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Abstract: Radioactivity measurements of 61 therapeutic peat mud samples from the Podsokoldy
deposits, near Suprasl, were performed using gamma spectrometry. The authors identified the
presence of 13 isotopes with the arithmetic mean of activity (in Bq kg−1): 137Cs-7, 40K-24, 208Tl-1,
212Bi-3, 212Pb-2, 228Ac-2, 210Pb-33, 214Bi-11, 214Pb-11, 226Ra-53, 234Th–47. The effective dose obtained
during treatment with 15 peat mud baths (lasting 30 min) was 0.078 µSv. Use of peat mud compresses
in the same number and period of exposure to the entire body surface caused absorption of a dose of
0.153 µSv. The authors discuss the probability of tissue radiation from isotopes present in the peat
mud. In light of radiobiological knowledge, the therapeutic effect of ionizing radiation during peat
mud therapy appears to be very unlikely.
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1. Introduction

For years, many diseases have been treated with peat mud in balneology. Numerous papers
contain observations indicating the ion-exchange characteristics of the organic materials contained
in peat mud [1–4]. Such properties make it possible to bind and exchange significant amounts of
ions present in the environment. It seems quite likely that radioactive elements present in the soil
environment in the form of ions may bind to a greater extent with organic peat mud substances than
the concentrations present in the soil.

Humic substances constitute a collection of high-molecular-weight polyelectrolytes formed in
synthesis reactions from simple elements that arose from previously decomposed organic matter [1–6].
Humic acid, fulvic acid, and humins present in peat mud are composed of aromatic cores, to which
the following are attached (or sometimes trapped between them): aliphatic chains, functional sugar
groups, peptides, and a significant number of carboxylic groups [6–10].

Already in 1904, Prof. Borgman observed the existence of peat mud deposits with increased
radioactivity in Russia [11]. Thus, it seems likely that there may be peat deposits with increased
binding of positive ions, and hence also radioactive isotopes, which are metals.

Humic substances form complexes during contact with metals and organic substances.
They participate in ion exchange, undergo sorption on mineral surfaces, and participate in redox
reactions. Dissociated, negatively charged groups can form ionic bonds with polyvalent metals
resulting in the formation of different-sized complexes. Two parameters that mainly affect the ability to
bind metals with humic substances are pH and ionic strength. Reports regarding studies on the binding
sites of metals with humic acids indicate that the most important groups are the COOH and -OH groups
associated with phenols [12–14]. Both of these factors affect the spatial conformation of molecules

Int. J. Environ. Res. Public Health 2020, 17, 6819; doi:10.3390/ijerph17186819 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0003-2404-6065
http://www.mdpi.com/1660-4601/17/18/6819?type=check_update&version=1
http://dx.doi.org/10.3390/ijerph17186819
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2020, 17, 6819 2 of 9

and metal-binding occurring in the environment, even in trace amounts. Despite numerous studies
concerning the peat peloids’ mechanism of therapeutic action, current knowledge is fragmentary and
limited. The extensive literature review conducted by Kulikowa, from the perspective of proposed
mechanisms of action of humic substances, revealed the existence of many contradictory opinions [15].
However, nearly all authors link the pharmacological effects to humic acids [16–18].

The aim of the study was to determine the natural and artificial radionuclide content in raw peat
mud obtained for therapeutic purposes from the Podsokoldy deposits, and to assess patient exposure
to ionizing radiation from peat mud treatment.

2. Materials and Methods

2.1. Deposit Location and Characteristics

Suprasl is a lowland climatic and therapeutic peat mud spa town. It lies in the Knyszyn Forest
Landscape Park buffer zone, has excellent climatic conditions, and rich, ecologically clean vegetation.
The Podsokoldy peat deposits are located about 8.5 km from Suprasl. Geographical coordinates of the
middle of the deposit are 53◦14′3,8” latitude, 23◦27′8,6” longitude (Figure 1).
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2.2. Samples

We examined 61 samples of therapeutic peat mud collected from the Podsokoldy deposits.
The geological profile of the deposit was the following: peak formed from peat from a thickness of
0.1 m, below a layer of low peat with a thickness of 2 to 2.7 m, underlain by sand [19]. The Podsokoldy
deposits are low-lying peats with a decomposition range from 33.33% to 43.33%.

The peat samples were collected at seven points within the deposit. At each of the seven locations,
cores were collected and divided into 10 cm sections. This divided material of each core was measured
by numbering samples from 1 (top layer), giving subsequent numbers with increasing depth. We were
not able to collect 10 layers at all the sites, because in a few places, the peat mud deposits were not
deep enough.

2.3. Measurement Method

The samples were dried at 105 ◦C to constant weight, sifted through a sieve of <2 mm so as to
remove vegetable material, and placed in Marinelli beakers with a volume of 450 mL. Sample activity
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was measured using a semiconductor detector by gamma spectrometry. The analysis of the recorded
pulses was done with a spectrometric set from CANBERRA with a 34.8% coaxial germanium detector
and Genie 2000 computer system for spectral collection and analysis. The applied measurement
method used ensures the lower limits of detection (LLD) using Marinelli geometry (450 mL), calculated
using the method by Currie (Table 1) [20]. The same measurement time of 160,000 s was used for
all samples.

Table 1. The median (M), arithmetic mean (AM), geometric mean (GM), standard deviation (SD),
and low limit of detection (LLD) of the specific radioisotope activity measured in all 61 samples.

Radionuclide
M AM GM SD LLD

Bq kg−1

40K 14 24 15 47 0.6�1.1
137Cs 4 7 4 6 0.02�0.11
208Tl 1 1 1 1 0.03�0.1
210Pb 28 33 28 17 0.46�1.1
212Bi 3 3 3 3 0.07�0.11
212Pb 2 2 2 2 0.05�0.12
214Bi 10 11 10 7 0.06�0.15
214Pb 10 11 10 5 0.07�0.3
226Ra 50 53 52 13 0,38�1.56
228Ac 2 2 2 2 0.09�0.21
234Th 40 47 41 25 0.61�1.99

2.4. Method for Estimating Dose

It was assumed that peat mud bath fluid consisted half of mud and half of the water that diluted
it. This information was obtained from employees servicing bathing stations. It was assumed that
during the bath, the patient had 94% of the total body surface area immersed. Mud treatments based
on applying the therapeutic peat mud paste onto the skin were also used. Such a preparation usually
consists of 80% of peat mud supplemented with water and some peat or herbal extracts. The equivalent
and effective dose obtained during such a series of treatments is shown in Table 2. To determine the
equivalent dose H from beta radiation, the following equation was used:

H = A T β, (1)

where

A—Surface activity in Bq cm−2,
T—exposure time in hours,
β—conversion ratio Sv h−1 to Bq cm−2 [21].

The effective dose E from the beta emitters was determined from the dependence

E = H w s, (2)

where

H—equivalent dose,
w—skin weighting factor 0.01,
s—fraction of the surface of immersed skin.

The maximum activity of the specific isotopes determined for peat mud was used for the dose
calculation. Thus, the doses are somewhat inflated, but this approach is justified from the point of
view of radiological protection.
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This article complied with ethical standards. Ethics approval and consent to participate No human
samples were used in this study and all experiments were chemically and in laboratory scale.

Table 2. The equivalent H dose and the effective E dose obtained during a series of 15 mud bath
treatment applications to the skin by beta and gamma radiation during half-hour exposures.

Radionuclide
H E (β) E (γ)

[nSv]
40K 891.5 8.5 41.4

137Cs 40.2 0.4 1.3
208Tl 87.9 0.8 1.7
210Pb 0 0 0.2
212Bi 80.7 0.8 1.4
212Pb 16.5 0.2 0.3
214Bi 502.4 4.8 10
214Pb 77.4 0.7 2
226Ra 0 0 1.4
228Ac 98.4 0.9 1.4
234Th 12.3 0.2 0
Sum 1807.3 17.2 61.1

3. Results

The specific isotope activity was measured in 61 samples of therapeutic peat mud collected from
the Podsokoldy deposits. The registered isotopes beyond 137Cs and 40K belong to two radioactive
series. The four radionuclides belong to the thorium series (208Tl, 212Bi, 212Pb, 228Ac), and five to the
uranium series (210Pb, 214Bi, 214Pb, 226Ra, 234Th).

The statistical parameters of the specific activity of the samples were determined. The obtained
values are presented in Table 1.

We determined the total values of specific activity in particular cores, that is, the sum AM of specific
activity of individual isotopes located in the entire core. The total specific activities of all isotopes
contained in the cores collected from the seven locations ranged from 228 Bq kg−1 to 278 Bq kg−1.
Figure 2 presents the extreme values of the specific activity for all samples.
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Skin Dose and Effective Dose Calculation

The doses obtained during peat mud baths (Table 2) and skin application with mud paste (Table 3)
were estimated.

Table 3. The equivalent H dose and the effective E dose obtained during a series of 15 peat mud paste
applications to the skin by beta and gamma radiation during half-hour exposures.

Radionuclide
H E (β) E (γ)

[nSv]
40K 178.3 16.9 82.9

137Cs 78.8 0.75 2.5
208Tl 158.1 1.5 2.9
210Pb 0 0 0.3
212Bi 152.8 1.5 2.6
212Pb 30.9 0.3 0.5
214Bi 945.2 9 18.9
214Pb 141.4 1.3 3.7
226Ra 0 0 2.8
228Ac 189.6 1.8 2.7
234Th 23.9 0.2 0
Sum 1899 33.3 119.8

During the series of bath treatments, a patient received an effective dose from beta emitters of
approximately 17.2 nSv, and 61.1 nSv from gamma emitters. In total (from β and γ radiation), through
the whole series of bath treatments, a patient received an effective dose of approximately 78 nSv
(0.078 µSv).

The effective dose from the beta emitters contained in the peat mud paste applied to patients
during a series of treatments was 33.3 nSv, and 119.8 nSv from gamma emitters. The total dose from
emitters (from β and γ radiation) present in the mud paste applied to patients during 15 days of
therapy was 153.1 nSv (0.153 µSv). In the case of compress application on selected parts of the body,
the dose is accordingly smaller in proportion to the fraction of the surface of the skin covered with the
paste in relation to the entire body surface.

4. Discussion

Spa treatment of degenerative diseases of the musculoskeletal system is usually a continuation
of hospital treatment. One of the treatments used in these diseases is exposure to natural ionizing
radiation. The applied treatments are baths and inhalations containing elevated concentrations of radon
or drinking mineral waters containing significant amounts of α-emitters [22]. Patients suffering from
rheumatoid arthritis treated in the spa town of Bad Brambach (Saxony) with radon baths (1.3 kBq/liter)
felt a significant improvement. The authors suspect that the accompanying inhalations of radon
reduced the perception of pain [23].

There are few publications describing the effective doses received by patients during balneological
procedures as a result of the action of ionizing radiation and its effect on the body. They mainly describe
the dosages and effects caused by the radon 222Rn [24–27] or drinking mineral waters [26,28]. In the
health resort of Heviz (Hungary), patients received a dose of 81 µSv with 222Rn and its derivatives
during a two-week treatment with baths and inhalations [26]. Patients with lung diseases during
inhalation in the Topolka cave (Hungary) received doses of radon ranging from 0.18 to 4.22 mSv,
depending on the duration of therapy [25]. The results obtained are over three times higher than
obtained average doses of measured samples from eight Polish spa towns [29].

In the above-described situations, when the specific activity of the isotope entering the body
through the alimentary or inhalation route was known, the dosage calculation became clear. All that
needed to be done was to apply the conversion factor per the IAEA [30]. ICRP Publication 72 connects
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total radioactivity to the method of nuclide introduction into the body [31]. In addition, in the case of
the inhalation route, exposure time should be considered.

The situation ceases to be so unambiguous in the case of external exposure, when we are dealing
with exposure to low-penetrating alpha or beta radiation. It is obvious that radiation only has biological
effects if it reaches radiosensitive cells.

According to ICRP, such cells are the basal cells of the epidermis at a depth of 50�100 µm. For dose
estimation, ICRP recommends a depth of 70 µm [32–34]. Three α-emitters occurred in the measured
peat mud samples. All isotopes present in peat mud that emit α-radiation do not have enough energy
to reach the radio-sensitive cells. In this case, the alpha radiation in the dose calculation should
be omitted.

The effective dose determined from beta and gamma emitters in a series of peat mud baths from
the Podsokoldy deposits, amounting to approximately 0.078 µSv, was very small. The doses obtained
during mud baths were four orders of magnitude lower than the inhalation doses of radon received at
home by the inhabitants of north-eastern Poland (1.8 mSv) [35]. Compared to the routine AP chest
X-ray (0.3 mGy) [36], the received dose was over three orders of magnitude smaller.

Assessment of the biological effects of low doses of ionizing radiation is the subject of research
and controversy. The linear dose-effect relationship is accepted by international radiation protection
bodies. However, publications describing the beneficial effects of small doses of ionizing radiation
on health have appeared for many years. This effect is called radiation hormesis hypothesis in
the literature [37–43]. Most hormesis studies where tissue effects were noted used doses of 40
to 200 mGy [44–50]. Increased macrophage activity and an increased CD8+ T cell response were
observed [44]. Other observations include a decrease in IL-10 cytokine production and stimulation of
IL-12 cytokine expression [46], apoptosis reduction [43], and suppression of lung cancer [47].

Studies in the literature present fragmentary explanations of the observed effects, while
comprehensive understanding of this phenomenon is quite distant [37–40,42].

As stated above, the calculated doses a person received during peat mud treatment from the
Podsokoldy deposits, which were 0.078 µSv and 0.153 µSv in a series of baths and through skin
application, respectively, were about four orders of magnitude less than that given by Tempera
(from 0.12 mSv to 0.80 mSv) [27] and about three orders from calculations made by Somlai (81 µSv) [26].
Even assuming the radiation hormesis hypothesis to be true, it is unlikely that such small doses would
be able to trigger a hypothetical hormesis mechanism.

5. Conclusions

During treatment based on 15 peat mud baths, patients received an effective dose from beta and
gamma emitters of about 0.078 µSv. In the case of a series of treatments consisting of applying peat
mud paste onto the skin, the effective dose was approximately 0.153 µSv.

The therapeutic effect of spa treatment with peat mud is most likely caused by other effects than
those which can be caused by peat radioactivity.
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