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Abstract: Detecting the period of a disease is of great importance to building information management
capacity in disease control and prevention. This paper aims to optimize the disease surveillance
process by further identifying the infectious or recovered period of flu cases through social media.
Specifically, this paper explores the potential of using public sentiment to detect flu periods at word
level. At text level, we constructed a deep learning method to classify the flu period and improve the
classification result with sentiment polarity. Three important findings are revealed. Firstly, bloggers in
different periods express significantly different sentiments. Blogger sentiments in the recovered period
are more positive than in the infectious period when measured by the interclass distance. Secondly,
the optimized disease detection process can substantially improve the classification accuracy of flu
periods from 0.876 to 0.926. Thirdly, our experimental results confirm that sentiment classification
plays a crucial role in accuracy improvement. Precise identification of disease periods enhances
the channels for the disease surveillance processes. Therefore, a disease outbreak can be predicted
credibly when a larger population is monitored. The research method proposed in our work also
provides decision making reference for proactive and effective epidemic control and prevention in
real time.
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1. Introduction

The traditional infectious disease detection process is being challenged by potential social media
applications [1,2]. The latest estimates released by the United States Centers for Disease Control and
Prevention (US-CDC) revealed the worldwide severity of the illness. According to this authoritative
report, the US-CDC estimates that in the period between 1 October 2018 and 4 May 2019, there were
approximately 37.4 million to 42.9 million flu infectious in the population population, among which there
were from 17.3 to 20.1 million flu-related medical visits [3]. Furthermore, 531,000 to 647,000 people
require flu-related hospitalizations, and unfortunately, influenza caused 36,400–61,200 estimated
deaths. This estimate is based on more recent data from a larger and more diverse group of countries,
including lower middle-income countries, and this estimate excludes deaths from non-respiratory
diseases. The statistics indicate a severe reality and a pressing challenge because influenza causes
significant losses of human life and damage to property worldwide. As evidenced by the current
flu season, influenza viruses can rapidly mutate, evading the most current vaccine formulations [4].
Infectious diseases continue to be the leading cause of death worldwide, and they cause serious loss
of life and property when they cannot be quickly and accurately assessed [5]. The World Health
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Organization (WHO) announced on 15 August 2003 that by 7 August 2003, there were 8422 infectious
cases of Severe Acute Respiratory Syndrome (SARS) worldwide, which involved 32 countries and
regions [6]. The number of deaths due to SARS in the world totaled 919, and the mortality rate
was almost 11%. A handful of studies estimated the global macroeconomic impact of SARS at USD
30–100 billion, or approximately USD 3–10 million per case [7]. However, from the first reported case
on 15 December 2002 to the first epidemic announcement by the Chinese government on 11 February
2003, the time span was almost two months. The consequence was a significant loss of life and property
due to the lack of effective disease identification and monitoring methods for real-time epidemic
control. Based on the infectious disease epidemic report issued by the National Health Commission
of China, in recent years, the number of incidences and deaths due to influenza in C-class infectious
diseases shows an explosively upward trend annually (see Figure 1). The death toll for five months
during 2019 was nearly two times that for all of 2018.
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The fundamental cause of these serious outbreaks is summarized as follows. First,
traditional disease prevention and control institutions mainly rely on a single channel for information
monitoring and access. Specifically, data are exclusively sourced from clinical statistics. However,
relying exclusively on clinical statistics has obvious disadvantages, such as being time consuming
and creating high labor costs [8,9]. The traditional detection methods cannot integrate multichannel
infectious disease information, such as social media and search engine data. Second, social media data
are a powerful and promising tool that have been applied to many research subjects, such as healthcare
informatics [10,11], sentiment analytics [12], and disaster management [13–15]. The remarkable value
of social media has been widely recognized [16]. Particularly in this paper, we refer to microblogs
posted on social media platforms especially from Sina Weibo as weibos. Although disease prevention
and control institutions have exerted a significant role in disease detection, they might come up against
substantial difficulties in using social media data in disease detection and control due to the lack of
analytic methods or accurate monitoring of outbreaks and periods of infectious diseases. There is
still a long journey to go to fully utilize social media data in disease prevention and control. Third,
the flu is characterized by strong contagiousness and rapid spread, which makes it difficult to monitor
in real-time or precisely estimate the spread of the flu. For example, the flu can be easily spread



Int. J. Environ. Res. Public Health 2020, 17, 6853 3 of 25

by droplets or contaminated items in the air and contact among people. The Centers for Disease
Control and Prevention (CDC) publishes data on influenza-like illness ILI based on statistics and
evaluation after a patient’s visit. It would be extremely difficult to obtain information and perform
an analysis before the visit. However, apparently, time lags could lead to delayed treatment. Fourth,
Google Flu Trends (GFT) provided an estimate of more than double the proportion of clinical data for
influenza-like illness (ILI) published by the Centers for Disease Control and Prevention (CDC) [17].
The ILI was calculated based on surveillance reports from laboratories across the United States [18].
Google used web search data to propose a GFT model for real-time monitoring. When patients are
aware of their active flu period and search for flu-related keywords through search engines such as
Google, the patients’ behavior is recorded by the search engine. Social media sensors, in contrast,
show unique advantages for quick flu monitoring and reliable estimation and prediction. There has
been a growing consensus that social media sensors can also perform real-time monitoring that is
more accurate than GFT [8]. Fifth, part of the ILI data cannot be collected and thus are not available if
the patient does not go to the hospital, which makes disease monitoring information inaccurate and
incomplete. Therefore, the severity and urgency of the disease as reflected by traditional statistics are
often underestimated. However, social media can capture this part of the data because when bloggers
catch a cold, they can post their own flu symptoms through social media. If bloggers do not realize that
they catch flu, they can also post some flu-related microblogs on social media. This part of the data can
also be seen in advance of CDC released reports [19]. Sixth, the previous literature mainly focused
on whether the bloggers are infected based on the social media platform [20] and cannot accurately
distinguish the various periods of the disease, which largely reduces the effectiveness and pertinence
of the information for disease control measures.

This section provides an extensive review of the relevant literature in three parts: optimization of
the infectious disease detecting process, social media utilization for disease detection and semantic
analysis techniques based on social media data. Much of the current research focuses on social media
to analyze short texts [21–23], in which several papers predict flu trends by classifying flu-related social
media data [19]. However, these studies do not divide the flu periods any further. Speedily evolving
infectious diseases, including SARS, Ebola and influenza, pose significant health threats throughout the
world because of their rapidly changing status and complicated detection process [24,25]. A considerable
amount of work is devoted to forecasting disease outbreaks. A two-period model optimized the
process of when and where to assign Ebola treatment units across geographic regions during
the outbreak’s early phases [26]. Chen et al. (2018) developed a mixed-integer programming
(MIP)-based framework to systematically analyze a rich set of policies and to determine the optimal
hepatocellular carcinoma surveillance policies that maximize the societal net benefit [27]. It is observed
that the surveillance policies should be adapted to different disease progression rates and states.
Several studies in this area focused on finding optimal surveillance solutions for flu vaccine production
and allocation [28,29]. Another study considered the conditions of limited reporting and spatial
aggregation on the optimization of influenza surveillance system design [30]. Research in this area
is mainly concerned with epidemiological inference and prediction based on clinical data collection,
but few of the studies provide improved detecting measures using social media data, which represent
an alternative source of passive traditional surveillance data that have a larger volume and fewer
reporting delays.

Data from social networks show apparent advantages in several aspects, such as being real time
and time-sharing, along with a broad scope of data coverage [31–34]. Disease surveillance has been
investigated based on the recent rise in the popularity and scale of social media data. Aiello et al.
(2011) reviewed and addressed the use, promise, perils, and ethics of social media- and internet-based
data collection for public health surveillance [35]. Additionally, the infectious disease detection process
is being challenged by the potential applications of social media [1,2,36]. Multiple types of social
media have become emerging and promising data sources of disease surveillance and shown advanced
achievements in tracking health informatics in different areas all over the world. Raamkumar et al.
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(2020) examined the differences of COVID-19-related public responses on Facebook in the United States,
England and Singapore and showed that social media analysis was capable of providing insights about
the communication strategies during disease outbreaks [37]. Lwin et al. (2018) and Vijaykumar et al.
(2017) investigates how Facebook can be utilized to implement and adapt in responding to the Zika
epidemic in Singapore [38,39]. Moreover, Dubey et al. (2014) identified and evaluated YouTube as
significant resource for providing and disseminating information on public health issues like West Nile
virus infection [40]. Davidson et al. (2015) constructed an empirical network to substantially improve
performance in predicting infections one week into the future using CDC data and combining this
with internet-based data in the U.S. [41]. Chen et al. (2016) proposed two temporal topic models to
capture hidden states of a flu-related user and get better flu-peak predictions by using Twitter data.
In addition, they validated their approaches by modeling the flu using Twitter in multiple countries of
South America [42]. Lamb et al. (2013) demonstrated that the use of Twitter data leads to significant
improvements in flu surveillance by discriminating those categories of flu tweets that reported infection
from those that expressed concerned awareness of the flu as well as tweets about the authors versus
those about others [43].

Sentiment classification [44,45], feature extraction [46] and public opinion monitoring [47,48] are
performed based on a social network dataset for sentiment analysis. Chen et al. (2020) introduced
a novel approach of adding semantics as additional features into the training set for sentiment
analysis, and they applied this approach to predict sentiment for three different Twitter datasets [49].
The authors also investigated the real-time flu detection problems and proposed a flu detection model
with emotional factors and semantic information [50]. Adamopoulos et al. (2018) examined the effect
of latent personality traits on consumers’ behavior and preferences, which originated from social
media users’ levels of emotional range [51]. The effect of social media advertising content on customer
engagement was also studied via Facebook users’ humor and emotion [52]. Although sentiment
analysis has been widely applied to many fields, few researchers consider it to be a powerful
tool to be used in determining a patient’s status when detecting infectious diseases. Furthermore,
word embedding techniques, such as bag of words [53] and word2vec [54], have become effective
means of text processing. High-quality word vector representations provide distributional information
about words [55], especially for word2vector, which appears to be outstanding at improving a model’s
performance on a limited amount of data. The development of word2vector significantly improves
the effectiveness of word representations by transforming sparse, discrete and high-dimensional
vectors into dense, continuous and low-dimensional vectors [56]. It is a foundation to transform word
segments into fixed dimensional vectors, namely, word embedding, when studying user-generated
content [57,58]. In this paper, the use of high dimensional numeral vectors to represent words serve as
semantic feature extractors or the input variables of a neural network. Artificial Neural Network (ANN)
techniques have been used widely in text classification. Hughes et al. (2017) have used Convolutional
Neural Networks (CNNs) for text processing and classification in online news, reviews and medical
text [59]. A large number of modified ANN techniques have emerged with technical advancements.
Recurrent Neural Networks (RNNs) have also been an effective method for speech recognition and
text sequence tagging [60], and Long Short Term Memory (LSTM) networks [61] perform well for
sequence-based learning tasks. In addition, a large amount of text processing research has emerged,
including the use of part-of-speech tagging [62], lexicon approaches [63], and other deep learning
techniques [64]. The extant literature has several key limitations. Firstly, the abovementioned studies
have mainly focused on a single aspect of text processing, sentiment classification or flu tracking [43,62].
More importantly, these papers do not adequately consider the influence of sentiment polarity on
the classification of flu-related weibos or on dividing the different periods of flu-related weibos [50].
Therefore, this paper incorporates sentiment factors into flu surveillance research, and the period
classifications of flu-related weibos are probed. Second, neural network techniques are used to process
the weibos at the text level [61,65]. LSTM networks can be used for sentiment analysis of film reviews,
part-of-speech tagging, and other fields [60]. Previous studies show that LSTM performs relatively
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well in text processing but has been rarely used for disease weibo analysis. To fill in this gap, this paper
aims to investigate the relationship between sentiment polarity and the flu period at the word level
and text level based on a weibo dataset.

The main research rationale of this study is straightforward, i.e., first, to investigate the relationship
between the sentiment polarity and the flu period from social networks, and second, to optimize the
disease detecting process by predicting the different periods of flu.

2. Materials and Methods

2.1. Research Model

The model proposed in this paper can detect infectious diseases through multiple channels;
they can be perceived earlier and the model larger populations and more efficiency than traditional
processes (See Figure 2).Int. J. Environ. Res. Public Health 2020, 17, x  6 of 26 
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The upper part of Figure 2 is a schematic diagram of a traditional solitary infectious disease
detecting process. Patients usually go to the hospital when they have already suffered influenza.
Only afterwards it is possible for the CDC to detect the flu trends of the whole society. In the “as-is”
process, there is only one channel to detect infectious diseases, which is through hospital institutions.
The “as-is” process is abbreviated as SC-IDDP. The “to-be” process is the multiple channel infectious
disease detection process (MC-IDDP). The bottom part of Figure 2 illustrates the MC-IDDP process
based on social media platforms. MC-IDDP has three infectious disease detecting channels. Channel 1
is the traditional infectious disease detecting channel, mentioned above. Channel 2 monitors the
infectious diseases by using search engines [17,18]. This paper constructs Channel 3 to detect infectious
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diseases using social media data. Compared with Channel 1 and 2, Channel 3 enables more effective
disease detection for the following three reasons. First, the traditional Channel 1 is not able to use
social media data to detect diseases, such as flu, whereas Channel 2 and Channel 3 can use these data.
Second, search engines can detect the keywords of the corresponding flu symptoms and treatments in
Channel 2 when people realize that they have the flu. It neglects some of the patients who have caught
the flu but do not search for flu keywords and simultaneously adds fake patients who run the search
engine for flu keywords without flu. Third, although people do not realize that they have caught the
flu, they usually post tweets via social media to reflect their feelings, opinions and behaviors, which can
be detected by Channel 3. It helps the CDC to analyze social media data to discover early flu trends.
Additionally, Channel 3 can not only monitor infectious disease outbreaks in early stages but also
identify the flu period. The content inside the dotted line (shown in Figure 2) is the main research
content of this paper, which aims to find the flu-related weibos and further determine the flu period to
improve the accuracy of infectious disease detection.

As the “to-be” process optimized by social media, the MC-IDDP process can improve the
reliability of detecting infectious disease and discover more infectious people. It recognizes the
disease periods earlier and works in an efficient way. Next, we propose 4 propositions and
corresponding demonstrations.

Proposition 1. The MC-IDDP process detects a larger number of potentially infectious people in the population.

Demonstration 1. The logical structure model of MC-IDDP is shown in Figure 3. Figure 3a shows the logical
structure model of a solitary channel, and Figure 3b shows the logical structure model for multiple channels.
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The main parameters are described as follows. N represents the number of possible infectious
people; NSC

C1 represents the number of possibly infectious people recorded by hospitals using a solitary
channel; NSC

lost represents the number of possibly infectious people but do not go to the hospital
in a solitary channel; NSC

C1CDC represents the number of infectious people who are diagnosed and
reported to the CDC in a solitary channel; NMC

C1 represents the number of possibly infectious people
recorded by hospital in multiple channels; NMC

C1CDC represents the number of infectious people who are
diagnosed and reported to the CDC in Channel 1; NMC

C2 represents the number of possible patients
who search disease-related information through search engines in a multiple channel environment;
NMC

C2CDC represents the number of infectious people who are detected and reported to the CDC after
analyzing the search data in Channel 2; NMC

C3 represents the number of possible patients who post
related microblogs through social media in a multiple channel environment; NMC

C3CDC represents the
number of infectious people who are detected and reported to the CDC after analyzing social media
data in Channel 3; NMC

lost represents the number of possible patients who do no go to the hospital,
and do not use search engines and social media in multiple channels; NSC

CDC represents the number of
infectious people who are diagnosed and reported to the CDC in a solitary channel; NMC

CDC represents
the number of infectious people who are detected by the three channels and reported to the CDC.

Obviously, in a solitary channel,
N = NSC

C1 + NSC
lost (1)
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In multiple channels,
N = NMC

C1 ∪NMC
C2 ∪NMC

C3 + NMC
lost (2)

Without the loss of generality, it is assumed that the number of infectious people who are admitted
to the hospital remains the same regardless of whether it is a solitary channel or multiple channels,
which is,

NMC
C1 = NSC

C1 (3)

The following relationship exists,

NMC
C1 ∪NMC

C2 ∪NMC
C3 > NSC

C1 (4)

According to Formula (4), in multiple channels, more infectious people can be detected.
Proposition 1 is validated.

Proposition 2. The MC-IDDP process recognizes the patients early and detects the infectious disease in time.

Demonstration 2. The Google flu trends model provides a promising measure in that the search engine records
the users’ relevant search data on disease symptoms and treatments, to detect infectious diseases. Additionally,
some of the patients do not realize that they might be infected but post weibos with disease symptoms. Therefore,
people’s sentiment and physical conditions can be reflected in social media, which is an important infectious
disease sensor. We added time information in Figure 3b to generate Figure 4. The horizontal axis t indicates the
earliest time at which each channel can detect infectious disease information.
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In Figure 4, EPT represents the Earliest Possible Time, and TEPT
Ci represents the earliest possible

time to detect the disease by Channel i. Obviously, we conclude that

TEPT
C3 < TEPT

C2 < TEPT
C1 (5)

According to Formula (5), the EPT for Channel 3 is the smallest, and the EPT for Channel
1 is the largest. Therefore, the MC-IDDP process based on social media data can achieve more
timely monitoring.

Proposition 3. The MC-IDDP process can conduct infectious disease detection more efficiently.

Demonstration 3. In the MC-IDDP process, Channel 1 requires a large number of doctors and staff with
high operating costs, but Channel 2 and Channel 3 rely only on big data and analytical tools to conduct the
surveillance. Compared with Channel 1, the operation costs of Channel 2 and Channel 3 can be negligible.
Therefore, the total cost of the MC-IDDP process is almost the same as the total cost of the SC-IDDP process.
However, the MC-IDDP process can achieve a wider range of detection (according to Proposition 1), and thus,
the MC-IDDP process has higher monitoring efficiency. Proposition 3 is validated. The Detection Accuracy is
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defined as the percentage of the correct number of patients out of the total number of possible patients who have
been monitored through the infectious disease detection channels. In this paper, the Detection Accuracy (AccD)
can be calculated by the following equation,

AccD =
TP + TN

TP + TN + FP + FN
(6)

where TP is an abbreviation of True Positive, which indicates that an infectious patient is diagnosed as a patient;
TN is an abbreviation of True Negative, which means that a nonpatient is diagnosed as a nonpatient; FP is an
abbreviation of False Positive, which indicates that a nonpatient is misdiagnosed as a patient (Type I error);
FN is an abbreviation for False Negative, which means that a real patient is misdiagnosed as a nonpatient
(Type II error).

Proposition 4. The detection accuracy in any channel of the MC-IDDP process helps to improve the entire
accuracy of the disease detection.

Demonstration 4. The MC-IDDP process has three disease detection channels. Each channel has independent
methods and techniques. The detection accuracy of Channel 1 depends on the hospital’s medical plan and medical
technology. The detection accuracy of Channel 2 depends on the statistical analysis and technical means used
by the search engine. The detection accuracy of Channel 3 depends on the semantic analysis and machine
learning application to social media data. The detection results of the three channels do not affect one another,
and thus, the detection accuracy of each channel is related to only the method and supporting technology of
that channel. Increasing the detection accuracy in any channel can improve the entire accuracy of the disease
detection. The proposition is validated.

This paper focuses on detection Channel 3. To improve the detection accuracy of Channel 3 using
social media data, this paper proposes an effective dual analytical activity model to determine the
status and period of the infected population. The next section discusses the infectious disease detection
Channel 3 and the main activities.

2.2. Infectious Disease Detection Channel 3

The Infectious Diseases Detection Channel 3 is a crucial channel for the MC-IDDP process that
makes direct use of social media data. It has two main activities: flu-related semantic examination
activity and flu-period sentiment measure activity, and thus, Channel 3 is also named the dual analytical
activity model, as shown in Figure 5. The contents and features of the model are described in detail in
the following section.
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2.2.1. Flu-Related Semantic Examination Activity

The purpose of the Flu-related semantic examination activity is to enable semantic recognition
and analysis of social media data based on infectious diseases (taking the flu as an example). The main
content of the activity includes at least 12 steps, such as determining keywords for searching infectious
disease data and obtaining relevant social media data, as shown in Figure 5. Next, we provide some
crucial steps.

1. Obtaining Flu Data Based on Social Media
Six keywords were crawled from Sina Weibo; these six keywords include “flu (Gan Mao)”,

“influenza (Liu Gan)”, “cough (Ke Sou)”, “fever (Fa Shao)”, “sneeze (Pen Ti)” and “nasal congestion
(Bi Sai)”. We used Python for this task, and these flu-related weibos constitute an elementary corpus.

2. Cleaning the Flu Data
Considering the existence of advertisements and forwarding, this study used Support Vector

Machine (SVM) to screen the invalid data and retain the flu-related weibos. The final flu-related weibo
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2.2.2. Flu-Period Sentiment Measure Activity

This activity is mainly to accurately identify the patient’s disease period to improve the detection
accuracy of infectious diseases. The whole process includes six steps. Activity 2 in Figure 5 shows that
the word level detection consists of 3 steps and the text level includes 3 steps, which is introduced
as follows.

1. Relationships between Sentiment Polarity and Flu Period at the Word Level
Word2vector is an efficient training method to transform a symbol into a structure and digital

representation. Word embedding is represented differently in different vocabularies or by different
training methods. The principles of Word2vector are mainly separated into three parts to transform
the words from the vocabulary of a flu-related weibo into high-dimensional space vectors, as follows
in Figure 7.

• Building the vocabulary of the flu-related weibo texts: the processing of the text, which means
that a specific vocabulary is required;

• Initializing the network structure of the weibo text: the initialization of parameters in the CBOW
model, with Huffman coding generation;

• Saving the word embedding: saving the result in a specific form.

(CBOW Model) The CBOW model contains three layers, including the input layer, projection layer
and output layer. The window size used in this paper is 5. The vectors that correspond to each word are
first found to be summarized from the input layer to the projection layer. After all of the word vectors
in the window are gathered, they are stored in the projection layer, and the mean value is calculated.

(Hierarchical Softmax) Hierarchical Softmax is a key technology that is used in word2vec to
improve the performance. In the Huffman tree, the softmax mapping of the hidden layer to the
output layer is proceeded step by step along the Hoffman tree and, thus, this softmax is named
“Hierarchical Softmax”.
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2. Detecting the Flu Period Based on Sentiment Polarity at the Text Level
Recurrent Neural Networks (RNNs) perform well in text classification. However, long-term

dependence occurs if the interval of two words is overly large. This paper adopts a novel type of RNN
called Long Short-Term Memory that works better than traditional RNNs on tasks that involve long
time lags. Its architecture permits LSTM to bridge massive time lags between relevant input events
(1000 steps and more) [65]. Figure 8 shows the structure of the network with 8 main layers, and we
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Two LSTM neural networks in parallel are built to perform binary classification for sentiment
classification and flu-period classification in this section. The input is the word embedding trained by
the word2vector based on the corpus of flu-related weibos. The entire process is shown in Figure 9.
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2.2.3. Construction of LSTM for Sentiment Polarity and Flu Period Classification

The LSTM network is used to construct two neural networks to classify flu-related weibos.
The first is to classify the sentiment polarity. The other intends to classify the period of the flu bloggers.
Each neural network consists of 8 main layers, as follows.

(Input layer and masking layer) The first layer is the input layer, which uses 128-dimension vectors
by means of the word2vector algorithm. The mask value is set to 0 in the masking layer.

(LSTM layer) Each LSTM unit is a storage unit that controls the passage or filtering of information
through the three gates, to alter the cell state. “Implementation” is set to 2 to combine the input gate,
forget gate, and output gate into a single matrix for more efficient operations.

(Fully connected layer) The core operation of the full connection is the matrix vector product.
The essence is a linear transformation from one feature space to another feature space. A dense layer
is used.

(Dropout layer) The settings of this layer are mainly to prevent overfitting in neural network
training. The parameters of this layer are set to 0.3, which implies that the unit that was transferred
from the LSTM layer will be randomly discarded by 30% during training, leaving 70% of the units used.

(Activation layer) The activation function in this layer is “ReLU” (Rectified Linear Units), and as a
result, the convergence rate of the model is maintained at a steady state.

(Loss layer and output layer) Since the classification of the sentiment polarity and the period are
all binary classifications, binary cross entropy is agreeable as a loss function, with the accuracy rate as
a metric of the model. The classification result and test score are received through the output layer.

2.3. Data Description

According to the 41st China Statistical Report on Internet Development published by the China
Internet Network Information Center (CNNIC), Weibo has 316.01 million users and a user usage rate
of 40.9% on social media by December 2017 [66]. Sina Weibo has maintained the top rank in China’s
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weibo. According to the second quarter earnings released by Sina, monthly active users from Sina
Weibo reached 431 million by 30 June 2018, outstripping Twitter as the world’s largest independent
social media company in terms of user scale [67]. Sina Weibo has always been the data source of
various types of major events and emergencies in China and has a far-reaching scope of dissemination
and important social influence. This study uses web-based social media data in Sina Weibo. The details
are clearly shown in Table 1.

Table 1. Data Description.

Category Field Name

Tweet’s information URL, released time, title, text

Blogger’s Information blogger’s ID, nickname of the blogger

Resource Sina Weibo

Keywords flu (Gan Mao), influenza (Liu Gan), cough (Ke Sou), fever (Fa Shao),
sneeze (Pen Ti), nasal congestion (Bi Sai)

Amount of word2vector training
corpora

In 2016 50,000
In 2017 50,000

Amount of labeling sets In 2016 10,000
In 2017 10,000

Total valid amount 15,301

LSTM training set 10,711

LSTM test set 4590

We collected the texts that contained the keywords, namely, “flu (Gan Mao)”, “influenza (Liu Gan)”,
“cough (Ke Sou)”, “fever (Fa Shao)”, “sneeze (Pen Ti)” and “nasal congestion (Bi Sai)” in 2016 and 2017
through a Sina Application Programming Interface (API). We purchased the official data collection
service from Gooseeker. Gooseeker is an authorized API of Sina Weibo. The data do not include
private information such as personal name, gender, age, etc., and do not endanger privacy and other
related issues. All data can be used legally. However, the data include a large amount of advertising
and unrelated material. Thus, the Support Vector Machine (SVM) is used to filter out unrelated flu
weibos. Ultimately, 100,000 flu-related weibos were chosen randomly as a word2vector training corpus
in which 10,000 weibos in 2016 and 10,000 weibos in 2017 were randomly selected as a neural network
classification dataset of sentiment polarity and period. In what follows, the 20,000 weibos are labeled
according to the following rules. In terms of sentiment polarity, “0” represents positive sentiment,
whereas “1”indicates negative sentiment. In terms of the period, “0” indicates the infectious period,
while “1” represents the recovered period. The dataset was divided into 4 labeled groups with a
total of 12 people involved. Every three members were in one group. Each group was assigned 5000
weibos. Each member in one group was required to label all 5000 weibos without communication to
intentionally make the marked category accurate since artificial annotation has a certain subjectivity.
The blog was thought to be invalid if the results were inconsistent among the 3 members. After the
process of cleaning and arrangement, 15,301 weibos were valid, with the remaining 4699 weibos invalid.
We randomly chose 70% of the 15,301 valid weibos as the neural network training set and 30% as the
test set.

3. Results

3.1. Relationship between Sentiment Polarity and Flu-Period State at the Word Level

First, a word2vector corpus was built from the 100,000 flu-related weibos, including 50,000 weibos
from 2016 and 50,000 weibos from 2017, by removing irrelevant stop words and symbols. The word
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frequency of the remaining words was calculated to generate word embedding by similarity and
distance between words. Each word consists of a 128-dimensional vector.

One-hundred ninety-five words ranked first and associated with the flu were screened out from
the vocabulary and divided into four classes, which represent the two types of flu period (infectious
and recovered) and two types of sentiment polarity (positive and negative). The words in the infectious
period mainly describe flu confrontation and symptoms. The recovered period describes the status of
improvement or remission of the flu. One-hundred ninety-five words in four classes can be found in
Table 2.

Table 2. Flu-related Words.

Label Words

infectious

uncomfortable, not good, ailment, no strength, ache, too awkward, feel bad,
serious, sleepy, exhaustion, a tough time, high fever, low fever, pyrexia,

diarrhea, emesis, vomit and have watery stools, sneeze, phlegm, dry cough,
nasal congestion, difficulty breathing, sore throat, running nose, a bad cold,
excessive internal heat, relapse, swell, sore, itch, clinic, children’s hospital,

emergency call, see a doctor, transfusion, blood, outpatient service,
take medicine, injection, drink more water, transfusion, headache, dizzy,
backache, weakness in the limbs, stomach ache, leg pain, giddy, terrible,

exacerbation, brain swelling, nausea, regurgitation, tonsil, anti-inflammatory
drug, capsule, electuary, painful, fester, tinnitus, toothache, sternutation,

cough, lacking in strength, intravenous drip, bacteria, influenza, infection,
epidemic, the upper respiratory tract, feel chilly, swollen eyes, X-ray, dazed,

lethargy, teeter, have a temperature, flu, rhinorrhea, snot, cold cure,
inflammation, virus.

recovered

bring down a fever, much better, improve, healthy, recovery, almost gone,
feel good, heal, feel all right, get better, fever subsided, antipyretic,

abatement of fever, return to normal, stop taking medication, in good health,
fitness, get well, improve markedly, pull through, self-cure.

negative

sadness, cry, go crazy, poor, disappointed, tired, heart-broken, agony, worried,
unlucky, wronged, grieved, breakdown, disgusting, angry, torturous, sorrow,

hard, arduous, piercing pain, sob, anxious, self-accusation, vexation,
compunction, fear, gripping, exhausted, weep, worn out, fragile, suffering,

helplessness, tantalization, nervous, take offence, guilty, regretful, despairing,
whiny, harrowing, depressed, annoying, out of sorts, irritated, listless,

bad mood.

positive

quiet, happy, thankful, wish, clear up, alive and kicking, hope, expect, laugh,
love, smile, delighted, cheer up, ha ha ha, make an effort, lovely, grinning,

felicity, warmth, cheerful, strong, glad, excited, pray, bless, impetrate,
look forward, chuckle, satisfied, joyful, active, all the best, smooth going,

hang on, have fun, yeah, contented, hug, gentle, safe and sound, benediction,
grand time, brave, relieved.

To display the distribution of the 195 words in two-dimensional space, we used t-distributed
Stochastic Neighbor Embedding (t-SNE) to reduce the dimension of the word embedding. The scatter
plot was drawn by the two-dimensional coordinates of each word in Figure 10. Each point is a
word, with a total of 195 points. It is clear that the words that denote positive sentiment and the
recovered period are clustered together, and the words in the negative sentiment and infectious
period are clustered together closely. In addition, between these 195 words, this paper calculates the
similarity between every two words of the flu period and the sentiment polarity based on word2vector.
Additionally, a similarity greater than 0.6 was reserved, which is represented by the connections in
Figure 10. Therefore, as seen from Figure 10, there are four types of connections, which are divided
between the infectious period and negative sentiment, infectious period and positive sentiment,
recovered period and negative sentiment, and recovered period and positive sentiment. This paper
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also performed statistical analysis on these four types of lines in the scatter plot. When the similarity is
greater than 0.6, it is found that there are 53 links between the infectious period and negative sentiment
and more than 16 links between the infectious period and positive sentiment. Additionally, there are
81 links between the recovered period and positive sentiment and more than 7 links between the
recovered period and negative sentiment. Obviously, the infectious period is much more similar and
closer to negative sentiment than to positive sentiment. In contrast, the recovered period is much more
similar and closer to positive sentiment than to negative sentiment.
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To demonstrate the relationship between these 195 words and their similarity, a Force Directed
Graph of Words’ Similarity is shown in Figure 11, where a total of 195 nodes represent the 195 words.
The nodes are divided into four categories, and the edges between the nodes are also divided into four
categories, the same as in the legend in Figure 10. The force of the nodes is the similarity between the
two words. It can be clearly seen from Figure 11 that most of the edges around recovered nodes, such as
health and fitness, are all positive nodes, such as cheerful and happy. Additionally, positive nodes,
such as active, alive and kicking, are connected with recovered nodes, such as get well and heal.
In addition, as can be seen from the similarity forces, these three recovered nodes—in good health,
healthy, and fitness—which indicate a healthy status, are connected to more positives nodes than these
words are, which indicates that the blogger is recovering but not yet healthy. This finding shows that
the healthier the bloggers are, the more positive sentiments they have. Additionally, infectious nodes,
such as feel bad and uncomfortable, are mutually connected to negative nodes, such as bad mood and
anxious. Among the infectious nodes, from uncomfortable to not good to feel bad, the more serious
the disease is, the more the negative nodes are connected.
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To locate the word of each point clearly, the scatter of the points for the positive sentiment and
recovered period is plotted in Figure 12. The scatter of the points for the negative sentiment and
infectious period is shown in Figure 13. It can be seen from Figures 12 and 13 that semantically
related words and words with similar meanings are close to each other. Since the number of words
that describe the recovered period is significantly lower than the number that describe the infectious
period and the meanings of the words that describe the recovered period are mostly similar, it can be
determined that the words of the recovered period and positive sentiment are clustered in the second
and third quadrants, as shown in Figure 12. The distribution of the words that represent the infectious
period and negative sentiment appear to be more scattered in Figure 13, which denotes that these two
classes are more relevant.

To measure the interclass distance of these four categories in the scatter, this paper adopts two
sample class distances to compare the relationship between the sentiment polarity and the flu period.
The first distance is a centroid cluster, which measures the interclass distance by the distance between
the two variables’ mean value. The coordinates of each class’s center gravity are presented in Table 3.
The scatter of the class center gravity is plotted through the two-dimensional coordinates of the four
categories shown in Figure 14. Figure 14 clearly determines the distribution of four types of class
center gravity.
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Table 3. Class Center Gravity Coordinates.

Label X Y

Infectious 2.665 4.758
Negative 2.434 −3.105
Positive −3.302 −2.661

Recovered −3.553 1.629
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Afterwards, we calculated the Euclidean distance matrix of the center gravity in the following
section. From the matrix, the distance between the recovered period and positive sentiment is 4.297,
while the distance between the recovered period and negative sentiment is 7.632, which significantly
shows that the recovered period is closer to positive sentiment. In terms of the infectious period,
the distance to the positive sentiment is 9.521, and the distance to the negative sentiment is 7.867,
which indicates that the infectious period is closer to the negative sentiment.

Recovered
Infectious
Positive

Negative


0 6.960 4.297 7.632

6.960 0 9.521 7.867
4.297 9.521 0 5.753
7.632 7.867 5.753 0


In addition, another interclass distance measurement method was selected to further verify the

correctness of the conclusion, which is known as the between-group linkage and which measures the
interclass distance by the average distance between the two categories of individuals. The Euclidean
distance matrix is shown in the following section.

Recovered
Infectious
Positive

Negative


0 8.739 6.364 8.724

8.739 0 10.806 9.376
6.364 10.806 0 6.977
8.724 9.376 6.977 0


This finding implies that the conclusion is consistent with the above. The recovered period is

closer to the positive sentiment, and the infectious period is closer to the negative sentiment.

3.2. Classification of Flu Period Based on Sentiment Polarity at the Text Level

The flu-related information perceived by social media can detect trend changes and peak points
earlier than traditional methods [8,9,19,43]. We also compare the trend of the flu-related weibos ratio



Int. J. Environ. Res. Public Health 2020, 17, 6853 19 of 25

and ILI% from the CDC. It can be seen in Figure 15; the flu data perceived on social media can reflect
the trend of official ILI data and report changes and peaks earlier in certain weeks.
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Two LSTM neural networks were built to classify the sentiment polarity and flu-period in this
paper. The input is the word embedding trained by the word2vector based on the corpus of flu-related
weibos. It is worthwhile to note that the dimension of the word embedding for the LSTM input is the
original word embedding training, which resulted in 128 dimensions. The output of the network is 0
or 1. For the sentiment classification, the output “0” represents negative sentiment, while the output
“1” denotes positive sentiment. For the flu-period classification, the output “0” implies that the blogger
is infected, while the output “1” implies that the blogger is recovered.

In the LSTM for sentiment classification, the accuracy of the test set reached 0.844 after 30 steps
of training. In the LSTM for flu-period classification, the accuracy of the test set reached 0.876 after
30 steps of training. The statistical result of the test set of 4590 weibos was counted to compare the
relationship between the flu-period and the sentiment polarity. The prediction result was 876, in which
the weibos simultaneously show positive sentiment and the recovered period, shown in Table 3;
the other types of prediction results are also shown in Table 3. Apart from these findings, we also
counted the number of correct weibos to predict the flu-period in the four types of prediction results.
The statistics are shown in Table 4.

Table 4. LSTM Test Set Result.

Period and Sentiment Positive Negative Total

Recovered total 876 402 1278
correct 655 176 831

Infectious total 356 2956 3312
correct 297 2893 3190

The overall accuracy rate is shown as follows,

Acc1 =
(831 + 3190)
(1278 + 3312)

= 0.876 (7)
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Weibos for both positive sentiment and the recovered period and weibos for both negative
sentiment and the infectious period were predicted by the LSTM neural network for a total of
3832 pieces. The accuracy rate is calculated as follows,

Acc2 =
(655 + 2893)
(876 + 2956)

= 0.926 (8)

Compared to the two results, it can be determined that the accuracy rate increases to 0.926 when
the result of the sentiment classification is added, which indicates that the flu period has a certain
correlation with sentiment polarity and the classification accuracy of the flu period improves.

4. Discussion

The shortcomings of traditional data are evident since they are manually collected and
time-consuming, which leads to high labor costs [8,9]. In addition, traditional methods based
on clinical data make it challenging to shed light on the current situation and predict future developing
trends [41]. Along with the widespread use of the Internet, social networking data, including web-based
epidemiological data, have had explosive growth. Data from social networks show apparent advantages
in several respects, such as being real-time and having time-sharing, along with a broad scope of data
coverage [31–34]. In terms of the scale of users, Sina Weibo’s monthly active users reached 431 million
on 30 June 2018, overtaking Twitter, which makes Sina Weibo the world’s largest independent social
media platform [67]. Sina Weibo is the most popular social media platform in China for the public to
share opinions and disseminate information about emergencies and major social events. Therefore,
Weibo has a far-reaching scope of dissemination and is an important social influence. Therefore, the use
of web-based social media data growth is an imperative trend to use for effective disease control and
prevention. Weibo messages carry rich and meaningful implications. Previous approaches in flu state
detection through social media have yielded outstanding achievements but have some limitations at
the same time. Most obviously, the semantic information was seldom considered; this information
might be important for flu detection [50].

However, to our knowledge, this area of study has serious limitations. For example,
bloggers experience different flu periods of the latent, infectious, or recovered kind, and their
sentiments correspond to the different periods. In reality, most bloggers who are ill are usually
negative, while bloggers in recovered periods are active and optimistic. Therefore, omitting the key flu
period and non-differentiating Weibo messages data could lead to data contamination and misleading
conclusions. It is important to investigate the relationship between the flu period and the sentiment
polarity, to make it possible to be conducive to accuracy for classifying the flu period, which directly
results in accurately estimating the number of patients in different flu periods. This approach would
also help the CDC to take early action for disease control and prevention.

This paper aims to detect the flu period with sentiment polarity at the word and text level based
on Sina Weibo data (web-based social media platform), and it proposes optimization suggestions
for optimizing the disease detecting process. Several important findings are produced. (1) Social
media is a promising and powerful data platform to detect flu patients by earlier discovery rather than
traditional medical data. Their periods can be further sorted into infectious and recovered, as mined
from social media. (2) The semantic information varies from the weibo texts posted by patients in
different flu periods. The interclass distance between the recovered period and positive sentiment is
closer than between the recovered period and negative sentiment, and the interclass distance between
the infectious and the negative is closer than that of the positive. Additionally, it was noted that the
healthier the bloggers are, the more positive sentiments they have. The more serious the flu is, the more
that bloggers are connected with negative emotions. (3) A multichannel disease detection model is
developed in this study to evaluate and classify the flu period with an accuracy of up to 0.926 based on
the LSTM network. Our optimized model effectively improves the classification accuracy of the flu
period after adding the sentiment classification results.
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The research findings have important theoretical implications. (1) The previous literature
investigates the sentiment and disease predictions separately. This paper examines the relationship
between sentiment and disease detection. We found that by adding sentiment factors, the classification
accuracy is improved remarkably, from 0.876 to 0.926. (2) This paper explores the relationship between
the sentiment polarity and the flu-period at two levels of words and text, combining the methods of
word2vector and LSTM, which have been used rarely for disease surveillance studies. (3) This research
proposes a complete theoretical framework based on web-based social media data. The use of this
model can be extended to many aspects, such as monitoring chronic and mental diseases.

This study also has important practical implications. (1) This paper optimizes the disease detecting
process and establishes multichannel surveillance measures for CDC decision making. (2) This paper
will monitor a larger range of infected population. Furthermore, it can identify patients in advance
who are not aware of disease. (3) The previous weibo text processing classifies only flu-related weibos
and unrelated weibos. This paper further divides flu-related weibos into two periods: recovered and
infectious. Research outcomes improve the reliability and accuracy for the prediction of flu trends.
Both point (2) and point (3) not only help the CDC to detect disease information in real time but
also provide a novel method for disease information management. (4) The conclusion supports the
expansion of the number of neural network training sets, eliminating some of the high cost of manual
labeling. The classification results of the flu-period can be replaced in the model to increase the amount
of training set data, which enables the LSTM neural network to fully learn to better characterize
the model.

5. Conclusions

Timely and reliable flu monitoring is an important basis for successful control of the spread
of disease and mitigation of the associated damage. However, due to its high contagiousness and
rapid spread, the flu epidemic has caused great difficulties in prevention and surveillance. With the
rapid development and popularity of web-based social media platform data, Sina Weibo, one of the
world’s largest social media companies, has become an ideal data source to make real-time, low-cost
surveillance possible as an early warning of outbreaks and an adjunct to traditional methods of
investigation. According to the latest estimate by the United States Centers for Disease Control and
Prevention (US-CDC), as many as 650,000 people worldwide die from seasonal flu-related respiratory
diseases each year. It is evident that the flu imposes a heavy burden on the international community,
and the flu’s global, social and economic costs are considerable. It is worth noting that improving the
ability to monitor infectious disease is the key to further strengthening management capacity of the
health system and organizing a massive flu outbreak response.

However, most traditional epidemiological surveillance methods adopt clinical data through
manual information collection, showing the shortcomings of high labor costs but also causing a lag in
data timeliness. The data limitation makes it difficult to understand the current situation, which is
critical for flu trend forecasting. Social media data increase at a rapid pace, including epidemiological
data, which offer benefits in terms of timeliness and magnitude. Sina’s 2018 quarter earnings report
that the number of monthly active users of Sina Weibo is larger than that of Twitter, which makes it the
world’s largest independent social media company in terms of user scale. Sina Weibo has always been
the starting data source of various types of major emergencies in China, and its commercial value has
been continuously promoted and has great potential.

This paper explores the relationship between the flu-period and sentiment polarity from two
levels based on Sina Weibo data. To be specific, at the word level, we used word2vector to create the
flu-related weibos corpus and the t-SNE method to reduce the dimension. The centroid cluster and
between-group linkage were jointly used to measure the distance between the four classes, thus visually
showing the relationship between the sentiment polarity and flu-period. At the text level, the sentiment
polarity and flu-period of flu-related weibos were classified by the LSTM networks, respectively.
We counted the classification results as both belonging to the infectious and negative sentiment as well
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as to the recovered and positive sentiment, and we calculated the accuracy rate. We then compared the
rate with the overall flu-period classification accuracy to observe the differences. This paper proposes
an integrated conceptual framework and practical methods for optimizing the disease detection process
with fast information, early discovery, added infected cases and high accuracy. These contributions are
described in detail as follows:

First, in theory, this paper integrates various channels for detecting infectious diseases in real
time with fast information. In addition to the clinical data and search engine data, the detecting data
obtained through social media can also provide prompt and time-sharing disease information to the
Centers for Disease Control and Prevention (CDC). The monitoring mechanisms operate in real time,
which can help the CDC fully prepare for the next round of prevention and control.

Second, in practice, social media enables the early discovery of disease infection. The sooner
the disease is diagnosed, the easier it is to properly treat and controlled. The CDC is committed to
pursuing early detection of diseases. Through social media platforms, we can detect the spread and
severity of a disease earlier than search engines and the CDC. When diseases break out, the patient
might not be aware of them but could post on Twitter or Weibo. The behavior would be recorded by
social media sensors. Based on human behavioral theory, the data possess unique value for detecting
disease trends.

Third, social media is adept at tracking more patients than traditional clinic data. Larger infectious
populations can be monitored by social media than with clinic data. Influenza-like illnesses (ILI)
published by the CDC are measured according to outpatient statistics when fevers are higher than 38
degrees and are accompanied by a cough or sore throat. However, a considerable number of people
often choose not to go to the hospital for treatment when they have the flu or might buy medicine from
a pharmacy by themselves, which cannot be counted in ILI measurements. Social media can detect
these patients, which could result in a larger amount of meaningful data being collected, and thus,
these data could lead to more reliable prediction of disease outbreaks.

Fourth, this paper detects disease periods with observably high accuracy, which could directly
result in significant differences in treatment and disease control measures. Targeting the disease period
precisely helps clinical managers to improve the treatment effect and reduces the prevention cost by
rationally allocating resources, such as medical personnel and medicine as well. This paper can not
only detect whether the patient has the flu but also classify the flu period, infectious or recovered
period, which lays the foundation for predicting future flu trends. It also provides another data source
to assist the CDC in managing disease information.

Fifth, in terms of theoretical contributions, this paper investigates the relationship between
sentiment polarity and the flu period at different word and text levels by combining the word2vector
and LSTM methods, thereby carrying out interdisciplinary research in the fields of sentiment analytics
and health informatics. In addition, this paper provides an effective solution for artificially labeling a
training set. High-accuracy weibo texts can be used to boost the size of the training set, thus saving
time and labor costs.

In future work, we need to study a wider range of data since the current data only cover two
years, 2016 and 2017. Moreover, this paper compares the trend of official ILI data from the CDC and
flu-related data from social media in 2016. We will examine more valuable disease information from
social media-based data on a larger scale.
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