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Abstract: In this work, we explored a novel approach to integrate both geo-environmental and
soil geomechanical parameters in a landslide susceptibility model. A total of 179 shallow to
deep landslides were identified using Google Earth images and field observations. Moreover, soil
geomechanical properties of 11 representative soil samples were analyzed. The relationship between
soil properties was evaluated using the Pearson correlation coefficient and geotechnical diagrams.
Membership values were assigned to each soil property class, using the fuzzy membership method.
The information value method allowed computing the weight value of geo-environmental factor
classes. From the soil geomechanical membership values and the geo-environmental factor weights,
three landslide predisposition models were produced, two separate models and one combined
model. The results of the soil testing allowed classifying the soils in the study area as highly plastic
clays, with high water content, swelling, and shrinkage potential. Some geo-environmental factor
classes revealed their landslide prediction ability by displaying high weight values. While the model
with only soil properties tended to underrate unstable and stable areas, the model combining soil
properties and geo-environmental factors allowed a more precise identification of stability conditions.
The geo-environmental factors model and the model combining geo-environmental factors and soil
properties displayed predictive powers of 80 and 93%, respectively. It can be concluded that the
spatial analysis of soil geomechanical properties can play a major role in the detection of landslide
prone areas, which is of great interest for site selection and planning with respect to sustainable
development at Mount Oku.

Keywords: soil geomechanical properties; geo-environmental factors; pearson correlation coefficient;
statistical index information value method; fuzzy membership; receiver operator characteristic (ROC)
curve; landslide susceptibility; disaster prevention
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1. Introduction

Soil geomechanical properties have long been investigated to characterize the behavior of soils
from a small scale (grain or particle) to a landslide scale. Additionally, soil geomechanics overlap
with parts of geotechnical engineering and provide useful information about soil mechanical behavior.
Previous studies in the field of soil mechanical behavior have shown that landslides occur suddenly.
A landslide is a complex geological process of denudation-erosion, which involves the displacement
of soil or rock along a slope under the influence of gravity [1,2]. However, the study of rock and
soil characteristics, faults, lineaments, and seismic events allows detecting warning signs, including
small displacements of parts of the slope, tension cracking, and reactivation of spring lines [3–6].
Furthermore, soil geomechanical properties, such as water content, porosity, grain sizes, plasticity
index, methylene blue value (MBV), soil angle of internal friction, and cohesion, can play a significant
role when trying to understand and predict slope soil failure mechanisms [3,7–9].

Land exploitation, combined with heavy rainfall and slope steepness, frequently cause various
types of natural hazards in tropical, mountainous regions [10,11]. Floods and landslides are among
those destructive natural disasters frequently experienced in these regions. Landslide hazards are
frequent in Cameroon, especially along the Cameroon Volcanic Line (CVL), which is a 1600-km-long
mega-shear zone in Central Africa (Figure 1). Mount Oku, culminating at an altitude of 3011 m,
is situated on the continental part of the CVL. It is one of the great volcanoes of the CVL, with Mounts
Bamenda, Cameroon, Manengouba, and Bambouto [12–14]. This area presents a humid, tropical,
highland climate and steep hill slopes with deeply incised valleys. The study area encompasses about
20 villages with a population density of 162.3 inhabitants/km2, according to the 2005 national institute
of statistics census. The Mount Oku area plays a significant role in the northwest region in terms of
infrastructure, grazing, and agriculture—therefore, it is important to better constrain the conditions
that could lead to landslide disasters in that area and to provide indications allowing to prevent
them [10,15,16].

Landslide-susceptibility investigation consists of computing the spatial distribution of areas
prone to landslide [17–19]. This involves investigating the relationship between various parameters,
ranging from lithology, topography, climate, land use, hydrogeologic and soil geotechnical properties,
and landslide occurrence. For seismically active and volcanic regions, as the one investigated here,
also related factors have to be taken into consideration (especially the first ones are studied more in
detail in a new paper under preparation).

Literature on the understanding and prevention of landslides through susceptibility assessment in
Mount Oku area is still scant, as also recently noticed in the western branch of the East African Rift region
by [20,21]. Landslide studies conducted in Cameroon can be classified into four approaches. In the
first approach, the authors studied landslide-predisposing factors including morphological, geological,
hydrological, and geographical properties [15,22,23]. In this approach, no geotechnical characteristics
of soils were taken into account, and landslide-conditioning factors were simplified. In the second
approach, relief and geology were identified as causative factors, amplified by triggers, such as
rainfall, small earthquakes, human activities, and mechanical erosion [16,24]. Nevertheless, in these
models, landslide factors were considered separately, without integrating them. In the third approach,
applied by [25,26] at Magha, West Cameroon, soil mineralogical, geochemical, and geotechnical
characteristics were identified as major landslide controls, neglecting the role of morphological and
other spatially distributed factors. In the fourth approach, Ref. [8] emphasized slope soils’ geotechnical
properties along the Bamenda escarpment but did not include them in their landslide-predisposition
model. Thus, it can be observed that there is a tendency to use either morphological data layers,
which are easily available from digital elevation models and satellite imagery, or only scattered data
that require detailed field investigations. Moreover, these previous studies at Mount Oku revealed
that the qualitative approach, including landslide spatial and temporal distribution (inventory) and
a heuristic approach (based on the researcher experience), is actually the most used compared to
quantitative methods, which are more reliable.
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In spite of the relevance of soil geomechanical properties in slope failure investigations, they are
rarely integrated in landslide-susceptibility models. Consequently, in this study, we investigated the
effects of soil geomechanical properties on landslide-susceptibility models in the Mount Oku area
(Figure 1).
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Figure 1. A map of the study area showing locations of alkaline complexes of plutonic origin (black)
and volcanic massifs (red) of the Cameroon Volcanic Line [27,28].

Soil geomechanical properties and geo-environmental factors were mapped, classified, and
weighted based on their landslide-causative influences, using the statistical index information
value [29–32] and the fuzzy membership method [33–36]. Then, we generated three different
landslide-susceptibility models, one soil geomechanical model, one geo-environmental model,
and one combined model in order to investigate the relevance of geomechanical factors in
landslide-susceptibility mapping.
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2. Study Area

2.1. Climate and Geological Setting

The study area is located in a humid, tropical, highland climate with two seasons. The rainy
season begins in April and ends in November (eight months), with a total precipitation of 2467 mm.
The dry season ranges from December–March (four months), with a total precipitation of 80 mm.
A transition from dry to rainy season can be observed in March, with a slight increase of precipitation
above the temperature curve (Figure 2). The total annual precipitation is 2546.5 mm. The maximum
rainfall is observed during the month of July (579.6 mm) and the minimum during the month of
December (0 mm), as shown in Figure 2. The temperature data shows that January (27.2 ◦C), February
(26 ◦C), and April (26 ◦C) are hot, while the months of July and August are cold (22.7 and 22.8 ◦C,
respectively). The mean annual temperature is 24.5 ◦C at an elevation of approximately 1200 m.
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Figure 2. Average annual rainfall and temperature distribution for Bamenda. Source: Northwest
regional service for meteorology. These average monthly precipitation/temperature data were recorded
between 2005–2010.

The Oku massif volcano, where the study area is located, dates from an Oligocene volcanism
(about 33.9 ± 0.1 to 23.03 ± 0.05 million years) and belongs to the Western Highlands [13,14,37–40].
Mount Oku is located within the Cameroon Volcanic Line, characterized by an alignment of oceanic
and continental volcanic massifs and plutonic complexes. The Oku massif volcano is a complex
stratovolcano with a diameter of approximately 90 km and a height of 3011 m and is located near
the central part of the CVL continental sector [41]. This complex stratovolcano shelters four major
stratovolcanoes, which are Mount Oku, Mount Babanki, Nyos, and Nkambe. References [13,42]
demonstrated that the continental part of the CVL consists of both plutonic and volcanic massifs,
while the oceanic part is made only of volcanic massifs. Volcanic rocks show mostly basic lavas, forming
rocks such as basalt and hawaiite. Felsic lavas form rocks such as trachyte, phonolite, and rhyolite
with very few intermediate rocks (mugearite and benmoreite). However, plutonic rocks present a
complete series of gabbro-diorite-monzonite-syenite-granite type. Geochemically, trace elements in
basalts are nearly similar in both oceanic and continental sectors of the CVL, implying a related upper
mantle source. Mount Oku eruptive products vary from basanite and alkali basalt through hawaiite
and mugearite to trachyte-rhyolite, with high-level intrusions of pyroclastic material. The basement
rocks upon which the lavas were erupted include granites, migmatites, and biotite diorites [41].
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Superficial formations originate from the physical and chemical weathering of these bedrocks
either in place or during their transportation over long distances, after which they are deposited in
lowlands. Mount Oku soils are mostly made of sand, silt, and clay in different proportions.

2.2. Landslides in the Study Area

This investigation was carried out on the western flank of Mount Oku (Figure 3a) between
latitude 6◦2′20” N to 6◦25′23” N and longitude 10◦11′39” E to 10◦35′46” E, especially on four rock
types, namely, basalts, trachy-rhyolites, rhyolites, and migmatites. These rocks cover approximately
955 km2 (6 302 739 12 × 12 m pixels). Landslides cover an area of about 10 km2, representing almost
1% of the study area. Old and recent landslide locations were recorded in the field using a GPS and
mapped with the use of the MapSource application (Garmin Ltd., Schaffhausen, Switzerland), Google
Earth (Google LLC, Mountain View, CA, USA), and ArcGIS software (ESRI Inc., Redlands, CA, USA).
Seventy-five percent of landslides (42,147 pixels) were introduced in the prediction models and 25%
(14,067 pixels) of the most recent landslides in the validation model.
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Figure 3. (a) Mount Oku location on the Cameroon Volcanic Line. The study area situated on the
central part is symbolized by the red square (modified from [42]); (b) an enlargement of this area with
the 12-m TANDEM X-derived elevation as base map, showing landslides (yellow rectangle); (c) Google
Earth image showing landslides (green polygons) observed between 2009–2018.

The study area limit refers to the geological boundary, as denoted on Figure 3b. The weathering of
the rock formations present in the study area led to the formation of gentle to very steep slope clayey
soils based on grain size distribution. The diverse geo-environmental factors prevailing in the study
area and soil properties make these slopes prone to slope movements.
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A total of 179 small- to large-size, shallow to deep slides, debris flows, and complex slides from
liquefaction or flow processes were identified using Google Earth images and field observations,
following mainly the classification system of [43], as shown in Figure 3c. Shallow landslides have
their slip surfaces not deeper than 3 m, while deep-seated landslides display rupture surfaces below
3 m, based on the classification of [44]. A major landslide with a maximum depth of failure surface of
about 13.30 m was observed at Mbingo (Figure 4a). Additionally, Figure 4b presents a recent complex
landslide, which presented a translational mechanism at failure, but was transformed into a debris
flow that travelled approximately 200 m downstream.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 6 of 29 
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Figure 4. Deep-seated translational landslides observed at Mbingo: (a) Translational, (b) translational
failure transformed into debris flow.

3. Materials and Methods

3.1. Soil Sampling and Laboratory Testing

Undisturbed and disturbed soil samples were collected on flat and hilly surfaces, above
escarpments, on anthropogenic cuttings, and in scars at depths between the ground surface and
the basal slip plane, as recommended by [45]. Representative soil samples were taken at 0.25 m to
7.3 m depth, on failure and nonfailure sites, from soils developed on each rock type, flat and sloping
areas, in forested and nonforested areas, and close to major rivers and roads. Undisturbed samples
were collected using cylinders of 18 cm in diameter and 25 cm in height, as illustrated in Figure 5.
These cylinders were placed on the soil surface and inserted with manual pressure. When the cylinder
was full, the soil column was cut at the base. Melted candle wax was then poured on both sides of the
cylinder to prevent any evaporation of water from the sample.

Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 6 of 29 

 

 

Figure 4. Deep-seated translational landslides observed at Mbingo: (a) Translational, (b) translational 
failure transformed into debris flow. 

3. Materials and Methods  

3.1. Soil Sampling and Laboratory Testing 

Undisturbed and disturbed soil samples were collected on flat and hilly surfaces, above 
escarpments, on anthropogenic cuttings, and in scars at depths between the ground surface and the 
basal slip plane, as recommended by [45]. Representative soil samples were taken at 0.25 m to 7.3 m 
depth, on failure and nonfailure sites, from soils developed on each rock type, flat and sloping areas, 
in forested and nonforested areas, and close to major rivers and roads. Undisturbed samples were 
collected using cylinders of 18 cm in diameter and 25 cm in height, as illustrated in Figure 5. These 
cylinders were placed on the soil surface and inserted with manual pressure. When the cylinder was 
full, the soil column was cut at the base. Melted candle wax was then poured on both sides of the 
cylinder to prevent any evaporation of water from the sample. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Sampling: (a) Undisturbed soil sampling method; (b) sampling in the major landslide found 
at Mbingo; (c) stove used to melt candles; (d) reworked and undisturbed samples ready for laboratory 
analyses. 

Geomechanical properties of these soils were determined through physico-mechanical 
laboratory experiments (particle and bulk densities, moisture content, grain size distribution, 
Atterberg limits, methylene blue, and direct shear tests). Five of these samples were analyzed at the 
Sol Solution Afrique Centrale laboratory, Yaoundé, Cameroon. In this laboratory, the tests were 

(a) (b) 

Figure 5. Sampling: (a) Undisturbed soil sampling method; (b) sampling in the major landslide
found at Mbingo; (c) stove used to melt candles; (d) reworked and undisturbed samples ready for
laboratory analyses.
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Geomechanical properties of these soils were determined through physico-mechanical laboratory
experiments (particle and bulk densities, moisture content, grain size distribution, Atterberg limits,
methylene blue, and direct shear tests). Five of these samples were analyzed at the Sol Solution Afrique
Centrale laboratory, Yaoundé, Cameroon. In this laboratory, the tests were performed following
the procedures from the American Society of Testing Material (ASTM) and French Standardization
Association (AFNOR) standards, since they are appropriate for fine-grained soils analysis, as noticed
by [46,47].

The six remaining samples were analyzed at the Engineering Geology Department of the Technische
Universität Berlin, Germany, following the standards proposed by [48], which is a manual for the
laboratory and field testing of soils for civil engineers, soil engineers, and technicians. Results of these
tests are presented in Section 4.1.

Shear test results allowed obtaining the shear strength parameters friction angle (φUU) and
cohesion (cUU). These parameters are linked by the Mohr–Coulomb strength criterion, Equation (1),
which is the most common strength criterion applied to soils as mentioned by [49,50].

τff = σff· tan(φUU) + c UU ⇒ cUU = τff − σff· tan(φUU) (1)

where τff is the shear strength on the failure plane at failure, σff is the applied normal stress on the failure
plane at failure, ΦUU is the angle of internal friction or friction angle under undrained unconsolidated
conditions, and cUU is the intrinsic cohesion under undrained unconsolidated conditions.

3.2. Analysis of Soil Geomechanical Properties

The degree of association between the soil geomechanical properties pairwise was evaluated
using the Pearson correlation coefficient. These coefficients and the corresponding matrix table were
generated using the Microsoft Excel software. The Pearson correlation coefficient varies between −1
and +1; the nearer the coefficient is to one of these limits, the stronger the relationship. The signs
indicate if the compared properties are increasing or decreasing together when it is positive, or if one is
increasing while the other decreases for a negative sign [51,52].

3.3. Mapping of Soil Property-Based Landslide Susceptibility

Soil property maps were realized using the laboratory test results, of which mean values were first
assigned to the corresponding geological features, using Microsoft Excel and Esri ArcGIS 10.1 software.
Spatial interpolation of geomechanical properties was done using the fuzzy logic or fuzzy membership
approach earlier used by [33,53–55]. With this method we could avoid having corresponding weight
values identical to those of the geology units, as would be the case using the information value
method. Soil geomechanical properties were first mapped by attributing their mean value to the
corresponding geology units, as they result from their weathering. Then, these soil properties maps
were converted into fuzzy subsets with values between 0–1. Assigning membership functions to each
data set was carried out according to the relation between soil geomechanical properties’ behavior and
slope failure processes. Therefore, we converted these soil geomechanical properties into fuzzy subsets
following analyses of the Pearson correlation coefficients, literature on soil properties’ influence on
landslides, and textural and Casagrande diagrams, noted above. The assignment of fuzzy membership
values was performed using the Fuzzy membership option of the Spatial Analyst tools in ArcGIS 10.1.
More specifically, the “Linear” fuzzy functions of this tool were used. The “Linear” fuzzy function
calculates membership based on the linear behavior of the input raster. It assigns membership values
between 0 for the minimum and a membership of 1 for the maximum. These normalized geomechanical
properties were then overlaid using the Fuzzy Gamma operator to identify landslide-susceptible areas.
The gamma operation is defined in terms of the fuzzy algebraic product and the fuzzy algebraic
sum by:

µcombination = (fuzzy algebraic sum)γ × (fuzzy algebraic product)1−γ (2)
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where γ values are chosen between 0–1. The γ is equal to 1 when the combination is the same as
the fuzzy algebraic sum, where the combined geomechanical property raster is more important than
any single of them; and γ is equal to 0 when the combination is identical to the fuzzy algebraic
product, in which the combined geomechanical property raster is less important than any single of
them. A suitable γ value ensures a good compromise between the “increasing” tendencies of the fuzzy
algebraic sum and the “decreasing” effects of the fuzzy algebraic product [14,55,56].

3.4. Bivariate Statistical Analysis of Geo-Environmental Factor-Based Landslide Susceptibility

Next, geo-environmental properties were mapped, classified, and reclassified into various classes,
while landslide maps for prediction and validation were reclassified into landslides and no landslides
areas [57,58]. The influence of each landslide factor class was determined by assigning coefficients
(weight), quantifying their degree of influence on landslide occurrence based on the bivariate statistical
information value method. This method provided good results in many landslide-susceptibility
mapping studies, such as [23,59,60]. In this work, it was used to determine the weight or influence of
each landslide factor class by dividing the density of landslides in each factor class by the density of
landslides in the entire map. The density of landslides within each class of a factor is equal to the ratio
of the number of pixels of landslides within class i and the number of pixels of class i. Landslide density
within the study area is equal to the ratio of the total number of landslide pixels within the whole
area over the number of pixels of the whole study area. Then, the statistical index information values
obtained were rasterized using the “lookup tool” of the spatial analyst extension and summed up
using the raster calculator. The weight of each class of a factor is given by Equation (3) below [30–32]:

Wi = ln Density o f landslides within each class of a f actor
Density o f landslides within the study area

= ln
(

Npix(Si)
Npix(Ni)

/
ΣNpix(Si)
ΣNpix(Ni)

) (3)

With

Wi = weight of each class;
Npix (Si) = number of pixels of landslide within class i;
Npix (Ni) = number of pixels of class i;
ΣNpix (Si) = number of pixels of landslide within the whole study area;
ΣNpix (Ni) = number of pixels of the whole study area; and
ln = natural logarithm used to take care of the large weights variation

The following landslide-predisposing and causative factors were used for landslide-susceptibility
mapping with 12 × 12 m cell size, based on the geo-environmental conditions prevailing in the study
area and data availability. They are:

(a) Elevation, slope angle, aspect, and curvature maps prepared from the TerraSAR-X add-on for
Digital Elevation Measurements (TanDEM-X DEM) standard product 0.4 arcsecond with 12.37 m
resolution at the equator, kindly provided for this research by the German Aerospace Center
(Deutsches Zentrum für Luft- und Raumfahrt, commonly known as DLR);

(b) A geological map that was digitized from the existing Wum-Banyo 1:500,000 geological map
(sheet number 4 32 NE—040 and 41) translated and digitized by Peronne and published in 1969,
by the Office for Scientific Research in Overseas Territories (ORSTOM), Directorate of Mines and
Geology; and other recent geological maps from articles such as those of [13,14], combined with
field and laboratory works;

(c) Distances from the main roads that were acquired by digitizing the road network in Google Earth
and computing the distance from the road network using the Euclidean distance tool of ArcGIS
10.5, using the 1:50,000 topographic map Nkambe 1b (sheet number NB-32-XVII-1b) drawn and
published in 1969 by the French National Geographical Institute (NGI);
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(d) Distances from major rivers that were computed with the Euclidean distance tool around rivers
that were digitized from the Nkambe 1b topographic map; and

(e) A land cover map that was prepared from the LANDSAT 8 satellite image recorded by LANDSAT
on 14 January 2019, by applying a supervised classification in ArcMap and field surveys for more
accuracy. Bands 4 and 5 were used to calculate the normalized difference vegetation index (NDVI)
with the raster calculator tool of the ArcGIS 10.5 Spatial Analyst tools.

The classification of elevation, slope angle, and curvature maps was executed using the quantile
classification method. In this method, the class intervals are adapted to the distribution of the data,
so they are more evenly distributed among the classes. Regarding the distance parameters (distance
to roads and rivers), several classes were created at closer distances to the targeted roads and rivers
with a cutoff where no more effects are expected. These classes are 0–200 m, 200–400 m, 400–600 m,
600–800 m, 800–1000 m, 1000–1200 m, 1200–1400 m, and ≥1400 m. Moreover, for categorical factors,
such as lithology and aspect, all the classes of the nominal scale were preserved.

3.5. Landslide-Susceptibility Model Generation and Evaluation

Three different landslide-susceptibility models were generated and normalized. The first was
obtained by adding the resulting weights of geo-environmental factors (lithology, elevation, slope
angle and aspect, land use, curvature, and proximity to rivers and roads). The second model was
obtained by summing up the fuzzy memberships of soil geomechanical properties (porosities, particle
and bulk density, water content, grain sizes, Atterberg limits, methylene blue value, friction angle,
and cohesion). In the third model, both geo-environmental factors and geomechanical properties were
merged using the raster calculator of the ArcGIS 10.5 Spatial Analyst tools.

Finally, the predictive power of these landslide-susceptibility models was assessed using the
receiver operator characteristics (ROC) curves and the area under the ROC curve (AUC), as also used for
several landslide investigations [20,61–65]. The first step for the ROC curve implementation is to overlay
the validation landslide map (landslides and nonlandslide areas) with the landslide-susceptibility
models that were reclassified into unstable and stable pixels and divided into 100 equal intervals.
The landslide-susceptibility index value of 0.5 was used as cutoff to discriminate between stable and
unstable areas. Four possible predictive situations can, therefore, be observed:

(a) Areas of observed landslides, which have been predicted by the model to be unstable, also called
true positive (TP);

(b) Stable areas of no landslides, classified by the model as stable, also called true negative (TN);
(c) Areas without landslides but predicted by the model to be unstable, also designated as false

positive (FP); and
(d) Areas with landslides but predicted by the model to be stable, also named as false negative (FN).

Table 1 displays a matrix table, which is frequently used to tabulate the model and experiment
predictive results and calculate the sensitivity and 1-specificity, which are later plotted on a graph to
obtain the ROC curve. The true positive rate (TPR) or sensitivity, which corresponds to the percentage
of landslides or true positive events, correctly predicted as unstable pixels, is plotted on the Y-axis.
The false positive rates (FPR) or 1-specificity, which is the proportion of nonlandslide areas or truly
negative events, correctly predicted as stable pixels, is plotted on the X-axis [61,63]. TPR and FPR are
computed using the following formulas:

TPR =
TN

TN + FP
(4)

FPR =
TP

TP + FN
(5)
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Table 1. Matrix table for the comparison of landslide-susceptibility models (test results) and validation
landslides (true condition).

Test Stability Degree

Test result Unstable Stable
Negative TN FN
Positive FP TP

TN: true negative, FN: false negative, FP: false positive, TP: true positive.

Finally, the predictive power of these models was evaluated by comparing the AUC values of
the three landslide-susceptibility models, as recommended by [61]. The nearer the curve is to the
upper-left corner of the ROC graph or above the diagonal line (corresponding to AUC = 0.5), the better
the model. Additionally, a perfect model would have an AUC value of 1.

4. Results and Discussion

4.1. Soil Geomechanical Properties and Their Influence on Slope Stability

The bivariate correlation of soil geomechanical properties was analyzed by computing the Pearson
correlation coefficient and using the textural and Casagrande diagrams. Geomechanical properties
determined at the Sol Solution Afrique Centrale Laboratory, Yaoundé Cameroon (PT01, PT02, PT03,
PT04, and PT05 samples) and the Engineering Geology Department of the Technische Universität
Berlin, Germany (PT06, PT07, PT08, PT09, PT10, and PT11 samples) are presented in Table 2, with PT
meaning a pit from which soils samples were removed.

Table 2. Geomechanical properties of soil samples.

Sample D ρs ρb W n Sand Silt Clay PI MBV φUU CUU Soil on

PT01 0.7 2.498 1.394 44.3 44.2 50 25 25 36.9 7.27 12 2 Basalt
PT02 0.45 2.422 1.492 35.7 38.4 45 5 50 34 1.47 13.6 5 Basalt
PT03 0.55 2.379 1.544 46 35.1 55 20 25 31 2.67 11.3 20 Trachyte
PT04 0.55 2.569 1.365 42.4 46.87 70 5 25 37 1.6 9.1 20 Trachyte
PT05 0.25 2.584 1.403 48.1 45.7 70 5 25 34.8 2.53 9.6 7 Basalt
PT06 1.6 2.9 1.584 39.29 45.39 31 27 42 15.9 1.54 31.5 47.7 Migmatite
PT07 2.5 2.755 1.508 44.54 45.25 41 30 29 8.8 1.09 29.6 46.5 Basalt
PT08 2.1 2.848 1.794 37 36.99 39 19 42 31.2 1.12 41.2 15 Basalt
PT09 3.7 2.848 1.468 44 48.46 35 32 33 30.9 0.5 29.9 59.6 Trachyte
PT10 1.1 2.814 1.466 24.05 47.89 48 23 25 22.7 0.4 30.7 58.6 Basalt
PT11 7.3 2.74 1.452 54.62 47.02 52 43 5 24.6 0.24 28.6 43.9 Basalt

D: sampling depth (in m), ρs and ρb: particle and bulk densities (in g/cm3), W: water content (in wt.%), n: porosity
(in %), PI: plasticity index (in %), MBV: methylene blue value (in g/100g), φUU: friction angle (in ◦), CUU: cohesion
(in kilo Pascal).

These results, obtained in both laboratories, are homogeneous with minor variations among each
group of values. Soil sampling depths in this study fluctuated between 0.25–7.3 m, corresponding to the
average depth of landslide slip surfaces recorded at the western flank of Mount Oku. The degree of linear
relationship between them pairwise was determined by calculating the Pearson correlation coefficient.
The Pearson correlation matrix displayed in Table 3 shows that these properties are all linearly
interconnected. In this table, there are one strong negative correlation ≤ 0.7, 16 moderate negative
correlations ≤ 0.4, 10 negligible/weak negative correlations (between −0.40), 14–negligible/weak
positive correlations (between 0–0.4), 10 moderate positive correlations > 0.4, and two strong positive
correlations > 7, based on the classification proposed by [52]. It is also noted that relationships between
bulk and particle densities, sand, silt and clay contents, plasticity index, friction angle, and cohesion
are stronger with many properties compared to porosity, water content, and methylene blue value,
as shown by their high correlation coefficients.
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Table 3. Correlation matrix visualizing Pearson’s coefficients for geomechanical properties.

Parameters ρb ρs W n Sand Silt Clay PI MBV φUU CUU

ρb 1
ρs 0.402 1
W −0.220 −0.259 1
n 0.483 −0.602 0.063 1

Sand −0.588 −0.590 0.292 0.112 1
Silt 0.533 0.131 0.291 0.300 −0.547 1

Clay 0.052 0.501 −0.534 −0.456 −0.499 −0.447 1
PI −0.578 −0.254 0.093 −0.225 0.542 −0.556 0.013 1

MBV −0.540 −0.280 0.176 −0.183 0.221 −0.170 −0.036 0.428 1
φUU 0.884 0.688 −0.281 0.101 −0.751 0.602 0.157 −0.595 −0.547 1
CUU 0.739 0.035 −0.174 0.558 −0.493 0.666 −0.201 −0.685 −0.637 0.635 1

Strong negative correlations (<−0.7)
Moderate negative correlations (−0.7–(−0.4))

Negligible/weak negative correlations (−0.4–0)
Negligible/weak positive correlations (0–0.4)

Moderate positive correlations (0.4–0.7)
Strong positive correlations (>0.7)

ρs and ρb: particle and bulk densities (in g/cm3), W: water content (in wt.%), n: porosity (in %), PI: plasticity
index (in %), MBV: methylene blue value (in g/100g), φUU: friction angle (in ◦), CUU: cohesion (in kilo Pascal).

Additionally, bulk and particle densities, porosity, fine particle content (clay and silt), cohesion,
and friction angle have positive correlation coefficient signs, supposing that they increase or decrease
together. Contrarily, plasticity index, methylene blue values, water content, and sand percentages are
supposed to vary in the opposite direction with cohesion, regarding their correlation coefficient signs,
which are negative. When they are increasing, cohesion is supposed to decrease and the liquefaction
potential increases, leading to landslides. Additionally, sandy soils exhibit no cohesion [66], but they
display a high liquefaction potential. Furthermore, Ref. [67] in their study concerning the influence of
ants on soil and water losses in eastern Spain, they found a reduction in soil bulk density and an increase
in macropore flow in ant-affected soils, which makes them prone to landslides. This supports our
observations of densities being interrelated with soil grain sizes, water content, porosity, consistency
limits, absorption capacity, cohesion, and friction angle. Therefore, it can be concluded that landslides
at Mount Oku are closely influenced by their soil geomechanical properties.

Although the linear correlation is strong between most of these properties, there could also be a
positive or negative nonlinear, monotonic relationship [67,68]. Therefore, other correlation approaches
are needed to confirm these soil properties correlations before introducing them in landslide-causative
factors systems. In addition to the Pearson correlation coefficient, many authors investigated the
relationships among soil properties, as presented below.

Moreover, soil samples from Mount Oku exhibited water amounts that exceed their plasticity
index values, as already noticed above. In this state, water exerts pressure on soil pores, decreasing the
friction just as the shear strength responsible for the material stability is also reduced. This points out a
possible initiation mechanism of slope instabilities that can trigger landslides, if they are combined
with other factors, such as rainfall and steepness of the slope [69–71]. Additionally, water causes a
decrease in shear strength either by reducing the apparent soil cohesion or by creating or extending
cracks, which represent potential slip surfaces when moistened. This is directly related to intense or
long-lasting rainfall events, as also shown by [72].

The proportions of clay, sand, and silt particles presented in Table 2 were plotted on the texture
diagram, as shown in Figure 6. It can be seen that nonfailure sites correspond to PT01, PT02, PT06,
PT07, PT08, PT09, PT10, and PT11 samples and failure or landslide sites are locations of PT03, PT04,
and PT05 samples.

The samples from landslide sites are rather in the sandy regime, while the samples from the
nonlandslide sites have higher fine particle contents, since failure phenomena depend greatly on the
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grain size, as concluded by [73] after their investigation of the pore-pressure generation and movement
of rainfall-induced landslides in laboratory flume tests.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 12 of 29 
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Furthermore, liquid limit and plasticity index values of Mount Oku soils reported on the
Casagrande diagram describe a cloud of points with low dispersion (Figure 7). This diagram shows
that the samples PT03, PT06, PT07, and PT10 are highly plastic with a great swelling potential. PT01,
PT02, PT04, PT05, PT08, PT09, and PT11 are very plastic with excessive swelling potential.
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In view of all this, soil samples were finally classified as highly plastic clays with a high to very
high swelling behavior, showing that they can experience swelling and significant shrinkage in the
presence or absence of water [76,77]. Swelling and shrinkage alternation can create weaknesses in these
soil textures, easing their failure. Similar observations have been made by [9,77] in their investigations
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concerning slope shear and strength deterioration through drying–wetting succession and influence of
synthetic wick fibers on clayey soils’ behavior, respectively.

It, therefore, follows that the interdependence of soil geomechanical properties is directly related
to landslide occurrences. This is supported by the statistical correlation of these properties with
landslides as displayed below.

4.2. Spatial Analysis of Soil Geomechanical Properties with the Fuzzy Membership Approach

The average values of soil geomechanical properties were computed for each rock type, as can
be seen in Table 4. These soils on basalt, trachy-rhyolite, and migmatite displayed almost similar
average values of geomechanical properties. Particle and bulk densities varied between 2.59–2.66 g/cm3

and 1.15–1.58 g/cm3, respectively. Water content and porosity varied from 39.3–44.1% and 43–45%,
respectively. The differences in sand, silt, and clay content among soils are less than 25%. Soils on basalt
and trachy-rhyolite display the most similar geomechanical properties. Soil on migmatite displays
the highest bulk and particle densities, porosity, silt, clay, friction angle, and cohesion mean values.
Moreover, they show the lowest water content, sand, and plasticity limit mean values. Rhyolites were
assumed, based on literature, to have a bulk density of 26.5 g/cm3, cohesion of 1000 kPa, and 46◦ as
friction angle [78]. They display no porosity, individual grain sizes, plasticity limits, water content,
and methylene blue values.

Table 4. Average soil geomechanical values with the corresponding soil types.

Soil Properties Soil on Basalt Soil on Trachy-Rhyolite Soil on Migmatite Rhyolite Outcrop

ρs

(
g/cm3

)
2.66 2.59 2.9 26.51

ρb

(
g/cm3

)
1.50 1.45 1.58 0

W (wt%) 41.2 44.1 39.3 0
n (%) 44 43 45 0

Sand (%) 49 53 31 0
Silt (%) 21 19 27 0

Clay (%) 29 28 42 0
PI (%) 27.6 33 15.9 0

MBV (g/100g) 2 1.6 1.5 0
φUU (◦) 23.6 16.8 31.5 46

CUU (kPa) 25.4 33.2 47.7 1000

ρs and ρb: particle and bulk densities (in g/cm3), W: water content (in wt.%), n: porosity (in %), PI: plasticity
index (in %), MBV: methylene blue value (in g/100g), φUU: friction angle (in ◦), CUU: cohesion (in kilo Pascal)

Many authors have shown that the increasing or decreasing tendency of soil geomechanical
properties can create weaknesses in these soil textures, easing their failure or sliding [7,69,74]. In other
words, some of these geomechanical properties should be decreasing to make the site more susceptible
to landslides. This is the case for bulk and particle densities, internal angle of friction, and cohesion
(Table 5). The fuzzy membership values of bulk density classes vary from 0–0.99, while those of particle
density, cohesion, and friction angle fluctuate between 0–1.

However, in other cases, rising of soil geomechanical properties increases the probability of
landslide occurrence. This is the case for porosity, water content, MBV, PI, sand, and clay content
(Table 6). The fuzzy membership values of porosity, water content, MBV, PI, sand, and clay contents
classes vary between 0–1.
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Table 5. Geomechanical properties whose decreasing tendency makes the site more susceptible to
landslides: particle and bulk densities, internal angle of friction, and cohesion.

Soil Properties. Classes Fuzzy Membership Values

Particle density 26.5 0
(g/cm3) 15.8 0.89

15.3 0.94
14.6 0.99

Bulk density 2.9 0
(g/cm3) 2.65 0.008

2.62 0.009
0 1

Cohesion 1000 0
(kPa) 47.7 0.97

33.2 0.99
25.39 1

Friction angle 46 0
(◦) 31.5 0.69

23.6 1
16.79 1

Table 6. Soil geomechanical properties whose increasing behavior augments the probability of landslide:
porosity, water content, methylene blue value (MBV), plasticity index (PI), sand, and clay content.

Soil Properties. Classes Fuzzy Membership Values

Porosity 0 0
(%) 41.4 0.9

44.5 0.97
45.38 1

Water content 0 0
(wt%) 39.11 0.92

39.29 0.93
44.32 1

MBV 0 0
(g/100 g) 1.28 0.83

1.51 0.98
1.53 1

PI 0 0
(%) 15.89 0

27.39 0.82
30.39 1

Sand content 0 0
(%) 31 0.43

50.33 1
52 1

Clay content 0 0
(%) 27 0.64

29.33 0.69
42 1

MBV: methylene blue value, PI: plasticity index.

4.3. Bivariate Correlations of Geo-Environmental Factors with Landslides

Slope angle and aspect, land use, elevation, distances from the main road, lithology, and distances
from the major stream maps are presented in Figure 8.
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(a) Slope Angle
Slope angle, which is the inclined surface of the land, is among the most determining factors of

landslide types and velocities [18]. In this area, very gentle slopes (0–15◦) and gentle slopes (15–25◦)
occupy the largest surface of this area, but they have less influence on landslide occurrences, while slope
angles ranging from 24–31◦ and >31◦ (Figure 8a), respectively, present the highest positive weights
of 0.18 and 0.73, correspondingly (Table 7a and Figure 9). Their highest positive weights can be
due to interactions between slope steepness and other factors, such as shear stress produced by the
material weight and road and river cuttings, which modify the natural slopes and destabilize the block
material [10,11].
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Table 7. (a) Computed weights of geo-environmental factors classes using the information value
method: slope (◦), aspect (◦), elevation (m), land cover, distance to river (m); (b) Computed weights
of geo-environmental factors classes using the information value method: distance to roads (m),
curvature (◦), and lithology.

(a)

Factors Class Number of Pixels Number of Landslide Pixels Weight

Slope 0–6 742,206 68 −1.39
6–9 844,882 123 −1.19
9–2 821,644 225 −0.91

12–16 774,074 379 −0.66
16–19 806,224 628 −0.46
19–24 801,953 1154 −0.19
24–31 768,216 2594 0.18
>31 744,791 8896 0.73

Aspect North (0–22.5) 396,461 1168 0.12
Northeast (22.5–67.5) 702,971 1051 −0.17

East (67.5–112.5) 643,290 316 −0.66
Southeast (112.5–157.5) 743,728 201 −0.92

South (157.5–202.5) 955,132 1081 −0.30
Southwest (202.5–247.5) 889,292 2516 0.10

West (247.5–292.5) 772,714 3367 0.29
Northwest (292.5–337.5) 790,985 3012 0.23

North (337.5–360) 409,417 1355 0.17
Elevation 807–1348 m 764,218 0 −3.00

1348–1479 m 783,308 704 −0.52
1479–1574 m 832,807 1828 −0.13
1574–1731 m 818,594 4151 0.24
1731–1880 m 766,924 3998 0.25
1880–2036 m 798,062 1967 −0.08
2036–2228 m 764,037 1080 −0.32

>2228 m 776,040 339 −0.83
Land
cover Barren land 514,356 730 −0.20

Shrub land 2,339,193 3828 −0.14
Shrub with emergent trees 1,388,984 1840 −0.23

Forest 2,061,457 7669 0.22
Distance
to river 0–200 m 1,754,147 2777 −0.15

200–400 m 1,454,202 2744 −0.07
400–600 m 1,225,604 3755 0.14
600–800 m 923,524 2724 0.12

800–1000 m 551,280 1927 0.20
1000–1200 m 249,712 140 −0.60
1200–1400 m 84,213 644 0.54

>1400 m 61,308 10,035 1.87

(b)

Factors Class Number of Pixels Number of Landslide Pixels Weight

Distance
to roads

(m)
0–200 m 1,204,169 13 −2.32

200–400 m 919,356 441 −0.67
400–600 m 732,736 402 −0.61
600–800 m 597,762 468 −0.45

800–1000 m 496,625 816 −0.13
1000–1200 m 413,751 1248 0.13
1200–1400 m 347,459 644 −0.08

>1400 m 1,590,881 0.45
Curvature

(◦) −314–(−6) 188,169 2831 0.83

−6–(−3) 352,288 1243 0.20
−3–0 1,857,582 2324 −0.25
0–2 2,975,545 2868 −0.36
2–4 647,298 1626 0.05
4–7 152,047 900 0.42

7–13 82,842 981 0.73
>13 48,219 1294 1.08

Lithology Trachy-rhyolite 2,319,151 9632 0.27
Rhyolite 2200 0 −3.00

Migmatite 653,933 32 −1.67
Basalt 3,327,529 4403 −0.23
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4.4. Landslide-Susceptibility Model Results and Discussion 

In order to thoroughly evaluate the significance of geo-environmental factors and soil 
geomechanical properties, three landslide-susceptibility models were established with the first one 
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(b) Slope Aspect
Slope aspect (Figure 8b) is the direction toward which the surface of the slope faces. At Mount Oku,

most slopes are directed toward north (0–22.5◦), southwest, west, northwest, and north (337.5–360◦),
as shown in Table 7 and Figure 9, and are more influential with, respectively, 0.05, 0.12, 0.26, 0.23,
and 0.20 as weights, while others are negative. Indeed, meteorological events in Mount Oku are
likely to be more intense mainly on northern-, southwestern-, western-, and northwestern-oriented
slopes. This can be attributed to the fact that slope aspect, vegetation cover, soil water retention,
rainfall depending on the wind direction, and sunshine intensity are interrelated, as shown by [79] in
their investigation of the effect of elevation and aspect on wind temperature and humidity. The low
intensity of sunshine, intensified soil moisture, and weathering on these slopes is leading to landslides
events [11,80,81].

(c) Elevation
The elevation classes (Figure 8c) between 1574–1731 m and 1731–1880 m display the highest

weight values of 0.24 and 0.25 each, as shown in Table 7a and Figure 9. Elevation is an indirect
landslide factor as it has an influence on other factors, such as rainfall, temperature, soil development,
and vegetation [82,83].

(d) Land Cover
Land cover of the study area (Figure 8d) has been categorized into four classes, namely, barren

land, shrub land, shrub with emergent trees, and forest. The forest areas have the highest weight
values of 0.22 (Figure 9 and Table 7a). The positive weight displayed by the forest cover can be
explained by the fact that in Mount Oku the population used to stabilize landslide scars by planting
trees, such as eucalyptus, which later grew into forest. Moreover, in this area, the natural forest
plays a role as a stabilizer for steep slopes through promotion of infiltration and drainage. Similar
conclusions were made by [81] concerning landslide-susceptibility mapping with information value
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and logistic regression methods in the Bailongjiang watershed in China. Similarly, Ref. [72] established
that the amount of water entering a slope depends on several geomorphological factors, anthropogenic
activities, and atmospheric conditions including vegetation type, drainage, soil type, and rock structure.

(e) Proximity to Major Rivers
On the western flank of Mount Oku, most landslides are found at distances between 400–600 m,

600–800 m, 800–1000 m, 1200–1400 m, and >1400 m from rivers (Figure 8e). These represent the
highest information values of 0.14, 0.12, 0.20, 0.54, and 1.87, respectively, while others are negative
(Figure 9 and Table 7b). Deep, incised river channels can modify the natural slope at the toe of
mountains through water erosion. It also influences groundwater level fluctuation, which is related to
intensive soil wetting and drying phenomenon that lead to slope instability [81]. Here, however, there is
no clear relationship between proximity to rivers and landslide occurrence and the classes with high
weight values seem relatively random. Especially the high weight values in the classes >1200 m could
be related to the small class size, an effect that could be considered to be an artifact.

(f) Proximity to Main Roads
Major landslide scars are found at 1000–1200 m and >1400 m from the roads, with weight values

of 0.13 and 0.45, respectively, and highly negative values closer to the roads (Table 7b, Figures 8f and 9).
Usually, the presence of roads is believed to trigger landslides through undercutting of slopes. As a
result of an increase in stress on the back of the slope, due to changes in topography and decrease of
load on the toe, tension cracks may develop [59,80]. Here, however, the high weight values observed
in the classes far away from the roads, at 1000–1200 m and >1400 m, and negative values close to roads
seem, again, quite random.

This effect can be explained by the fact that these landslides close to rivers and roads are of rather
small sizes. Therefore, even if they are many landslides, they could be regarded as insignificant at the
scale of the study area.

(g) Curvature
Curvature allows identifying the shape of the slope. It plays an important role in erosion and

deposition processes by defining the convergence and divergence of water flow. Curvature classes
ranging from −314 to −6◦, −6 to −3◦, 2 to 4◦, 4 to 7◦, 7 to 13◦, and >13◦ have the highest information
values of 0.82, 0.20, 0.05, 0.42, 0.73, and 1.08, each (Table 7b, Figures 8g and 9). As presented
by [84,85], the landslide movement direction together with driving and resisting stresses along the
failure slope are influenced by curvature, since it controls the speed and convergence or divergence of
landslide-displaced material and water flowing down the slope.

(h) Lithology
The study area is covered by volcanic rocks, precisely basalt (highly weathered with thick,

residual soil), rhyolite (slightly weathered, no residual soil, and indicated by an arrow on the
map), trachy-rhyolite (moderately weathered with very steep slopes), and migmatites (highly
weathered with moderately steep slopes). Trachy-rhyolite covers 37%, while basalt covers 54%
of the study area (Figure 8h). Trachy-rhyolite displays the highest information values of 0.27.
Migmatite, basalt, and rhyolite present negative information values of−1.66, −0.23, and−3, respectively
(Figure 9 and Table 7b). This is probably due to variations in thickness, steepness of slopes, and strength
of soils developed from the weathering of these rocks. This has also been noted by [18,86] in their
research on soft rock mass-weathering effect on slope stability and debris flow susceptibility assessment
in Subao river valley, respectively.

Geo-environmental factor classes, with their corresponding area percentages and weights,
calculated using the information value technique, are presented in Table 7a,b and Figure 9. Some classes
of these features have the highest positive weight values, demonstrating their higher landslide prediction
ability in this zone, as also noticed by [23] in their work on landslide-susceptibility mapping on the
Bamenda mountain. The sum of each geo-environmental factor-positive class weights show that
lithology is the dominant landslide factor in the western flank of Mount Oku, followed, respectively, by
slope angle, curvature, land use, aspect, proximity to road, proximity to rivers, and elevation. However,
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it was difficult to determine which geomechanical properties were the most important, since their
spatial distribution was identical to rock type.

4.4. Landslide-Susceptibility Model Results and Discussion

In order to thoroughly evaluate the significance of geo-environmental factors and soil
geomechanical properties, three landslide-susceptibility models were established with the first one
merging only soil properties, geo-environmental factors for the second, and the last one combining all
geo-environmental factors and soil properties. These models present areas of identified landslides
and areas with similar predisposing conditions, where landslides have not yet been experienced, as
also noticed by [18,19], among others. The resulting landslide-susceptibility map indexes have been
normalized and classified using the equal interval method, so the results could easily be compared
with each other. The landslide-susceptibility maps were classified into four susceptibility areas: High,
moderate, low, and very low (Figure 10). The very-low-susceptibility class ranged between 0–0.25,
the low between 0.25–0.50, the moderate from 0.5–0.75, and the high one from 0.75–1. For the model
with only geo-environmental factors, 6% of the study area was highly susceptible, 69% was moderately
susceptible, 22% was lowly susceptible, and 3% was very lowly susceptible (Figures 10 and 11).
The landslide-susceptibility model results presented here are justified based on established methods
and existing literature on geomechanical properties, relationships among the geomechanical properties,
and geo-environmental and geomechanical factors in landslide-susceptibility assessment.
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Figure 11. Variation of the landslide-susceptibility models class percentages: Geo-environmental
factors in dark green; soil properties in light grey; soil properties merged with geo-environmental
factors in red color.

The model based only on soil properties indicates 99% to be highly susceptible, 0% moderately
susceptibility, 0% lowly susceptible, and 1% to be very lowly susceptible. The combined model
shows most of the study area, 67%, to be highly susceptible, 30% moderately susceptible, 2% lowly
susceptible, and 1% to be very lowly susceptible (Figure 11). Basalt and trachyte are highly weathered
with thick, residual, clayey soils that are highly plastic and, hence, sensitive to the variations of
water content. Soils on trachyte and basalt may rapidly pass from liquid to plastic or solid state,
predisposing this area to landslides, when combined with steep slopes. This makes these soils more
susceptible to landslides than shallow, residual soils developed on migmatites, which is reflected by
the model. Furthermore, soils on migmatites display relatively gentle slopes, moderately weathered
with shallower, residual soil, low porosity, and high cohesion values, making them less susceptible to
landslides. Besides this, Ref. [86,87] stated that when the water content values vary between 30 and
40%, the degree of swelling is medium, as it was the case in this work with soils on migmatite. This soil
also presents a high cohesion value, which means that the grains are strongly cemented.

A slight variation was observed between the susceptibility class percentages of the model with
only geo-environmental factors and those of the model merging geo-environmental factors and soil
properties. This is mostly because the weights of geomechanical properties obtained with the fuzzy
membership method are small (from 0–0.74). These models allow observing some variations between
the susceptibility class percentages. A distinctive maximum of the high susceptibility class percentage
was observed in the model combining only soil geomechanical properties, while the minimum was
displayed by the geo-environmental factors model. Moreover, the lowest percentages of very low and
low susceptibilities were observed in the soil properties and the soil-geo-environment models. In other
words, the susceptibility class percentages of the model with only geo-environmental factors and the
one with only soil properties presented either the lowest or the highest susceptibility class percentages
(Figure 11). The combined model of soil properties and geo-environmental factors tended to be the most
reasonable and stable. When soil properties or geo-environmental factors were used alone, the resulting
landslide-susceptibility model tended to misjudge the susceptibility degree. The soil, which is the
material concerned by slides, allows a more precise examination of landslide predisposition conditions
when combined to other landslide-predisposing factors, such as geo-environmental factors in this case.
The soil of an area classified with low landslide predisposition regarding geo-environmental conditions
can hide some characteristics that situate it at the stability limit or out. These characteristics can include
tension cracking, spring lines mostly due to high swelling, and shrinkage capacities, as previously
stated by [3–6,9].
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One limitation of the soil geomechanical properties model is clearly the lack of spatial variability
of the three different soil units that follow the spatial distribution of the geological units. This explains
also the large size of the high susceptibility class that is also affecting the result of the combined models.
The combined model, however, showed a much better spatial distinction of areas of different landslide
susceptibility. Moreover, also the geo-environmental factors model showed a very large medium- and
high-susceptibility class. Such large areas of high landslide susceptibility may lead to high prediction
rates, but they are not very useful in terms of efficient targeting of measures to reduce landslide damage.
A more adequate method for the classification of the landslide susceptibility could help to improve the
effectiveness of the resulting landslide-susceptibility maps.

The prediction accuracy of the landslide-susceptibility models was evaluated using the receiver
operator characteristic (ROC) curve and the area under the curve (AUC). Comparison of ROC curves
and corresponding AUC values are presented in Figure 12. The ROC curve of the model combining
only soil properties was not computed because of its low spatial variability (this map could not be
classified into more than three pixel categories). The ROC curves of the geo-environmental and
combined soil-geo-environmental models display for each, an experimental and a model-fitting curves.
The experimental curves of these models describe an exponential profile according to equation (Equation
(6)), generated in the Origin 6.1 software (OriginLab Corporation, Northampton, Massachusetts, USA)
using the “Nonlinear Curve Fit” option and presented below:

ROC(t) = TPR0 + A1
−FPR

t1 (6)
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The characteristics of Equation (6): true positive rate (TPR0), coefficient (A1,) false positive rate
(FPR) and the threshold t1 are given in Table 8.

Table 8. Characteristics of the receiver operator characteristic (ROC) fitting curves exponential equation.

Models TPR0 A1 t1 (threshold) R2

Geo-environment 1 (±0) −0.64553 (±0.02502) 0.31735 (±0.02561) 0.82519
Geo-environment + soil properties 1 (±0) −0.66248 (±0.01818) 0.09695 (±0.01716) 0.79462

TPR0: true positive rate, A1: coefficient, FPR: false positive rate, tr: threshold.

The curves of the models with only geo-environmental factors and the combined model present
AUC values of 0.80 and 0.93, respectively (Figure 12). These AUC values traduce the high efficiency
of these models in landslide-susceptibility prediction and show that the combined model with soil
properties and geo-environmental factors is the most efficient in the identification of future landslide
events of the western flank of Mount Oku. Thus, it can be noted that soil properties increase the
predictive power of the model with only geo-environmental factors. Therefore, to take efficient measures
in order to reduce landslide damages, geo-environmental factors and geomechanical properties should
be combined in landslide-susceptibility assessment.

5. Conclusions

In this study we intended to propose a novel approach to integrate both geo-environmental and
soil geomechanical parameters in a landslide-susceptibility model at Mount Oku (NW-Cameroon).
To achieve this goal, the Pearson’s correlation coefficient, soil textural triangle, and Casagrande’s
diagram were used to evaluate relationships between soil geomechanical properties, stability limits,
and swelling capacity of soil samples from the study area. Furthermore, fuzzy membership values were
assigned to the mean values of soil properties, in order to quantify their effect on landslide occurrence.
The information value method was used to quantify the influences of geo-environmental factors on
landslide occurrence through assigned weights. Soil properties, geo-environmental feature maps,
and landslide-susceptibility models were computed with the obtained weights and fuzzy membership
values. On the basis of these results, the following conclusions were drawn:

(a) Mount Oku soil geomechanical properties are strongly correlated and can be merged with other
landslide factors.

(b) High water content and related properties could exert pressure on Mount Oku soil pores,
decreasing the internal friction angle and the shear strength responsible for the material stability.

(c) Atterberg limits and grain size distribution allowed classifying soils as highly plastic clays with a
high to very high swelling and shrinkage potential, which favored landslide occurrences.

(d) The increasing or decreasing tendency of each soil geomechanical property that favors landslide
occurrences were mapped using the fuzzy membership approach.

(e) Statistical correlation of the selected geo-environmental factors and landslide pixels revealed the
higher prediction ability of some geo-environmental factor classes.

(f) When only considering soil properties, the resulting landslide-susceptibility model tended to
underrate unstable and stable areas. When soil properties were combined with geo-environmental
factors, a more precise identification of stability conditions was possible.

(g) The model with geo-environmental factors had an AUC value of 0.80, which means that this
model is suitable for landslide prediction in this area. Meanwhile, the model with soil properties
and geo-environmental factors displayed an AUC of 0.93, which traduces its excellent predictive
capacity. From this result it can be concluded that soil geomechanical properties play an
important role in the identification of landslide-prone areas. Soil geomechanical properties of
some areas classified as very low or low landslide susceptibility, with respect to the prevailing
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geo-environmental conditions, can comprise some physico-mechanical effects that revealed their
relative instability.
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