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Abstract: This paper uses machine learning to refine a Land-use Regression (LUR) model and to
estimate the spatial–temporal variation in BTEX concentrations in Kaohsiung, Taiwan. Using the
Taiwanese Environmental Protection Agency (EPA) data of BTEX (benzene, toluene, ethylbenzene,
and xylenes) concentrations from 2015 to 2018, which includes local emission sources as a result
of Asian cultural characteristics, a new LUR model is developed. The 2019 data was then used as
external data to verify the reliability of the model. We used hybrid Kriging-land-use regression
(Hybrid Kriging-LUR) models, geographically weighted regression (GWR), and two machine learning
algorithms—random forest (RF) and extreme gradient boosting (XGBoost)—for model development.
Initially, the proposed Hybrid Kriging-LUR models explained each variation in BTEX from 37% to 52%.
Using machine learning algorithms (XGBoost) increased the explanatory power of the models for each
BTEX, between 61% and 79%. This study compared each combination of the Hybrid Kriging-LUR
model and (i) GWR, (ii) RF, and (iii) XGBoost algorithm to estimate the spatiotemporal variation
in BTEX concentration. It is shown that a combination of Hybrid Kriging-LUR and the XGBoost
algorithm gives better performance than other integrated methods.

Keywords: nitrogen dioxide (NO2); hybrid Kriging-LUR model; culture-specific sources;
spatiotemporal variations

1. Introduction

Chemical and petroleum facilities are major emitters of volatile organic compounds (VOCs) into
the environment [1,2]. These industrial emissions include benzene, toluene, ethylbenzene, and xylenes,
which are also known as BTEX [3,4]. On the other hand, ambient BTEX might also result from various
substances and sources, including traffic, gas stations, combustion processes, and households [5–7].
BTEX emissions have a significant effect on human health. For example, the International Agency
for Research on Cancer classifies benzene as carcinogenic for humans [8]. Benzene also affects blood
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production, the lymphatic system, and the central nervous system [5,9]. Even at low concentrations,
BTEX has an adverse effect on reproductive processes, cardiovascular disease, respiratory dysfunction,
asthma, and sensitivity to common antigens [10]. Several studies report that residents near sources
of emission from chemical/petroleum facilities are exposed to relatively high levels of BTEX [11,12].
Other studies also show a positive correlation between cancer risk (leukemia and brain tumor) and
exposure to benzene or surrogates for residents who live close to petrochemical facilities [12,13].
This highlights the importance of predicting BTEX concentrations to help policy makers to assess
the prevention measures. However, few studies have addressed within-city variability in the level
of BTEX.

Kaohsiung City, which is a heavily industrialized harbor city located in southern Taiwan, has a
population of 2.8 million and an area of 153.6 km2. There are numerous industrial parks, petrochemical
facilities, and more than 1.5 million motor vehicles in Kaohsiung. These emission sources have a
negative effect on air quality in Kaohsiung, and partially on the high level of VOCs. The air quality in
autumn and winter is worst because the atmosphere is stable, winds are slow, and there is diurnal
land–sea breeze circulations in the cold and dry seasons. Although the Taiwanese Environmental
Protection Agency (EPA) has imposed emission standards to control ambient air quality and minimize
the risk to health, residents in Kaohsiung still have a long-standing concern for pollutant exposure,
partly because it is still unknown how long-term VOCs exposure affects human health. To find out,
the spatial variability of pollution concentration is essential.

Kriging and land-use regression (LUR) are used to predict air pollution gradients if there is
limited sampled data. Kriging is a method of spatial interpolation that assumes the distance or
direction between sampling points to reflect a spatial correlation. This spatial correlation is used to
explain variation in the surface. The LUR model is widely used to estimate spatial variation in VOC
concentrations to determine a population’s exposure to pollution [14–16]. In addition, using adjacent
monitoring sites and local emission points as well as estimated air pollution concentrations from Kriging
interpolation as a variable for LUR (Hybrid Kriging-LUR) allows a more accurate prediction of air
pollution levels [17]. However, these models can ignore the dynamic spatial and temporal relationship
between VOCs and predictor variables because LUR and Hybrid Kriging-LUR models only produce a
single regression equation to summarize global relationships between independent and dependent
variables. These regression models can also underestimate the pollution levels and fail to identify
nonlinear relationships between predictions and observations that may not be linearly correlated.

A geographically weighted regression (GWR) model considers the spatial variation in relationships
and creates maps to determine nonstationary spatial relationships [18]. Machine learning algorithms
such as Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) are also widely used to determine
air pollution concentrations because they identify nonlinear relationships between observations and
predictors [19–21].

This study used Hybrid Kriging-LUR alone and then with GWR and machine learning algorithms
(RF and XGBoost) to estimate the spatiotemporal variation in BTEX in Kaohsiung. To increase the
accuracy of each model, the distribution of local temples was used as a predictor to represent the
unique emissions from sources that are unique to Asian culture. In terms of residents’ health and
indicators of the health effect, this study shows that air epidemiological studies of ambient BTEX are
important for the future.

2. Materials and Methods

2.1. Study Area

Kaohsiung is an industrial city located in southern Taiwan, with a population density of 3957
(people per km2), three petrochemical industrial parks, a large iron ore and steel factory, and many
factories that use oil/coal combustion. There are about 3 million registered motor vehicles (including
motorbikes, cars, and other vehicles) in this city. There are 72 vehicles per hundred people so traffic
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emissions are a significant factor for air pollution in Kaohsiung. On average there are 10 factories
per square kilometer and many of these are located near commercial districts and residential areas.
Local culture also plays a role in this study because Taiwan features unique emission sources of BTEX,
such as the frequent burning of joss paper and incense in thousands of temples [22,23]. The present
study area crossed six districts in Kaohsiung and one district in Pingung (Figure S1). It also covered
two large petrochemical industrial parks (Linhai and Linyuan). The study districts contributed
respective ~50% of sulfur oxides (SOx), ~60% of nitrogen oxides (NOx), and ~60% of VOCs to ambient
pollutants in Kaohsiung in 2018. The registered vehicles in the study districts were about 40% of
total in Kaohsiung. In addition, the largest iron ore and steel factory in Taiwan is located in Linhai
petrochemical industrial park.

2.2. Air Pollutant Database

The Taiwanese EPA requires that air pollution monitoring stations must be established in all
townships in close proximity to petrochemical industrial parks. This study uses five years of BTEX data
(from May 2015 to June 2019) collected from 17 monitoring stations that are close to two petrochemical
industrial parks in south Kaohsiung (shown in Figure S1). The data from 2015 and 2018 were used to
develop models and observations from 2019 and are also used for external data verification to assess
the reliability of the models.

This study uses 10,660 hourly measurements of BTEX, which are aggregated into 939 monthly
averages for the model. The concentrations of monitored pollutants are obtained from the EPA
database as explanatory variables. Previous studies confirm monitored pollutants’ association with
BTEX concentration (e.g., NOx and O3) [24,25]. Table S1 lists the potential predictor variables used in
this study.

2.3. Geospatial Database

To develop Hybrid Kriging-LUR, information about land-use or land-cover from several GIS
layers and spatial databases is required. The land-use inventory, the landmark database, the digital
road network map, the Digital Terrain Model (DTM), Moderate Resolution Imaging Spectroradiometer
(MODIS) Normalized Difference Vegetation Index (NDVI) database, and the thermal power plant
distribution dataset are used. Further details of land-use or land-cover related information for potential
prediction variables (Table S1) can be found in a previous study by the authors [17,26,27]. In this study,
LUR models at monthly resolution were developed based on air pollutants measurements from 2015 to
2019. It is difficult to obtain clear Landsat or SPOT images for every month in Taiwan due to the humid
and cloudy weather [28]. In this case, we just followed previous studies to obtain NDVI information
from MODIS [29].

2.4. LUR Model Development and Validation

This study uses a Hybrid Kriging-LUR to identify important prediction variables. The variables
that are selected by Hybrid Kriging-LUR are used for the geographically weighted regression (GWR)
and two machine learning algorithms (random forest (RF) and extreme gradient boosting (XGBoost))
to develop the prediction models called RF-Hybrid LUR or XGBoost-Hybrid LUR.

This study uses the same Hybrid Kriging-LUR as that proposed by Wu et al. [17]. Kriging-based
estimations of the BTEX level are used as an explanatory variable for a stepwise selection during the
conventional LUR procedure, using a leave-one-out Ordinary Kriging interpolation algorithm for “n-1”
observations. The Hybrid Kriging-LUR approach uses Spearman correlation coefficients to define
the bivariate association between each BTEX compound and all of the potential prediction variables.
A supervised stepwise procedure is used to maximize the percentage of explained variability (R2).
For all potential predictor variables, an a-priori direction of effect is used for each BTEX (e.g., positive
for road length and residential area to benzene). The variable initially has the highest explained
variance in a univariate analysis and a regression slope with the expected direction. All other variables
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are then added to this model separately by assessing whether the p-value is <0.1 and the variance
inflation factor (VIF) is <3. This procedure continues until none of the variables fit the specified criteria.
Finally, The R2 adjusted R2 values and the Root Mean Square Error (RMSE) are used to determine the
model’s performance.

GWR is used to solve the model spatially. The equation (Equation (1)) for the GWR model is
defined as follows:

Yi= β(Ui,vi)
+
∑

k
βk(Ui,vi)

Xik, (1)

where (Ui, vi) denotes the coordinates of the point in a location; Yi is BTEX concentration; β(Ui,vi)

represents the intercept value; βk(Ui,vi)
is a set of values of parameters at point i; and Xik are prediction

variables that are obtained using Hybrid Kriging-LUR approaches.
The RF grows multiple decision trees and forces a randomly selected subset of candidate predictors

into each tree [30]. RF-based Hybrid Kriging-LUR approaches produce 200 regression trees, which are
extracted from randomly bootstrapped features from the training data. The extent to which a tree grows
also affects the model’s performance. This study uses depths of 30 for Hybrid Kriging-LUR models.

XGBoost is a common machine learning algorithm that was first proposed by Chen and
Guestrin [31]. It has been proved very successful in many machine learning competitions. XGBoost is
similar to a random forest approach in that it features multiple regression trees. The tree ensemble
model trains weak learners to optimize the model using the bias for the loss function by boosting a
scalable gradient tree. If XGBoost learners with a different feature importance score are generated
across all trees, the prediction is accumulated in terms of the weight of each learner. The Hybrid
Kriging-LUR approaches use 130 trees, and the maximum depths to which the trees are grown was 8.
The parameter values for each method are listed in Tables S2 and S3.

Land-use/land-cover information is extracted using ArcGIS 10.5 (Esri, Redlands, CA, USA). LUR
and all statistical analyses are conducted using SPSS 22.0 (IBM, New York, NY, USA) and R 3.5.2.
(The R Foundation for Statistical Computing, Vienna, Austria) These machine learning models are
programmed in Python 3.7, using a Jupyter Notebook platform. The computer hardware is a laptop
(ASUS, Taipei City, Taiwan) with a CPU i5-8265U and 8 GB of RAM.

3. Results

3.1. Descriptive Statistics for BTEX Concentrations

Figure S1 shows annual wind rose for 2015–2018. The site experiences a predominantly Westerly
wind flow in the spring and winter, in all directions in the summer, and a Westerly to Northern
wind flow in the fall. The winds generally blew at 0.2 to 5.37 m/s and at an average 2.3 ± 1.35 m/s.
In terms of annual BTEX concentration, toluene is the dominant BTEX compound in the study area
(3.31 ± 4.01 ppb), followed by benzene (1.22 ± 5.57 ppb), m,p-xylene (0.78 ± 1.46 ppb), and ethylbenzene
(0.49 ± 1.16 ppb). The highest BTEX concentrations in Kaohsiung were greater than those in Beijing
(1.44 ppb for toluene, 0.54 ppb for benzene, 0.48 ppb for m,p-xylene, and 0.27 ppb for ethylbenzene) [32]
and Tianjin (0.50 ppb for toluene, 1.22 ppb for benzene, 0.57 ppb for m,p-xylene, and 0.51 ppb for
ethylbenzene) [33] in China. Kaohsiung also has higher BTEX figures than areas near the largest
petrochemical industrial parks in Taiwan (2.56 ppb for toluene, 0.22 ppb for benzene, 0.14 ppb for
m,p-xylene, and 0.07 ppb for ethylbenzene) [34].

Figure 1 shows BTEX average diurnal variations in each season during the study period.
For example, the concentration of BTEX compounds became relatively lower in the daytime (from
10:00 to 15:00) with the lowest concentration observed at ~13:00. This is consistent with what
has been reported in Shanghai for a similarly-situated large industrial estate [35]. Such a diurnal
trend is likely caused by strong solar radiation and intense air convection in the daytime, both of
which can photochemically react with and/or dilute VOCs [35]. In contrast, as shown in Figure 1,
we can see higher BTEX concentrations during rush hours both in the morning (7:00 to 9:00) and
late afternoon (~18:00), similar to the findings in previous studies [36,37]. Such a high concentration
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also suggests that automobile exhaustion was an important source for atmospheric BTEX in the
study area. Figure 1 further shows similar diurnal variations of BTEX across four seasons, indicating
that the BTEX concentration is contributed from similar sources and dispersion mechanisms in each
season. In addition, some variances of BTEX concentrations in Figure 1 are likely influenced by many
factors such as emission sources (mainly from vehicular exhaust, gasoline, and solvent evaporation),
meteorological conditions, and their sinks, given that the study area is located in the industrial area of
Kaohsiung. Indeed, benzene, toluene, and xylenes are typical tracers of vehicular exhaust, industrial
production, and solvent usage, respectively [38,39]. This also explains why Figure 1 shows distinct
diurnal variations of BTEX concentration in each season.
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for each season, averaged over 17 sampling sites.

3.2. Development and Validation of The LUR and Machine Learning Models

Table 1 shows the selected prediction variables, the estimated coefficient, the partial R2 value and
the VIF for the proposed Hybrid Kriging-LUR model. The variables, BenzeneKriging-based, UV, rice farm
within a 150-m buffer, and harbor and industrial area within a 500-m buffer, all have a significant effect
on the explanatory power of the model for benzene. In terms of toluene, the significant variables are
tolueneKriging-based, NOx, water body, purely residential area within a 250-m buffer, sandstone field
within a 150-m buffer, sandstone field within a 2500-m buffer, industrial area within a 150-m buffer,
all types of road within a 50-m buffer, and temple within a 250-m buffer. In terms of ethylbenzene,
the significant variables are ethylbenzeKriging-based, SO2, winter, industrial area within a 250-m buffer,
temple within a 250-m buffer, fruit orchard within a 50-m buffer, and fruit orchard within a 1500-m
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buffer. In terms of m,p-xylene, the factors that have the most significant effect on the explanatory power
of the model are m,p-xyleneKriging-based, sandstone field within a 150-m buffer, funeral services within a
1250-m buffer, industrial area within a 50-m buffer, local road within a 250-m buffer, and temple within
a 250-m buffer. All of these variables discussed are used to develop hybrid models, such as GWR with
the Hybrid Kriging-LUR (GWR-Hybrid LUR), RF with the Hybrid Kriging-LUR (RF-Hybrid LUR),
and XGBoost with the Hybrid Kriging-LUR (XGBoost-Hybrid LUR). Most variables have a positive
effect on BTEX, except for UV and harbor for benzene, and sandstone field for toluene, ethylbenzene,
and m,p-xylene.

Table 1. Prediction variables for the Hybrid Kriging-LUR model. LUR—land-use regression;
VIF—variance inflation factor.

BTEX Variable Coefficient p-Value Partial R2 VIF

Benzene

Intercept 1.964 <0.05 - -

BenzeneKriging-based 0.223 <0.05 0.006 1.395

Ultraviolet −0.163 <0.05 0.045 1.394

Rice farm150m 0.002 <0.05 0.068 1.272

HarborNearest distance −1.113 × 10−4 <0.05 0.070 1.163

Industry500m 0.002 <0.05 0.240 1.185

Toluene

Intercept −1.229 <0.05 - -

TolueneKriging-based 0.581 <0.05 0.061 2.366

Nitrogen Oxides 0.068 <0.05 0.246 2.311

Water bodyNearest distance 5.966 × 10−4 <0.05 0.001 1.412

Purely residential area250m 0.002 <0.05 0.048 1.649

Sandstone field150m −0.005 <0.05 0.058 1.102

Sandstone field 2500m 0.002 <0.05 0.002 1.257

Industry150m 6.208 × 10−4 <0.05 0.025 1.406

All types of road(width)50m 3.241 × 10−4 0.153 0.005 1.359

Temple250m 0.515 <0.05 0.071 1.403

Ethylbenzene

Intercept −0.105 0.442 - -

EthylbenzeKriging-based 0.072 0.239 0.007 1.097

SO2 0.094 <0.05 0.032 1.342

winter 0.114 <0.05 0.011 1.299

Industry250m 3.737 × 10−4 <0.05 0.160 1.072

Temple250m 0.105 <0.05 0.096 1.056

Sandstone field 500m −3.224 × 10−4 <0.05 0.010 1.928

Fruit orchard50m 6.428 × 10−4 <0.05 0.038 1.635

Fruit orchard1500m 5.927 × 10−4 0.161 0.003 2.434

m,p-Xylene

Intercept −0.045 0.778 - -

m,p-XyleneKriging-based 0.432 <0.05 0.041 1.062

Sandstone field 150m −8.339 × 10−4 0.079 0.040 1.169

Funerary services1250m 0.003 <0.05 0.011 1.041

Industry50m 6.963 × 10−4 <0.05 0.075 1.516

Local road250m 16.121 <0.05 0.010 1.518

Temple250m 0.364 <0.05 0.248 1.042

BTEX = benzene, toluene, ethylbenzene, and xylenes.
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Table 2 shows the performance of the Hybrid Kriging-LUR, GWR-Hybrid LUR, RF-Hybrid LUR,
and XGBoost-Hybrid LUR models. The XGBoost-Hybrid LUR better predicts the variation in all BTEXs,
with a R2 value from 0.61 to 0.79. The Hybrid Kriging-LUR has the worst R2 value (from 0.37 to 0.52).
Similar results as to R2 were obtained in adjusted R2 values (from 60 to 79 for the XGBoost-Hybrid
LUR, which performs best; and 0.37 to 0.52 for the Hybrid Kriging-LUR, which performs worst).

Table 2. Performance of the Hybrid Kriging-LUR, GWR-Hybrid LUR, RF-Hybrid LUR and XGBoost-
Hybrid LUR models. GWR—geographically weighted regression; LUR—Land-use regression;
RF—random forest; XGBoost—extreme gradient boosting; RMSE—root mean square error.

BTEX Statistic Hybrid
Kriging-LUR

GWR-Hybrid
LUR RF-Hybrid LUR XGBoost-Hybrid

LUR

Benzene

R2 (training, testing) 0.45 (0.43, 0.55) 0.47 (0.46, 0.45) 0.57 (0.59, 0.42) 0.63 (0.65, 0.53)

Adjusted R2

(training, testing)
0.45 (0.42, 0.54) 0.47 (0.46, 0.44) 0.56 (0.59, 0.38) 0.63 (0.64, 0.50)

RMSE
(training, testing) 1.24 (1.29, 1.06) 1.22 (1.23, 0.44) 1.10 (1.11, 1.04) 1.02 (1.01, 1.03)

Toluene

R2 (training, testing) 0.52 (0.52, 0.56) 0.54 (0.52, 0.60) 0.69 (0.70, 0.63) 0.72 (0.74, 0.60)

Adjusted R2

(training, testing)
0.52 (0.51, 0.56) 0.54 (0.52, 0.59) 0.68 (0.69, 0.59) 0.71 (0.73, 0.56)

RMSE
(training, testing) 1.35 (1.42, 1.10) 1.33 (1.32, 1.36) 1.09 (1.07, 1.16) 1.03 (1.03, 1.16)

Ethylbenzene

R2 (training, testing) 0.37 (0.36, 0.49) 0.38 (0.31, 0.23) 0.50 (0.50, 0.45) 0.61 (0.62, 0.54)

Adjusted R2

(training, testing)
0.37 (0.34, 0.49) 0.38 (0.31, 0.22) 0.49 (0.49, 0.40) 0.61 (0.61, 0.50)

RMSE
(training, testing) 0.31 (0.33, 0.23) 0.31 (0.32, 0.17) 0.28 (0.29, 0.22) 0.60 (0.25, 0.22)

m,p-Xylene

R2 (training, testing) 0.42 (0.42, 0.43) 0.44 (0.40, 0.29) 0.77 (0.77, 0.77) 0.79 (0.79, 0.79)

Adjusted R2

(training, testing)
0.42 (0.41, 0.42) 0.44 (0.40, 0.29) 0.77 (0.77, 0.77) 0.79 (0.79, 0.77)

RMSE
(training, testing) 0.70 (0.72, 0.67) 0.69 (0.72, 0.27) 0.44 (0.41, 0.44) 0.42 (0.36, 0.61)

The XGBoost-Hybrid LUR has the lowest RMSE (from 0.24 ppb to 1.03 ppb) and the Hybrid
Kriging-LUR has the highest RMSE (from 0.31 ppb to 1.1.35 ppb). The adjusted R2 values are similar for
the overfitting tests (Table 2). The respective adjusted R2 values for testing for the Hybrid Kriging-LUR,
the GWR-Hybrid LUR, RF-Hybrid LUR, and the XGBoost-Hybrid LUR models are 0.34–0.56, 0.22–0.59,
0.38–0.77, and 0.50–0.79.

Observations from January to June in 2019 were used as external data to verify the robustness of
the model (Table 3). The respective adjusted R2 values for the Hybrid Kriging-LUR, GWR-Hybrid
LUR, the RF-Hybrid LUR, and the XGBoost-Hybrid LUR models are 0.34–0.65, 0.28–0.58, 0.42–0.56,
and 0.41–0.55. This shows that even if the R2 value is reduced, these models still have a medium
level of prediction performance. To validate the exposure estimates, we further conducted a 10-fold
cross-validation to verify the model performance of the XGBoost-Hybrid LUR. 90% of the sites’ data
were randomly selected for model development, while the remaining 10% were used as out-of-data
for model evaluation. This procedure was repeated ten times; thus, each monitoring site was used
as a test data set for spatial verification. Similar R2 values with the main model (0.53 for benzene,
0.56 for toluene, 0.48 for ethylbenzene, and 0.59 m,p-xylene in Table S4) were obtained again to
confirm the reliability of the developed model (0.41 for benzene, 0.55 for toluene, 0.45 for ethylbenzene,
and 0.52 m,p-xylene in Table 3).
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Table 3. External data validation for the proposed models.

BTEX Statistic Hybrid
Kriging-LUR

GWR-Hybrid
LUR

RF-Hybrid
LUR

XGBoost-Hybrid
LUR

Benzene

R2 0.52 0.52 0.44 0.41

Adjusted R2 0.52 0.52 0.43 0.40

RMSE 0.29 0.29 0.31 0.80

Toluene

R2 0.65 0.58 0.56 0.55

Adjusted R2 0.64 0.58 0.55 0.54

RMSE 0.81 0.88 0.90 0.91

Ethylbenzene

R2 0.47 0.43 0.42 0.45

Adjusted R2 0.47 0.42 0.41 0.44

RMSE 0.15 0.16 0.16 0.16

m,p-Xylene

R2 0.34 0.28 0.51 0.52

Adjusted R2 0.34 0.27 0.51 0.52

RMSE 0.24 0.25 0.23 0.19

3.3. Spatiotemporal Distribution of BTEX

By using the XGBoost-Hybrid LUR model for representative months from 2015 to 2016 (July,
October, January, and April), Figure 2 shows the monthly average BTEX concentration through the
study period. To begin with, the spatial variation in each season was relatively consistent, probably
because the season and temperature factors were too insignificant to be selected into the models
(Table 1). Second, there are higher benzene concentrations (light yellow to red color in Figure 2a)
near industrial parks because of the higher partial R2 for the factor of industry in the benzene model
(Table 1). Third, as shown in Figure 2b, we see higher toluene levels scattering in places closer to the
city or roads (red color in Jan 2010 in Figure 2b) because NOx, which is the major pollutant of traffic,
had higher partial R2 in the toluene model (Table 1). Fourth, higher ethylbenzene concentrations
(dark brown color in Figure 2c) were shown in certain residential areas with many temples and near
industrial parks because of the higher partial R2 for the factor of both industry and temples in the
ethylbenzene model. Fifth, higher m,p-xylene concentrations (dark brown color in Figure 2d) were
seen also in certain residential areas with many temples because of the higher partial R2 for the factor
of temples in the m,p-xylene model.
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4. Discussion

Most studies of exposure to ambient BTEX and health outcomes rely on daily monitoring
of air pollution [40]. Few studies determine individual exposure levels using spatial analysis
techniques [14,41,42]. These studies extrapolate actual measurements to individual exposures, so they
do not reliably reflect the effect of air pollutants on health outcomes. This study proposes a method
that is more economical than daily monitoring and more accurate than extrapolation to determine the
effect of BTEX on health.

Four spatiotemporal models are used to predict monthly average BTEX concentration from 2015
to 2018 at a resolution of 50 × 50 m. The models that combine Hybrid Kriging-LUR with machine
learning (RF-Hybrid LUR and XGBoost-Hybrid LUR) have a greater predictive ability than the two
regression models (Hybrid Kriging-LUR and GWR-Hybrid LUR). Specifically, the use of machine
learning models in conjunction with land-use information increases the predictive power by 16% to
25% over that of the regression models. This increase is attributable to the fact that both the RF and
XGBoost methods identify potential nonlinear associations between candidate predictors and ambient
BTEX. To the authors’ best knowledge, this is the first study to compare machine learning and standard
linear regression models to predict spatial differences in ambient BTEX. It is shown that both machine
learning models (RF and XGBoost method) have a greater predictive power than standard approaches.
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XGBoost-Hybrid LUR is demonstrated to be the best model in this study and better explains the
spatial variation in ambient BTEX in south Kaohsiung. The model also performs acceptably when
verified using an external dataset. To address the problem of overfitting, 80% of data was used to train
the XGBoost-Hybrid LUR model and 20% to test it. The adjusted R2 values for training and testing are
similar to those for the original model so there is no overfitting problem.

The variables were selected using the Hybrid Kriging-LUR model and then used for the other
three models developed by this study. Most of the significant variables are similar for the prediction of
BTEX using the Hybrid Kriging-LUR model, but the individual contribution of each variable to the
models is different. For example, while industrial area is a significant variable in predicting benzene,
toluene, ethylbenzene, and m,p-xylenes, the significance of this variable (24%, 3%, 16%, and 8%,
respectively) is different for each model (Table 1). This difference is probably caused by different levels
of emissions of various compounds in each industrial area. It also highlights the need to consider
different air pollutants when developing a prediction model [43].

When compared to other LUR models developed earlier in Sarnia, Ontario, Canada [43]; Toronto,
Canada [44]; Dallas, Texas, USA [42]; Tehran, Iran [14]; Detroit/Dearborn, USA [45]; and New York
City, USA [46]; this study selected both similar and different significant variables. For instance, Atari
and Luginaah [43] reported that industrial area was the most significant factor for BTEX levels, while
Smith et al. [42], Su et al. [44], and Amini et al. [14] suggested that traffic was the dominant factor for
BTEX concentration. Mukerjee et al. [45] noted that both traffic and emission sources caused higher
concentrations of BTEX. For this study, industrial area is the most significant factor for benzene and
ethylbenzene. Table 1 also shows that traffic is the dominant factor for toluene concentration because
50% of NOx across Taiwan and 85% of NOx in cities is emitted from vehicles [47]. Sources of emissions
that are specific to Asian culture, such as temples, are the dominant factor for m,p-xylene level because
incense combustion significantly increases the concentration of m,p-xylene [48]. As strong solar
radiation removes VOCs through the photochemical reactions [35], UV is a significant variable for the
prediction of benzene. It is noteworthy that some greenness, such as rice farms and fruit orchards, can
also increase BTEX levels.

While industry and traffic are often the dominant factors in the prediction of BTEX, some BTEX
sources are specific to Asia. Going to a temple to pray and burn incense and joss paper is an important
religious activity for many Asian households [49], and several studies have shown that this activity
contributes to air pollution [50–52]. However, none of these used culturally specific variables to develop
an LUR model to predict BTEX. This study uses the number of temples to reflect local emissions
caused by the burning of joss paper and incense, which is a significant predictor for the proposed
model. Future studies should also consider this unique local cultural source as a predictor of BTEX for
developing LUR models in other Asian regions.

There are limitations to the selected predictors for this study. Traffic intensity is used by other
studies to improve model performance [45,53] but is not used for this study because data are not
generally available in Taiwan. In stand, we used NOx as proxies for traffic because a great portion
(50% to 80%) of NOx is emitted from vehicles in Taiwan [47]. In contrast to data for a single year or an
even shorter period, which is used by other studies, this study uses a much longer period (from 2015
to 2019) to represent spatial and temporal variations in compound concentrations. Using long-term
pollutant data to establish an LUR model that is refined by machine learning and considering culturally
specific predictors, this model has good prediction performance, which can be used to better depict the
variation of BTEX in Asian cities.

5. Conclusions

Using machine learning algorithms to estimate individual levels of ambient air pollution is
common practice. Combining a traditional LUR model and machine learning, this study develops
Hybrid Kriging-LUR, GWR-Hybrid LUR, RF-Hybrid LUR, and XGBoost-Hybrid LUR models to
predict BTEX concentrations. The study site is in Kaohsiung, Taiwan, where traffic, industrial area,
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and temple are the main variables. Using data from seventeen measurement stations, this study shows
that the machine learning LUR models (such as RF-Hybrid LUR and XGBoost-Hybrid LUR models)
can better estimate fine spatial variability in long-term BTEX concentrations. This approach should
be used in future studies to develop hybrid LUR models for other pollutants in Taiwan. In terms of
residents’ health or health effect indicators, the results of this study support the need for future air
epidemiological studies of ambient BTEX.
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Figure S1: Overview of the sampling sites (1–17) and wind rose diagrams for the study periods of spring,
summer, fall and winter, Table S1: Parameters proposed in hybrid-kriging LUR coupled with RF models, Table S2:
Parameters proposed in hybrid-kriging LUR coupled with XGBoost models, Table S3: Parameters proposed in
hybrid-kriging LUR coupled with XGBoost models, Table S4: Results of 10-fold cross-validation proposed in the
XGBoost- Hybrid LUR model.
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