this study, we present
a comprehensive mixed-methods approach to geospatial analysis that utilizes wearable sensor
technology for emotion detection and combines information from sources that correct or complement
each other. This includes objective data from wearable physiological sensors combined with an
eDiary app, first-person perspective videos from a chest-mounted camera, and georeferenced
interviews, and post-hoc surveys. Across two studies, we identified and geolocated pedestrians’ and
cyclists’ moments of stress and relaxation in the city centers of Salzburg and Cologne. Despite open
methodological questions, we conclude that mapping wearable sensor data, complemented with other
sources of information—all of which are indispensable for evidence-based urban planning—offering
tremendous potential for gaining useful insights into urban spaces and their impact on citizens.

Keywords: wearable physiological sensors; real-time perceptions; qualitative questionnaires;
geospatial analysis; urban spaces; mixed-method approaches

1. Introduction

As functional spaces and complex systems, cities are not only places of infrastructure,
communication processes, technology networks, or human agglomeration areas, but they constitute
multi-dimensional conglomerates of a wide variety of (socio-geographical) processes, in which the
citizens play a central role [1]. These processes reflect widespread interaction between citizens and
their surrounding urban spaces in their daily life and routines.

In contrast to traditional urban research efforts, which explore the city from a systemic point of
view, questions of where, when, and how people respond to and interact with their urban environments
are receiving increasing attention from a subjective and quantitative methodological viewpoint.
Such questions allow researchers to derive deeper insights into how well a city serves its inhabitants,
particularly concerning liveability [2], quality of life [3], and urban wellbeing [4].

Consequently, citizen-centric approaches are a critical element in future urban planning and
analysis because weighing all public and private interests is one of the core elements in planning
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processes [5]. Urban planning ideally reflects and incorporates all public and private parties,
and minimizes conflicts to achieve well-balanced planning results, preferably for all citizens. Thus,
all available information and knowledge sources should potentially be considered in the planning
process [6]. This participatory approach is of increasing importance because citizens are becoming
more emancipated and demanding and clearly articulating their claim for participation in urban
planning and decision-making [7].

As part of a larger and ongoing scientific development that aims to improve the technologies used
for analyzing urban space (e.g., [8]), our contribution focuses on the challenges of integrating objective
data with subjective data collected from citizens. These human-centered approaches are of particular
importance because understanding how people perceive and react to their surroundings depends on
several dynamic and static factors, such as traffic volume, noise, personal sense of safety, the urban
configuration, and greenness. Subjective perceptions are highly context-dependent and, thus, trigger
situation-dependent emotional responses. Analyzing and interpreting these emotions against the
background of environmental information can provide insights into the spatial and temporal properties
of urban spaces [9].

Previous approaches to analyzing urban spaces have mostly focused on traditional methods
such as qualitative surveys, a variety of diary-based approaches, and geospatial data analysis [10].
More recently, the use of wearable sensors has rapidly been gaining momentum in urban research [9].
For instance, integrative Global Positioning System (GPS)-based timestamped measurements with
multi-sensor boards, travel diary instruments, and visualization aids (such as LifeLog and LifeLog
View; [11]) offer tremendous potential for gaining new insights into the dynamics of urban spaces,
such as relationships between built-environments and human behavior. Moreover, it has become
possible to study brainwave patterns (EEG) to passive exposure of urban green spaces via photographic
presentations in experimentally-controlled laboratory settings [12]. However, as each physiological
and social-scientific method comes with its limitations, several uncertainties can compromise the
analysis of urban spaces: Surveys and qualitative interviews are prone to respondents’ selective
attention, and perception, faulty memory, and cognitive biases [13,14]; geospatial analysis often lacks
detailed and complete geodata; and wearable sensors are characterized by a number of measurement
uncertainties in data acquisition and analysis. These limitations call for an integrative approach to
enhance the data purification and the analytical quality before arriving at far-reaching conclusions for
urban planning (see Section 3 for more details).

1.1. Trends Towards Using Wearable Sensors and eDiary Apps in Urban Research

In recent years, our potential to better study and understand the environment (e.g., [11]) has
dramatically increased based on the analysis of physical features using multiple sensing technologies
(triple-axis accelerometer, barometric pressure, humidity, temperature, light, audio, and GPS) attached
to human carriers. At the same time, human sensor data, i.e., measurements from physiological
sensors to infer citizens’ emotion-psychological states like stress, relaxation, wellbeing, safety or distinct
emotions, have increasingly sparked interest in urban research. Conclusions can now be drawn on urban
conditions like walkability (a city’s attractiveness or its opportunity for walking) [15,16], bikeability
(a city’s attractiveness or its opportunity for bicycling) [17], urban safety, and other aspects based on
human experiences. Inferring emotion-psychological processes from physiological measurements is
still challenging—and, surprisingly, underrepresented in the scientific literature. Methods exist that
derive emotion-psychological states from measurements of physiological parameters such as skin
temperature (ST), galvanic skin response (GSR), electrocardiogram (ECG), heart rate (HR), heart rate
variability (HRV), Blood Volume Pulse (BVP), and electromyography (EMG). These measurement
technologies are nowadays embedded in single devices with wearable wristbands or chest belts,
thereby enabling minimally intrusive and cost-efficient acquisition of psycho-physiological data.

Although research efforts exist that use physiological sensors and aim to better understand
urban systems, they still suffer from shortcomings concerning the analysis of wearable sensor data
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and unambiguously relating measured physiological states to the urban environment. At present,
only fundamental insights on the analysis of physiological measurements exist, resulting from a
number of basic research projects. The remaining research gaps comprise 1) the selection of appropriate
physiological parameters for extracting emotional states, and 2) the combination of the chosen
parameters in new sensor fusion algorithms.

Furthermore, to complement the analysis of physiological measurements, ground truthing
mechanisms are necessary to relate the sensor measurements to the environment because the stimulus
or context that causes a perceived emotion (i.e., the “stressor”) cannot be unambiguously identified or
located in a time series of sensor measurements. This is different from using sensors in lab studies,
where researchers can control the stimulus environment and their timed presentation. Therefore,
participants typically have to use an eDiary app to provide more details, often on-site and in near
real-time (e.g., LifeLog; [11]), followed up by post-hoc interviews.

However, retrospective (subjective) reports entail an element of uncertainty when relating the
emotional states to the supposed environmental triggers. Furthermore, some erroneous cognitive
processes such as introspective limits, cognitive biases or memory errors, environmental conditioning
effects, and cognitive and emotional adjustment to habitually encountering stressors (among others)
hamper the quality of these reports and their suitability for drawing conclusions about urban
spaces [13,14].

1.2. A Mixed-Methods Approach to Analyzing Urban Spaces

To deal with these shortcomings, we propose an interdisciplinary mixed-methods approach that
leverages the unique strengths of various methods [18]. Thereby, a single method may overcome
the vulnerabilities of another method. In a more comprehensive approach, we combine various
data sources, all of which produce georeferenced data: wearable physiological sensors, an eDiary
app, and videos from a first-person perspective (chest-mounted camera), supplemented by personal
georeferenced interviews (or standardized surveys) with typical geospatial analysis. This gives us
information with higher quality compared to mere single or double method approaches. Notably,
as the title of the manuscript suggests, our proposed the mixed-methods approach is suitable for
analyzing urban spaces in general, while the paper demonstrates the potential of the approach in the
particular use cases of walkability and bikeability. Other potential use cases include analyzing the
effect of urban green spaces, urban wellbeing, barrier-free planning, and others.

Our study addresses the following research questions (RQ):

1. How can heterogeneous methods be combined or integrated for the analysis of urban spaces?
2. To what degree are the results from quantitative and qualitative approaches related to each other?
3. Are there striking similarities, or rather dissimilarities, in the results of the different methods?

2. Related Work

The rapid development of high-performance sensor technology has led to small and flexible
wearable biosensors that allow human emotions (based on individual perceptions) to be captured
by measuring physiological parameters. These sensors are useful for evaluating the walkability and
bikeability of cities better than using self-reported impressions in post-hoc interviews [17,19,20]. Simple
and direct sensations, together with more complex emotions, are reflected in physiological parameters
that can be registered in real-time, such as ST, GSR, or HRV [21,22]. Changes in the activity of the
autonomic nervous system can be measured with sensors and allow us to identify stressful events.
In particular, the combination of GSR and ST provides insights into the emotional state of humans who
move and feel through space.

Biosensor measurements serve as objective indicators, as they are not based on self-reports.
Instead, they rely on non-reactive assessments using technical equipment (alternatively through peer
or expert outsiders) collecting the data. Subjective distortions, which often occur in self-reports,
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are thus prevented. The main drawback of objective physiological data is that they do not permit direct
conclusions to be drawn about the specific quality of human experience or behavior. This requires
additional interpretation, for instance, through self-reports [23].

2.1. Stress Detection through Wearable Sensors

It has long been known that people respond to various stress-inducing stimuli with unspecific
bodily reactions [24]. Stress is often defined as the “perception of threat, with resulting anxiety
discomfort, emotional tension, and difficulty in adjustment” [25]. Cannon (1926) supposed that
any deviation from homeostasis (the bodily “steady state”) causes the body to enter a fight-or-flight
response, resulting in measurable physiological oscillations [26]. Thereby, the autonomic nervous
system (ANS) reacts to stressors in a bid to re-establish homeostasis on a psycho-physiological
level [27–29]. The associated physiological signals that reveal ANS activity—such as HRV, GSR, ST,
BVP, a.o., are considered to be reliable stress indicators reflecting both the intensity and the quality of
an experience, at least when calibrated against an individual’s baselines (see below) [30–32].

Nowadays, research efforts leverage the capabilities of wearable physiological sensors to detect
signals of stress because they excel in comparison to traditional laboratory equipment regarding the
amount of collected data and portability of the devices. Biosensors provide high temporal resolution
resulting in continuous, high-quality measurements that are accurate, timely, detailed, and retain
contextual information, especially when coupled with location tracking technologies such as the
Global Positioning System (GPS) [32–34]. In contrast, one-time measurements such as interviews,
even fine-grained self-reporting via questionnaires or apps, cannot provide the high temporal resolution
of wearables [35].

However, some preconditions must be met to obtain reliable and useful measurements for stress
detection. First, the sampling frequency needs to be sufficient to accurately depict the signal. Second,
proper placement of the wearables is necessary to avoid ambiguities and to appropriately record the
physiological signal. Despite these prerequisites, the signals vary based on the natural oscillations of
the physiological status of the human body. All of these fluctuations are inevitably recorded. To obtain
more accurate data, filters are needed that remove the noise [36,37]. The nature of the signal and
the type of noise are some of the criteria for selecting optimal filters. To remove the ambient noise
(e.g., shifting signal levels, alternatively peaks/spikes), filters such as the Kalman filter, Butterworth
filter, Wavelet Decomposition, among others, have been devised [38]. Wearable biosensors coupled
with GPS provide valuable information about a subject’s urban context and the emotions associated
with it at a high spatiotemporal resolution. This synergy offers great potential for better understanding
cities as complex systems [35].

2.2. The Potential of Wearables for Urban Analysis

Over the last decade, more and more approaches have integrated wearables and emotional
experiences in urban analysis coupling “spatial-emotional data”. This provides tremendous
potential for better understanding urban areas. Nold (2009) first introduced the idea of emotional
cartography, combining objective physiological measurements with location data as a new kind of
psychogeography [39]. The author built a customized portable and wearable “Bio Mapping” device
that recorded GSR and GPS data. In addition, participants could vocalize their mental state and
describe what happened during their walks. The outcome was a map that depicted all the collected data,
creating an “emotion surface” that blends objective emotional states with subjective experiences [39].

Nowadays, numerous research efforts leverage the capabilities of wearables for urban analysis,
but they vary in terms of (1) the methods applied, (2) the physiological signals recorded, (3) the type of
physiological signals analyzed, and (4) the sample size (see Table 1).
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Table 1. Summary of literature review on strategies for combining other methods with wearables for investigating emotional experiences in urban areas.

Authors
Methods Wearable Sensors Sample

Vocalize
Description Camera eDiary Survey Physiological

Signals Type of Analysis Number of
Participants

Nold (2009) x GSR Physiological signal variation -

Bergner et al. (2013) x GSR Stress PhaseIdentifier software 7

Chen et al. (2016) x ECG, EMG,
GSR, ST Physiological signal variation 4

Layeb and Hussein (2016) x GSR Physiological signal variation 13

Zeile et al. (2016) x x GSR, ST Physiological signal variation 12

Fathullah et al. (2018) GSR Physiological signal variation 9

Osborne et al. (2018) x GSR Physiological signal variation 30

Shoval et al. (2018) x GSR Physiological signal variation 68

Birenboim et al. (2019) x GSR, HR Physiological signal variation 15
(only males)

Werner et al. (2019) x GSR, ST Custom algorithm 21

Zeile and Resch (2018) x x GSR, ST Physiological signal variation 2

Abbreviations: GSR: Galvanic skin response; ST: Skin temperature; ECG: Electrocardiogram; EMG: Electromyography; HR: Heart rate.
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Similarly, Layeb and Hussein (2016) investigated the urban soundscape and its characteristics
that most frequently led to stress [40]. Bergner et al. (2013) combined wearables with cameras to
investigate the stress states of pedestrians [41]. Layeb and Hussein (2016) recorded only GSR and used
the “StressPhaseIdentifier software” to detect stress phases [40]. Chen et al. (2016) also used wearables
and cameras, but primarily investigated the variations of physiological signals, namely, ECG, EMG,
GSR, and ST [42]. Zeile et al. (2016) revealed the most common triggers for cyclists using wearables,
cameras, and a smartphone-based application that allowed users to create entries about their perceived
emotions occurring in the field, based on variations in their personal GSR and ST measurements [20].
Their study was the only one that combined these methods. Additionally, another study combined
physiological sensors and first-person perspective videos in a virtual reality environment [43].

In conclusion, most previous studies used a limited set of methods (mostly analysis of
measurements from wearables and/or questionnaires at the end of a field test), and all investigated the
variations in GSR for detecting stress [44–46]. The one exception is [17], who recorded both GSR and
ST and detected stress through a specific algorithm they had developed. Birenboim (2019) also used
wearables and questionnaires but scrutinized the variations of GSR and HR to detect stress [35].

Our study goes beyond the state of the art in that it combines several techniques in a mixed-methods
approach. We aim to deliver more reliable and comprehensive results because the used methods can
complement each other and partially mitigate their respective shortcomings.

3. Methodology: A Mixed-Methods Approach for Analyzing Urban Spaces

Evidently, researchers felt an increasing need to combine methods before arriving at firm
conclusions based on wearables alone. It appears that better algorithms for extracting stressor-related
information only addresses part of the problem of correctly attributing physiological signals to the
environment. These physiological measurements can be complemented and validated by continuous
subjective impressions reported via an eDiary app, as well as first-person perspective cameras and
retrospective interviewing.

We propose a comprehensive mixed-methods approach (see Figure 1), combining methods from
various disciplines (geoinformatics, computer science, social science, and psychology) to leverage the
strengths and overcome the vulnerabilities of each method. We combine typical geospatial analytics
with the analysis of physiological signals measured by wearable sensors, eDiary app entries capturing
immediate impressions reported by study participants, and videos from the participant’s first-person
perspective (a chest-mounted camera), complemented by georeferenced interviews (or standardized
surveys) to achieve higher data quality compared to previous approaches. Notably, all used datasets
are explicitly georeferenced and contain a timestamp, which constitutes the common ground for their
combined analysis.
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The mixed-methods workflow shown in Figure 1 integrates several georeferenced data sources.
The first step in the workflow is to collect physiological measurements, from which we extract moments
of stress that study participants experience (see Section 3.1). After that, we perform a spatial hot spot
analysis using a specific algorithm according to [47], integrating the physiological measurements with
eDiary app entries in a cartographic representation. This analysis results in spatially fine-grained
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emotion hot and cold spots that identify places of clustered stress and clustered relaxation. In the
next step, we perform a cross-validation of these hot and cold spots, (1) by visually identifying
the cause of moments of stress from video footage (first-person camera), and (2) by qualitatively
comparing responses to a georeferenced questionnaire. Thereby, videos from a first-person perspective
function as a cross-validation of the presumed emotional triggers because they facilitate memory
recall and situational recognition, can strengthen traces of emotion memory, and help identify or
prevent misattribution of feelings to the wrong environmental stimuli. In fact, the videos serve a
dual purpose: (1) cross-validating eDiary entries that may be subjectively biased, and (2) adding
context (“ground-truthing” the stressor) and quality (type) of emotion to sensor data. The latter
are high-resolution time series data, but provide no context information and are thus “semantically
poor”. The developed methodology is interdisciplinary (embracing urban research, geoinformatics,
and social-scientific methodologies) and technology-supported (geospatial analyses, human sensor
technologies, videos), clearly going beyond the current state of the art in the analysis of urban spaces.

In addition to qualitative surveys and geospatial urban analysis, the core element of innovation
herein is the unique combination of human sensor technologies and wearables (to detect changes
in physiological parameters as a response of the human body to an emotion-psychological process,
which is located in a specific physical environment) with eDiary apps and first-person videos for
the analysis of urban spaces and cross-validation of the different approaches. The geolocation of
these measurements allows us to verify where people responded to an emotional stimulus, and this
geoinformation can then be linked to the corresponding urban environment, which needs to be
augmented by a subject’s perception of the environment.

A vital benefit of combining these methods is that ambivalent situations can be identified
and explained: Either different participant groups respond differently to the environment (stressed
vs calm), or participants themselves are ambivalent about a situation, but their focus rests on a
particular stimulus or environmental element. Different methods allow conflicting responses to be
identified, and high-resolution sensors allow quick emotional shifts to be detected, which may escape
participants’ attention.

To position the mixed-methods approach presented herein within the mixed-method literature,
several similarities but also differences need to be discussed. “Mixed-methods” approaches
combine quantitative and qualitative data analysis [48,49]. More specifically, a methodological
“triangulation” [50] is needed to maximize the validity of data, or filter out the relevant data from
the noise surrounding the data that is not relevant for answering the research question. Unlike
sequential designs, our approach does not specify either a full quantitative→ qualitative or qualitative
→ quantitative sequence of methods. The openness of the individual experiences of subjects moving
through space, and a deeper understanding of unspecific physiological parameters, call for a parallel
mix of methods in the analysis of emotional responses to the environment, be it a static environment or
a continually changing environment for people who are mobile. If anything, of all designs discussed
in [51], our design mostly resembles the Sequential Explanatory Design regarding data collection,
in that it seeks additional confirmation over and beyond the continuous sampling of quantitative
data obtained from the biosensors. However, conceptually the design is closer to the Concurrent
Triangulation Design, because separately analyzed data have to be merged or integrated, and then
interpreted jointly.

Arguably, the idea that validity can be maximized after combining methods that originate
in different domains is a contentious one. In the present case, we indeed look not only at
sources of information complementing each other but also at (the possibility of) eliminating errors
and preventing erroneous conclusions by blending them. Neither of the methods is dominant from
the outset. Two examples may demonstrate this. Assume a dangerous situation emerged for a
cyclist due to the poor conditions of the cycling lane. Physiological signals may reflect a continuous
activation of the nervous system, but the respondent—paying more attention to the traffic than to
the ground—has hardly noticed his or her struggles. Self-report would be introspectively limited.
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Likewise, even if a stressful situation were reported, it may be the case that a subject attributes arousal
to the size of a crossing, while the video camera may show that a problem exists only if ongoing
traffic is blocking the cycle lane. Precisely because time stamps and geolocations allow the same
phenomena to be described from different angles, the multi-method approach is suitable for increasing
validity. All three fundamental principles of mixed-method triangulation apply; namely, converging
information, diverging information, and information complementing each other.

From a methodological point of view, no objective reference or methodological gold standard
(“truth”) exists, against which the results of any method could be compared. Each method yields
a particular set of information, each of which requiring situation-specific interpretation, that is,
a “qualitative” integration of partially quantitative data. Furthermore, exact replicability of results is
in most cases an unattainable scientific goal. Therefore, generalizing statements about (objectively
predictable, scientifically expected, and consistent) relative advantages of any method or combined
methods are impossible. The data (physiological measurements, eDiary entries, video sequences,
responses, to the questionnaire, etc.) as well as the investigated real-world settings are highly time- and
context-dependent, and in fact unique. This fact prevents that any comparison between two situations
(or samples or methods) can yield the same (objective and replicable) advantage of one method (or a
combination) over another. Hence, there is an urgent need for methodological triangulation and
ground-truthing in a mixed-methods approach.

3.1. Extracting Emotion Information from Wearable Sensor Data

We assess the physiological signals resulting from perceptions and emotions of pedestrians using
wearable biosensors. Based on technology evaluation and laboratory tests [52], we recommend the
Empatica E4 (a wristband measuring GSR and ST) and the Zephyr Bioharness (a chest strap measuring
a variety of cardiological parameters like ECG, HRV, and others). Our sensor fusion method extracts
emotion information (moments of stress) from the measured data using a customized signal analysis
procedure [53].

First, a low-pass filter (cut-off frequency 0.5 Hz) eliminates high-frequency variations in
measurements that may be caused by technical inaccuracies, followed by a high-pass filter (cut-off

frequency 0.05 Hz) to filter the tonic GSR as an indicator of each participant’s baseline. Then,
our rule-based algorithm detects patterns in the measurement data that are presumed to indicate a
physical stress reaction: 5 s of GSR increase, followed by a temporally delayed (+3 s) decrease in
ST. Next, the algorithm looks for a local maximum, followed by a local minimum in ST together
with a slope steepness in the GSR increase of ≥10◦ [53]. The algorithm reliably identifies moments
of stress in the measured physiological parameters at an accuracy of 84%, as shown in a validation
study (see [53] for more details). We acknowledge, though, that no scientific consensus regarding
which of the physiological parameters should be integrated has yet been established. Furthermore,
some detailed questions about the specific algorithmic setup remain unresolved.

3.2. eDiary App Entries and First-Person Perspective Videos

To complement the sensor measurements with subjects’ perceptions of the environment, we use an
eDiary app developed by geographic information scientists (GIScientists) together with psychologists
and urban planners. It allows the users to record which events occurred and what they encountered
while moving through urban space [54]. Augmenting sensor data with subjective elements captured
through the eDiary app is essential because the signal analysis procedure can merely identify moments
of stress, but not their emotional quality (which type of feeling) or the urban context (what real-world
trigger instigated an emotion). Thus, the eDiary entries help interpret the measurement time series
by infusing human-generated meaning and observations, which are elicited through (perceptions of)
the environment.

The eDiary app used in this study [54] offers a simple multi-screen interface, where each screen
can contain one or more questions (e.g., open, closed, checkboxes, radio buttons, intensity sliders).
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The questions and interface are easily configurable through a configuration file, according to the
particular study’s needs. For the studies presented in this paper, we designed a three-screen layout
asking for the following inputs: (1) the quality of the perceived emotion (happiness, anger/disgust,
sadness, fear); (2) the context or cause of the triggered emotion (cars, bicycles, green space, people,
sights, cityscape, weather, intersections); and (3) the intensity of the felt emotion.

In principle, eDiary applications are a step forward in that they represent multiple-wave designs
that allow for repeated and more detailed questioning around the time and near the location of
potentially stressful events. They can be designed with experimenter-triggered prompts after fixed
periods of time (interval contingent design); alternatively, respondents may enter data regarding their
experiences whenever appropriate, i.e., whenever they experience a stressor (signal-contingent design).
The latter design is more flexible and probably more suitable for urban analysis. However, this model
also carries the risk of introspective limits, that is, participants overlooking or downplaying relevant cues
that should have triggered subjective records [55]. For instance, there is positive–negative asymmetry,
which may lead to underrepresentation of positive environments in the subjective record [56,57].
Because of such limits, physiological reactions may correct memory distortions and help identify
dangerous situations in space that a participant hardly noticed consciously. Alternatively, physiological
reactions can also identify positive, relaxing situations that simply escaped participants’ attention
before a record could be made.

In addition to the physiological sensors and the eDiary app, participants are equipped with
a wearable video camera (GoPro), attached with a chest strap, to record the real-world situation
from the perspective of a test person. The video recordings serve as a visual verification aid for the
sensor-derived stress moments. Furthermore, they allow for more certain conclusions on the actual
stressor that may have caused the stress reaction. Currently, we manually extract sequences from
relevant real-world situations captured by the video footage in the lab after the field-phase, because
analyzing videos in a dynamic urban setting would be highly challenging and is out of scope for
our research.

3.3. Combined Analysis in a Visual Analytics Approach

We synthesize the moments of stress extracted from the objective sensor data from wearables with
the subjective data from the eDiary app to visually check for spatial co-occurrences (ground-truthing).
This allows us to identify—and spatially locate—triggers of the detected moments of stress. This step
contributes to the analysis of urban space by revealing spatial accumulations of human physiological
reactions of pedestrians (or cyclists) to the urban environment.

Currently, we pursue a visual analytics approach to assess the commonalities and differences
between the geospatially analyzed sensor measurements and the eDiary entries, which are both
aggregated to raster cells and standardized over the number of measurements and eDiary entries
in a given area. Even though the eDiary entries cannot be considered a reliable gold standard as
such—due to a variety of errors and biases inducing uncertainty such as blurred memory, dilutions due
to cognitive processes, such as self-censoring rather than proving spontaneous reports, environmental
conditioning effects, and habituation, the illusory truth effect, and others [58]—they show a different
spatial emotion distribution compared to the sensor measurements. Thus, the two data sources
complement each other [10]. Potential further developments for the current visual analytics approach
are described in Section 5.1.

3.4. Georeferenced Questionnaires

Questionnaires pose a series of questions to gather information from respondents [59,60]. They are
the most useful and versatile method of eliciting subjective data about people’s experiences. More
specifically, autobiographical memory is relevant for recollecting specific episodes or personal events,
which are typically charged with valence [61]. Despite the advantages, the study of autobiographical
memory has been criticized for the lack of accuracy in retrospective reports (e.g., [62]), and it has to be
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granted that it is difficult to control for error and bias in self-reports. Close timing after an event and
additional memory aids (such as maps and further cues) can help reduce the impact of false memory
reports on findings [13,14].

With proper geocoding, it becomes possible to locate the respondents’ answers in space. If multiple
geocodes are available, multiple subjective reports may be gathered and, thereby, reveal information
about the environmental context about which questions may be asked (alternatively about the
contextual influence on any kind of subjective answers). However, even when geocoded, the utility of
retrospective (post-hoc) interviewing is limited, as it does not cover all the experiences that matter
in urban analysis. First of all, practical reasons limit the number of questions that can be asked.
Furthermore, the high temporal resolution required also far exceeds typical autobiographical memory
capacities (for exceptions, see [63]).

For our walkability study (see Section 4), we designed a 19-item questionnaire, ranging from
personal background information (urban/rural living situation, age, education level, household type,
employment status), mobility behavior (frequency of physical activity, physical mobility restrictions,
car ownership, public transport use), attitude towards walking (motivation for walking, e.g., health, joy,
necessity), and subjective walkability assessment (availability of sufficient space for walking, crossing
streets, car drivers’ behavior, the joy of walking in a specific area, assessment of the particular urban
environment for walking, general feelings). Additionally, study participants were asked to point out
on a map where they felt relaxed or stressed during their test-walk and to describe the situation that
purportedly caused this feeling. Our bikeability study used the same questionnaire with a specific
focus on the bicycle infrastructure.

4. Case Studies and Results

To validate our integrative mixed-methods approach, we carried out two field studies,
(1) investigating the urban walkability of two regional capital cities, Salzburg and Cologne (56 participants,
3–7 September, 2018), and (2) evaluating the safety of the urban bicycle infrastructure in Salzburg
(18 participants, 30 October to 30 November, 2018). Both studies showed substantial convergence
between the results of each methodological component while revealing a strong potential of the
methods to complement each other. For both field studies, hot spots (spatially clustered moments of
stress) and cold spots (spatially clustered moments of relaxation) identified in the human sensor data
correspond to participants’ perceptions provided through the eDiary app and a geolocated (post-hoc
paper–pencil) questionnaire. While hot spots (red) are to be interpreted as stress accumulation points,
cold spots (blue) are considered as spots with noticeable low-stress intensity. The limitations and issues
described in Sections 4.1 and 4.2 apply to both field studies.

For both studies, test persons were approached via email (existing email lists for empirical studies).
The selected test persons were instructed about the study protocol, functionality of the wearables
sensors, use of the eDiary app, and purpose of the video recording on-site before the sensors were
mounted. All participants signed an opt-in agreement (informed consent) for the acquisition and
analysis of their data for the purpose of this study. Figure 2 shows the gender and age distribution
of the study participants. The weather during the two field studies was similar with temperatures
between 12 ◦C and 20 ◦C, mostly overcast skies, and short periods of slight rain.

4.1. Urban Walkability

In a first study, we investigated urban walkability using the approach presented above and
comparing the city centers of Salzburg and Cologne. We recruited 56 participants (27 for Salzburg and
29 for Cologne) who were instructed to walk through their respective cities with sensors mounted
on their bodies (Empatica E4 wristband, Zephyr Bioharness, plus GoPro first-person video camera).
Subjects were also asked to enter observations, impressions and emotions into the eDiary app on a
smartphone and to answer a customized questionnaire after their walk. Figure 3 shows the geospatially
analyzed physiological sensor data for the city of Salzburg, whereby red areas indicate hot spots and
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blue areas indicate cold spots. The data was analyzed by applying Getis–Ord Gi*, a well-known
geospatial hot spot analysis method.
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The results identified stress hot spots near Hanuschplatz square (1), in Getreidegasse at
Rathausplatz square and in front of Mozart’s birth place (2)—one of the city’s major tourist
hubs—at Residenzplatz square (3), and Linzer Gasse (4). The cold spots for Salzburg were located in
close proximity to tourist attractions, and moments of relative calm and lingering were particularly
present when participants had the opportunity to pay attention to these sights (e.g., in traffic-calmed
areas). In particular, the cold spots in Salzburg comprise locations that offer a particular exposure to
the sights or offer a special view: these include the iron gate at the entrance of the Mirabell Gardens (5),
at the transition to the Makartsteg (6), at Getreidegasse (7), at Universitätsplatz square (8), and close to
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the Residenzplatz square and Alter Markt square (9). In general, hot spots were found where pedestrian
areas are characterized by special traffic dynamics such as the constant presence of pedestrian traffic
(e.g., “crowds”) or the intersection of traffic lanes (bicycles, cars), forcing the pedestrian to interrupt
their walk or even to sidestep.

Both the hot and cold spots identified in the human sensor data corresponded to participants’
impressions, provided through the eDiary app, and to a geolocated (post-hoc paper-pencil)
questionnaire. This correspondence between methods is similar for both cities.

For Cologne, the number of hot spots is higher overall (see Figure 4): considerably more hot spots
are present in the study area compared to Salzburg. These numerous hot spots can, therefore, no longer
be regarded separately but need to be grouped to achieve clarity in the interpretation. The high number
of hotspots for Cologne can be explained, on the one hand, by the total number of visitors covering a
larger area compared to Salzburg, and, on the other hand, by the comparatively low number of tourist
attractions far away from the cathedral (1), at the same time, the cathedral, as a central tourist attraction,
results in a higher number of cold spots in its proximity. According to the eDiary entries, the cold spots
are associated with the cheerfulness of the nearby surroundings. However, participants also repeatedly
commented on “crowds” related to the cathedral. The cathedral is thus an ambivalent place in the
sense of stress and relaxation. The situation is similar with the Hohe Straße (2): shop windows and
shops, street artists and musicians invite people to linger, while the particularly busy dynamics on the
sidewalks and in the pedestrian zones resemble a continuous stream of pedestrians. Pedestrians are
forced to adapt to the dynamics of the pedestrian flow and, if necessary, to run behind the people who
are heading in the same direction. This dynamic is not only time consuming and requires patience,
but it may also demand collision avoidance. Similar patterns emerged for all shopping streets such
as the Schildergasse (3), but also Richmodstraße (4), Zeppelinstraße (5), and Mühlengasse (6) (corner
Kleine Budengasse). Individual comments point to disturbances during the walk by cyclists and
motorists, and to increased risk of accident when walking with walking aids.
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4.2. Urban Bikeability

In a second field study, we analyzed the safety of the urban bicycle infrastructure in a defined section
of the city center of Salzburg. Concretely, the evaluation followed a two-step procedure in a pre-post
analysis approach: (1) an existing bicycle lane was evaluated using the mixed-methods approach
presented in this paper, and (2) after the city government had modified the width of the bicycle lane,
the same evaluation procedure was carried out again.

As shown in Figure 5, the stressful moments detected by wearable sensors corresponded very
well to the dangerous spots identified in the qualitative survey results. However, sensor data also
identified further stress points that were underreported in the survey. Additionally, most of the stress
points revealed by the sensor data could be retrospectively validated with the help of first-person
videos and attributed to a specific traffic situation as a cause. The localization of stress points with
GPS implies that they may differ from the actual driving line due to geospatial uncertainties in the
GPS positions. In terms of the effectiveness of the bicycle lane, our results revealed that in the second
test phase, i.e., with a wide bicycle lane, 20% fewer stress points were detected in the physiological
measurements compared to the narrow bicycle lane (12.6% less in the city, 25.9% less out of town).Int. J. Environ. Res. Public Health 2020, 17, x 13 of 20 
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5. Discussion and Sociological Considerations

Concerning the research questions laid out in the introductory section, we can draw the
following conclusions:

RQ1: we were able to combine different and highly heterogeneous approaches and data sources
by visually cross-validating the results of each method. We were thereby able to “ground-truth”
the detected (wearable sensors) and reported (eDiary app) moments of stress and relaxation with
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real-world situations captured by the first-person cameras. An automated, quantified methodology
to combine the data sets or information layers in an integrated analysis algorithm is a matter of
future work.

RQ2: both hot spots and cold spots identified in the human sensor data mainly corresponded to
participants’ impressions provided through the eDiary app and a geolocated (post-hoc paper–pencil)
questionnaire. An approach for quantitative comparison is yet to be developed because the entropy
of the different outputs is difficult to quantify, and the semantic information level of the outputs
varies. Therefore, information fusion algorithms need to be investigated to merge the different
information layers.

RQ3: it is striking that the different information layers exhibit similar spatial patterns (see,
for instance, Figure 3). However, in some cases, these layers contradict each other. For instance,
the moments of stress (MOS) derived from (objective) physiological sensor measurements are only
partly in line with the (subjective) eDiary entries. These contradictions may be caused by multiple
factors, including cognitive biases and errors concerning the eDiary app entries and answers to the
questionnaire-items, or uncertainties in the MOS detection algorithm. Ultimately, unambiguously
attributing the discrepancies is difficult because no gold standard exists against which the outputs
of each method can be compared and validated. To the extent that participants produce similar
discrepancies, this may instill trust in the reliability of findings.

5.1. Methodological Issues

Mixed-methods approaches combine quantitative and qualitative data analysis [48,49].
More specifically, a methodological “triangulation” [50] is needed to maximize the validity of data,
or filter out the relevant data from the surrounding noise that is not relevant for answering the research
question. Our mixed-methods approach relates to the extant literature but does not fit exactly in any of
the mixed-methods categories described in [51]. More work is needed that address the methodological
considerations of mixed-methods approaches in GIScience.

First of all, stress levels are only one indicator in the entire set of indicators for the assessment of
urban spaces. This is particularly true for the two case studies presented in this paper (walkability and
bikeability), which have traditionally been examined by analyzing multi-indicator systems. Our vision
for using stress levels and emotions in the investigation of urban spaces is twofold. (1) Either stress
levels can complement existing indicator-based approaches, thus acting as another indicator that can
be analyzed in conjunction with other factors. (2) Alternatively, they may in the future even be able
to replace indicator-based analysis, assuming that the indicators sum up the predictive power of all
other indicators. To date, neither of the two options can be ruled out, and further research is needed to
investigate the relationships between stress/emotion levels and other indicators.

From a methodological survey point of view, it is apparent that past studies in urban research paid
limited attention to questions of sample size and composition. Not only do small sample sizes prevail,
but often the composition appears to be rather ad-hoc. Urban researchers would profit from considering
questions such as the following in more detail: should locals, tourists, or both, be included in a study?
Is the distinction relevant, or is it rather the knowledge about the space under scrutiny, that is, being
familiar or not familiar with the locations? Should the sample sizes be planned such that each subgroup
is large enough to be reliably measured to provide its own analysis and allow comparisons between
several groups? Is age a relevant variable for stratification of the sample, or should a stressor-related
analysis collapse over participants of different age? Is there a particular motivation behind including
only one gender group? How can one alleviate the concern that one tech-savvy group may be more
inclined than others to use trackable devices and participate in urban studies?

Regarding the reliability of the analysis, further questions may be asked about the design of the
parcours. Is there a difference between using a predetermined (fixed) path-design in comparison to a
volatile (self-directed) path in a city? Can the criteria for choosing among the two designs be spelled
out a priori? What about the reliability of the analysis of the two approaches? Logically, accumulating
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evidence is more reliable the more pedestrians or cyclists pass the same (hot or cold) spots. Thus,
this approach would yield a more accurate picture of the urban environment and its affect-eliciting
properties. How can one clearly distinguish between the low reliability of participants’ subjective
reports on the one hand and transient emotional responses from a few affected individuals on the other
hand? Is there a way to differentiate between temporally occurring phenomena that affect the majority
of the sample (for instance, an unexpected traffic jam after an accident) and stable features of the built
environment (narrowing of two lanes)?

From a data analysis viewpoint, drawing reliable conclusions from physiological data outside
of controlled environments (labs) is difficult, despite the maturity of technological developments.
On the one hand, real-world experimentation compromises reproducibility (compared to lab studies),
and results in higher complexity due to additional external factors; on the other hand, the test persons’
awareness of being participants in a study may induce a variety of cognitive biases [58]. Since the
analysis of sensor data does not produce unambiguous results, its combination with an eDiary app,
which acts as a subjective feedback method, is necessary to determine the context and trigger of the
pedestrian’s perception or emotion. The eDiary app validates the measurements for each participant,
constituting a ground-truthing mechanism for the physiological data measured by wearable sensors.
However, the eDiary can effectively not be considered a true gold standard because of its spatial and
temporal sparsity compared to the wearable sensor data. Further research in combining hot spot maps
derived from physiological sensor measurements with eDiary app entries comprise (1) the automated
correlation between the two datasets in, for instance, difference maps, spatial cross-correlation or
covariance-based measures, and (2) the semantic fusion of information, i.e., finding overlapping and
complementing information in stress/relaxation hot spots identified in the sensor data and eDiary app
entries through geostatistical methods.

5.2. Data and Privacy Issues

Due to the rapid development of sensor technology, there is an increasing trend in science in
using spatiotemporal data from wearable sensors. However, the use of such sensor data may pose a
significant risk to privacy, mostly because practitioners and the public may not be fully aware of the
potential disclosure risks associated with these datasets [64]. Regarding the use of participatory sensor
data in research studies, Resch (2013) emphasizes the obligation of practitioners to deal with various
data protection aspects such as data ownership, accessibility, integrity, liability, and activation or
deactivation options [65]. Although a large number of problem-oriented publications on the disclosure
of geoinformation are available, no clearly defined solutions have been proposed [10]. Kounadi and
Resch (2018) outline a geo-privacy guideline for participatory sensor data that covers the entire process
chain of a research campaign [66].

To select and highlight one issue, it may seem reasonable to conclude that having multiple
participants walk or cycle an identical researcher-determined path reduces the risk of de-anonymization
compared to monitoring subjects following their usual path to the workplace each morning. However,
in combination with time stamps and other information requested or created by the electronic device
used by participants (e.g., mobile phone with apps other than the eDiary app for the study purpose),
four chunks of a route may be sufficient to determine an individual’s identity [67]. When combined
with other personal information, such as attitudes or economic background questions, this poses
a risk to data privacy. It should become the norm that self-reported sensitive data (e.g., mobility
preferences, general attitudes, health-relevant information) and inconspicuous geolocations must be
stored independently at separate locations. Only researchers with (restricted) access to the table that
provides links between independent IDs from both datasets should be able to run a full geospatial
analysis, especially if the data are meant to be shared (e.g., as public use files [68]). While this procedure
is (becoming) the norm for social surveys, it cannot yet be assumed to be fully observed in GIScience,
although increasing efforts are being made in the community [69]. However, as the sample sizes grow,
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and as the value obtained from having access to more and more unique information about participants
increases, this will become a prerequisite in the future.

6. Conclusions

Our presented approach advances the analysis of urban places towards a more comprehensive
understanding of cities and relies on the combination of various georeferenced data sources. These
data sources comprise wearable sensors and eDiary apps, together with first-person video, traditional
geospatial analysis methods and georeferenced questionnaires. Advances in biosensor technology
enable us to record and map the changing physiological reactions of citizens in specific real-world
situations. Based on these human reactions, personal impressions and elicited emotions can be
identified in designated areas. Merging “objective” measurements and other methods (qualitative
questionnaires, feedback via eDiary apps, geospatial analysis, and video footage) allows conclusions to
be drawn about the triggers of perceptions and emotions as reactions to the specific urban environment.

The mixed-methods approach presented in this paper can be seen as an evidence-based
methodology for extracting stress hot and cold spots from physiological measurements, and combining
them with other methods of urban planning. From a planning perspective, this will potentially
constitute a useful “mood sensor” for future planning processes to complement traditional surveys
with a dynamic layer in the planning processes [7].

The number and location of reliably identified hot spots in a city may foster a better understanding
of the city as an environment for citizens and tourists. For instance, urban planners may want to relate
hot spots to existing reports about traffic accidents and then take countermeasures that address the
concerns reported by pedestrians and cyclists. Another example might be to create larger zones of
calmness or liveliness or to follow up on newly shaped zones of interrupted or uninterrupted fluent
movement to evaluate and improve the walkability and bikeability profile of the city. Furthermore, the
approach is well suited for performing a pre-post analysis of measures realized in the urban mobility
infrastructure, i.e., to evaluate and assess the impact after the implementation of a change in the
infrastructure. It is evident that further scientific investigations and evaluations of urban planning
measures are required to evaluate the impact of urban spaces on citizens.

In this regard, the combination of physiological measurements with other, more traditional datasets
can be considered a valuable source of information for urban planning. This is particularly the case as
urban planning is oftentimes still a closed communication process between local governmental
stakeholders and not an open, transparent procedure that discusses, merges and follows the
requirements of citizens and civic interest groups [7]. Ideally, all arguments should be collected
and weighed up in urban planning procedures. However, in current deductive planning practice,
which city governments typically initiate and implement, citizens’ requirements are often not sufficiently
heard and considered. This includes particular interests, unclear planning targets, and unrealistic
demands [70].

In contrast, public participation may encourage democratic processes, increase acceptance through
better transparency, contribute to the establishment of more accurate and comprehensive repositories
of citizens’ needs, produce an evidence-based legitimation of particular planning measures, and reduce
the costs of planning process [71]. This is of utmost importance in increasing discussions about
how policy-makers can foster participation and integrate the public into decision-making processes.
A central question is how people can be proactively engaged to participate in these processes and how
these alternatives to traditional means of participation can be leveraged in practice [7].

In this regard, our mixed-methods approach can deliver new insights into peoples’ feelings and
expectations concerning their city. In contrast to previous top-down processes, our research pursues
a bottom-up and inductive approach. The advantages are manifold: first, bottom-up processes are
citizen-driven, where the data acquisition of urban phenomena is supported by researchers. Second,
as “prosumers” of planning-relevant data, the citizens not only act as data producers but also provide
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central inputs for new planning issues [7]. Thus, our approach may contribute to fostering such
self-organizing processes of assessing urban spaces.

Finally, our approach is not to be understood as a generic tool for solving all planning issues,
but it may be able to foster another, unseen view and a more accurate understanding of the urban
environment. It would be beneficial if these new insights could be integrated as indicative information
in official planning processes [5]. Ultimately, we strive to provide evidence-based data to underpin
the increased plausibility and relevance of our results by considering the spatial environment and its
effect on citizens. Although our real-world case studies yielded plausible results, further research
challenges were identified. Determining the parameters for the detection of emotions is a relevant
challenge for research. Data and privacy-related issues must be taken into consideration and should
be addressed comprehensively. Finally, this kind of research will contribute additional benefits to
walkability/bikeability research by unraveling new perspectives derived from biosensor data never
seen before.
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