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Abstract: China has a fast-growing economy and is one of the top three sulfur dioxide (SO2) emitters
in the world. This paper is committed to finding efficient ways for China to reduce SO2 emissions
with little impact on its socio-economic development. Data of 30 provinces in China from 2000 to 2017
were collected to assess the decoupling relationship between economic growth and SO2 emissions.
The Tapio method was used. Then, the temporal trend of decoupling was analyzed and the Moran
Index was introduced to test spatial autocorrelation of the provinces. To concentrate resources and
improve the reduction efficiency, a generalized logarithmic mean Divisia index improved by the
Cobb–Douglas function was applied to decompose drivers of SO2 emissions and to identify the main
drivers. Results showed that the overall relationship between SO2 emissions and economic growth
had strong decoupling (SD) since 2012; provinces, except for Liaoning and Guizhou, have reached SD
since 2015. The decoupling indexes of neighboring provinces had spatial dependence at more than
95% certainty. The main positive driver was the proportion of the secondary sector of the economy
and the main negative drivers were related to energy consumption and investment in waste gas
treatment. Then, corresponding suggestions for government and enterprises were made.

Keywords: decoupling analysis; driving factors decomposition; Moran Index; generalized logarithmic
mean Divisia index; SO2 emissions; China

1. Introduction

Since the 21st century, China’s rapid economic growth and social development has given rise to
a series of environmental problems. Air pollution has been identified as a high priority issue that
must be addressed immediately. Among air pollutants, SO2 has aroused wide concern from all parts
of society. From an international perspective, SO2 emission issues in China are still serious. In 2018,
China’s SO2 emissions were 2578 thousand tons; it was the third highest in the world, just behind
India and Russia (http://sputniknews.cn/economics/201908191029324285/). SO2 emissions will not
only lower the atmospheric quality, but also trigger health-related issues [1]. A 10µg/m3 increase
in SO2 emissions was associated with an increase in out-of-hospital coronary deaths (of 0.88%) [2].
A significant long-term relationship between SO2 and end-stage renal disease (ESRD)-related mortality
was also found [3]. Therefore, it is essential for China to unceasingly reduce emissions of SO2 while
developing the economy. To achieve this “win-win” condition between economic growth and SO2

emissions, the relationship between economic development and SO2 emissions should be studied
intensively and deeply.
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Decoupling is defined as the break of a coupling relationship between economic development
and environmental quality [4]. When environmental pollution no longer increases with the growth of
the economy, the decoupling condition occurs. The idea of decoupling “environmental bads” from
“economic goods” has been proposed as a path towards sustainability by organizations, such as the
Organization for Economic Co-operation and Development (OECD) [5] and the United Nations (UN) [6].
Decoupling analysis is an academic theory to study whether economic and environment-related
indicators have decoupled [6]. At the end of the 20th century, academic researches using decoupling
analysis started to develop after Weizsäcker’s study on economic growth and resource consumption [7].
Nowadays, the decoupling analysis has been widely used to test the dependence of economic growth
on air pollutant emissions. Wu et al. [8] accomplished the decoupling analysis in China at provincial
level, and then they used social network analysis (SNA), quadratic assignment procedure (QAP)
regression, and logit model to further study the spatial characters of decoupling. The results showed
that the economically developed eastern coastal areas had better decoupling conditions than less
economically developed regions, such as Xinjiang, Hainan, Qinghai, and Tibet. The temporal change
of each province had not been presented due to the limitation of spatial approaches. Zhang et al. [9]
completed China’s decoupling analysis between PM2.5 emissions and economic growth, and then
they further analyzed the trend of decoupling index and its driving factors. The results showed that
China’s PM2.5 emissions were weakly decoupled with economic growth. Possible spatial associations
between different provinces were not covered due to the limitation of temporal approaches. Obviously,
after decoupling analysis, scholars had researched further through various methods. However,
few studies have combined temporal and spatial analysis to fully study decoupling conditions between
economic growth and air pollutant emissions in China. With China’s socio-economic development,
the decoupling conditions in provinces are likely to change significantly. To deeply study the dynamic
trend and stability of decoupling conditions, analysis from the temporal perspective is necessary. At the
same time, considering that the economic development of each province may be affected by neighboring
provinces, and the SO2 emission of each province may also affect neighbors by the atmospheric flow;
the decoupling index of each province may be spatially related. There can be essential reference
to policy-making and coordinated development of provinces if such spatial autocorrelation existed.
Therefore, it is necessary to add spatial analysis to the research. To provide more comprehensive
references for decision makers, spatial-temporal analysis was adopted in this research, which uses
trend analysis and spatial correlation analysis to study decoupling conditions from both temporal and
spatial aspects [10].

Researchers have found that the reduction of SO2 emissions in China can be costly. The mean
values of SO2 abatement cost for every year ranged from 13,765 RMB yuan per ton to 14,711 RMB yuan
per ton [11]. Thus, it is vital to further improve the efficiency of SO2 emissions reduction in China.
Nevertheless, the understanding of decoupling conditions alone cannot maximize the efficiency of SO2

reduction, because SO2 emissions are affected by various drivers, such as demographic factors [12],
energy factors [13], economic factors [14], and so on. Driving factors decomposition is a method used
to decompose the effect of each driving factor from the total effect on SO2 emissions [15]. By doing
this, different factors’ impact on SO2 emissions can be analyzed; thus, the main driving factors of SO2

emissions can be identified. Concentrating resources to deal with these main drivers can not only
improve the effect of emission reduction, but also cut down the expenditures. The logarithmic mean
Divisia index (LMDI) proposed by Ang et al. [16] is one of the mainstream methods in exponential
decomposition analysis, due to advantages, including zero residual, path independency, and consistency
in aggregation [17]. Moreover, LMDI is often used as a supplement of the decoupling analysis [18].
However, the influence of factors, such as capital and labor, are not considered in the LMDI method,
which are important determinants of economic growth and may have impacts on SO2 emissions. Thus,
in this paper, a generalized LMDI (GLMDI) method was constructed to make up for the omissions of
the LMDI method; thus, the driving factors of SO2 emissions can be studied more comprehensively.



Int. J. Environ. Res. Public Health 2020, 17, 6725 3 of 18

The purpose of this paper is to find efficient ways for China to reduce SO2 emissions with as
little impact on its socio-economic development as possible. Therefore, this paper collected data of
30 provinces of China (excluding Hong Kong, Macao, Taiwan, and Tibet) from 2000 to 2017. Firstly,
the annual decoupling index of each province was calculated for temporal analysis. The focus of
this part was to analyze the dynamic change trend of decoupling conditions from both national and
provincial perspectives. Secondly, spatial analysis was done by making comparisons among provinces
over the entire time period, and by studying the spatial autocorrelation between neighboring provinces.
The focus of this part was to compare the state of provinces over the whole time period and to find
out the interaction patterns between neighboring areas. Thirdly, to decompose the effect of different
driving factors comprehensively, this paper used the Cobb–Douglas (C–D) production function to
improve the LMDI model. The C–D production function was introduced by Cobb and Douglas in
1928 [19], it takes labor and capital as the main factors to establish an exponential relationship model.
Thus, using the C–D production function can make up for the lack of capital and labor in LMDI. Based
on the C–D production function and the LMDI method, a GLMDI method was constructed, referring
to research by Wang et al. [20]. Then, effects of 10 representative driving factors were decomposed by
the GLMDI method; their impacts on SO2 emissions were discussed and compared. The task, of this
part, was to analyze the influence of each driving factor on SO2 emissions; thus, the main drivers could
be found out, which should be focused on by the Chinese government to improve the efficiency of SO2

emissions reduction.
The rest of this paper is organized as follows. Section “Materials and Methods” presents the

research methods and relevant data sources. Section “Results and Discussion” analyzes the decoupling
conditions from a spatial-temporal perspective and decomposes driving factors of SO2 emissions in
China over years. The main conclusions of this paper are in Section “Conclusions”.

2. Materials and Methods

2.1. Tapio Elastic Analysis Method

As research on decoupling grows, various methods for determining and analyzing decoupling
status has been developed, including the OECD decoupling factor method, the variation analysis
(VA) method, and the Tapio elastic analysis (TEA) method. Although all three methods are workable,
they have some limitations. The OECD decoupling factor model cannot distinguish the decoupling
states in an expanding and recessive economy [21]; the VA method cannot distinguish between
non-decoupling and re-decoupling [22]; and the TEA method defines much decoupling states. Wu et al.
summarized these decoupling methods and compared their advantages and disadvantages; the result
showed that the TEA model was more accurate and not limited by the length of time [23]. Therefore,
this paper selects the TEA method to assess the decoupling relationship between economic growth
and SO2 emissions in China. Based on the general concept of the TEA model, the decoupling elasticity
index between SO2 Emissions and economic growth can be written as:

et+1 =
∆St+1

∆Gt+1
=

St+1
St
− 1

Gt+1
Gt
− 1

(1)

where, et+1 denotes the decoupling index between year t and year t + 1. ∆St+1, ∆Gt+1 represent the
change rate of SO2 emissions and economic growth from year t to year t+1 separately. St+1, Gt+1,
respectively, denote SO2 emissions and economic growth in year t + 1 while St, Gt denotes those
conditions in year t. In this paper, the Gross Regional Product (GRP) of each province, converted to
comparable prices based on the year 2000, was used to measure economic growth level. The data of
provincial GRP figures, GRP indices, and SO2 emissions were derived from the National Bureau of
Statistics of China.
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On the basis of definition, classification, and empirical analysis mentioned by Tapio [24],
the decoupling relationship between air pollutant emissions and economic growth can be divided into
three states, namely, decoupling, coupling, and negative decoupling, which can be further subdivided
into eight logical possibilities, as shown in Table 1. According to Tapio’s research [24], in order not
to over-interpret slight changes as significant, ±20% variation of the et+1 values around 1.0 are still
regarded, here, as coupling. Thus, coupling is defined as et+1 values from 0.8 to 1.2, which is an
empiric value. On the other hand, the growth of the variables can be positive or negative, expressed as
expansive coupling and recessive coupling.

Table 1. Decoupling State Classification.

Conditions ∆Gt+1 ∆St+1 et+1 Characterization

Negative
decoupling

Strong negative
decoupling (SND) <0 >0 et+1 < 0 Economic recession along with

intensified pollution

Weak negative
decoupling (WND) <0 <0 0 ≤ et+1 < 0.8 Fast economic recession along

with slow pollution decline

Expansive negative
decoupling (END) >0 >0 et+1 > 1.2 Slow economy growth with fast

intensified pollution

Coupling

Recessive coupling
(RC) <0 <0 0.8 ≤ et+1 ≤ 1.2 The economy and pollution go

down together

Expansive
coupling (EC) >0 >0 0.8 ≤ et+1 ≤ 1.2 The economy and pollution go up

together

Decoupling

Recessive
decoupling (RD) <0 <0 et+1 > 1.2 Slow economic recession with

significantly pollution reduction

Weak decoupling
(WD) >0 >0 0 ≤ et+1 < 0.8 Fast economic growth with slow

pollution increase

Strong decoupling
(SD) >0 <0 et+1 < 0 Economic growth along with

pollution reduction

2.2. Moran Index

At present, there are two commonly used methods to test spatial dependence, which are Geary’s
coefficient [25] and the Moran Index (Moran’s I) test [26]. Both of them have limitations. The Geary’s
coefficient could be sensitive to high values, which means that it has a better ability to detect high-value
spatial clustering than low-value spatial clustering. The Moran’s I could be mainly affected by the size
of the aggregation area, which means that it will increase with the expansion of the spatial clustering
range. However, researchers have found that it is more reliable to use Moran’s I to judge whether
there is spatial clustering in a region [27]. Our main purpose was to determine whether there is spatial
correlation between provinces; the Moran’s I was adopted. The expression of Moran’s I is as follows:

Moran′s I =

n n∑
i=1

n∑
j=1

ωi j(xi − x)
(
x j − x

)/
 n∑

i=1

n∑
j=1

ωi j

n∑
i=1

(xi − x)2

 (2)

where, n represents provinces in China. xi, x j are the decoupling indicators from 2000 to 2017 of i
province, j province, respectively. x denotes the mean of decoupling indexes. ωi j denotes the spatial
weight, which represents the strength of potential interaction between individual provinces. There
are various approaches to generate a spatial weight matrix including queen contiguity [28], rook
contiguity [29], distance weight [30], and k-nearest neighbors [31]. The matrixes generated by the
first two methods are composed of 0 and 1. Rook contiguity stipulates that if two provinces have a
common boundary, they are considered adjacent, and the corresponding value in the spatial weight
matrix is 1, otherwise, the value in matrix is 0. Queen contiguity stipulates that if two provinces have a
common boundary or a common point, they are considered adjacent. Within the scope of this study,
Hainan has neither a common border nor a common point with other provinces. In order not to ignore
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the relationship between Hainan and other provinces, the first two methods were not adopted in this
paper. The latter two methods construct the matrix according to the geographical distance between
provinces. The k-nearest neighbors method is to calculate the distance between each province and its
nearest k provinces, k is the number of neighbors, which needs to be set by scholars. In this method,
each province has the same number of neighbors, which is subjective to some extent. For the distance
weight theory, the threshold of a minimum space range is calculated to ensure that each province has
at least one neighbor. Then, the distances between each province and its neighbors are calculated
to generate the spatial weight matrix. This approach is more objective and can make the influence
scope of each province consistent, so, this paper adopts distance weight matrix method. The provincial
longitude and latitude data were derived from the National Bureau of Statistics of China.

Moran’s I ranges from −1 to 1. If it is greater than 0, there is positive spatial autocorrelation.
The larger the value, the stronger the positive spatial dependence. If the index is less than 0, there is no
similar attributes between adjacent provinces, and the smaller the value, the greater the difference of
each spatial unit. If the value is 0, the situation is subject to random distribution.

2.3. Generalized LMDI Method

For further analysis of the SO2 emissions drivers, this paper adopts a GLMDI decomposition
method based on an extended Kaya identity [32]. The SO2 emission (SEt) in period t can be expressed
as follows.

SEt =
∑
i

SEt
i =

∑
i

GRPt
i

GDPt ×
It
i

GRPt
i
×

Et
i

It
i
×

Pt
i

Et
i
×

Ct
i

Pt
i
×

INt
i

Ct
i
×

WGt
i

INt
i
×

SEt
i

WGt
i
×GDPt

=
∑
i

Qt
i × SIt

i × EIt
i × EEt

i ×URt
i × FAt

i ×WIt
i × SRt

i ×GDPt
(3)

where, Qt
i =

GRPt
i

GDPt , which is the proportion of the province i’s GRP (GRPt
i) to the whole country (GDPt),

represents the economic growth level of province i. SIt
i =

It
i

GRPt
i
, which is the proportion of secondary

sector of economy (It
i ) to GRP (GRPt

i), represents the industrial structure in province i. URt
i =

Ct
i

Pt
i
, which

is the proportion of urban population (Ct
i) to total population (Pt

i), represents the urbanization rate

of province i. FAt
i =

INt
i

Ct
i

, which is the urban fixed assets investment (INt
i ) per urban population (Ct

i),

represents the intensity of urban fixed assets investment in province i.

EIt
i =

Et
i

It
i
, which is the ratio of energy consumption (Et

i) to secondary industrial output (It
i )

in province i, was used to denote the energy intensity. In China, energy consumption is mainly
generated by the secondary industry. According to data from the National Bureau of Statistics
(https://data.stats.gov.cn/easyquery.htm?cn=C01), in 2017, the energy consumption of the secondary
industry in China was 294,488.04 × 104 tons of coal equivalent (tce), while the consumption of the
primary and thirdly industry were only 8931.23× 104 tce and 24,268.83× 104 tce, respectively. Therefore,
to some extent, the more energy consumed per unit of the secondary industrial output, the greater the
intensity of the province i’s energy consumption.

EEt
i =

Pt
i

Et
i
, is the ratio of population (Pt

i) to energy consumption (Et
i) in province i. Commonly,

industries sustain peoples’ lives by consuming energy to make products and generate income. At the
same level of energy consumption, if industries in an area can sustain more people, that area is more
energy efficient. The implication of this indicator is that the larger the population per unit of energy
consumed, the more efficient the province i’s energy consumption.

WIt
i =

WGt
i

INt
i

, represents province i’s investment strength on waste gas treatment. WGt
i denotes the

investment for industrial waste gas treatment projects. In China, this investment mainly concentrates on
the old industrial pollution source treatment, such as desulfurization and denitrification. Old industrial

https://data.stats.gov.cn/easyquery.htm?cn=C01
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pollution sources are mostly located in urban areas; the proportion of this investment to urban fixed
assets investment (INt

i ) was used to estimate the investment strength.

SRt
i =

SEt
i

WGt
i
, is the ratio of SO2 emissions to investment on waste gas treatment projects in

province i. The implication of this indicator is that the more the SO2 emissions per unit of investment,
the higher the investment efficiency requirement in province i. Generally, the waste gas treatment
investment varied from province to province, and the SO2 emissions of each province was also different.
For provinces with high emissions but low investment, the pressure to reduce SO2 will be greater
because of a lack of funds. For these provinces, the demand for investment efficiency will be higher.
As a result, they are likely to increase the efficiency of their investment through various ways, such as
technological innovation. Therefore, it is uncertain whether the higher requirement for investment
efficiency will contribute to or inhibit SO2 emissions. To study this mechanism, the ratio of SO2

emissions to investment on waste gas treatment projects was adopted.
In order to assess the impact of capital and labor input on SO2 emissions, the C–D production

function was introduced. The general formula of the C–D production function is as follows.

GDPt = A
(
Kt

)α(
Lt

)β
(4)

where, A, α, β are uncertain constant parameters, in general, A>0, 0 < α < 1, 0 < β < 1. K denotes
capital input, measured by fixed asset investment. L denotes labor input, measured by the number of
employed. A represents the level of technological progress to some extent but it was not considered in
this study, see formula (18). Many methods have been used to calculate α and β of C–D production
function, such as wage share in Gross Domestic Product (GDP), international experience reference,
regression, etc. Among them, the regression method proved to be more scientific and accurate [33].
In the context of China’s rapid development, the parameter values over the years were likely to be
different. In order to reflect this difference, the cross-sectional regression method was adopted in
this paper to estimate the α and β of C–D function over the years, see Table 2, all the results were
statistically significant.

Table 2. Parameters of the Cobb–Douglas (C–D) function from 2000 to 2017.

Years α β

2000 0.745 ** 0.459 **
2001 0.728 ** 0.482 **
2002 0.728 ** 0.474 **
2003 0.694 ** 0.505 **
2004 0.651 ** 0.555 **
2005 0.583 ** 0.618 **
2006 0.575 ** 0.618 **
2007 0.578 ** 0.610 **
2008 0.450 ** 0.721 **
2009 0.378 * 0.802 **
2010 0.461 ** 0.708 **
2011 0.407 * 0.760 **
2012 0.411 * 0.751 **
2013 0.424 ** 0.698 **
2014 0.515 ** 0.599 **
2015 0.604 ** 0.501 **
2016 0.622 ** 0.481 **
2017 0.699 ** 0.411 **

* Indicates p value ≤ 0.05; ** indicates p value ≤ 0.01.
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The formula of GLMDI model is as follows:

SEt =
∑

i

A×Qt
i × SIt

i × EIt
i × EEt

i ×URt
i × FAt

i ×WIt
i × SRt

i ×
(
Kt

)α
×

(
Lt

)β
(5)

The symbolism of each variable in GLMDI model is shown in Table 3.

Table 3. Meaning of variables in the generalized logarithmic mean Divisia index (GLMDI) model.

Variable Meaning Unit

Qt
i The economic growth level of province i. %

SIt
i The industrial structure in province i. %

EIt
i The energy consumption intensity in province i. tce/104 RMB

EEt
i The energy consumption efficiency in province i. Person/tce

URt
i The urbanization rate in province i. %

FAt
i The intensity of urban fixed assets investment in province i. 104 RMB/Person

WIt
i The investment strength of waste gas treatment in province i. %

SRt
i The investment efficiency requirement of waste gas treatment in province i. t/104 RMB

GDPt Gross Domestic Product in year t 108 RMB
GRPt

i Gross Regional Product of province i in year t 108 RMB
It
i Secondary industrial output value of province i in year t 108 RMB

Et
i Total energy consumption of province i in year t 104 tce

Pt
i Total population of province i in year t 104 people

Ct
i Urban population of province i in year t 104 people

INt
i Urban fixed assets investment of province i in year t 108 RMB

WGt
i Investment in industrial waste gas treatment projects of province i in year t 108 RMB

SEt
i SO2 emissions of province i in year t 104 t

tce: tons of coal equivalent.

Taking SO2 emissions in period 0 as the benchmark to investigate the change of SO2 emissions in
period t, the summation decomposition of the GLMDI model is as follows.

∆SEtot = SEt
− SE0

= ∆SEt
K + ∆SEt

L + ∆SEt
Q + ∆SEt

SI + ∆SEt
EI + ∆SEt

EE + ∆SEt
UR + ∆SEt

FA + ∆SEt
WI + ∆SEt

SR
(6)

The calculation method of decomposition factors in formula (6) are as follows.

∆SEt
K =


0, SE0

× SEt = 0;∑
i

wi ln
(
(Kt)

α

(K0)α

)
, SE0

× SEt , 0;
(7)

∆SEt
L =


0, SE0

× SEt = 0;∑
i

wi ln
(
(Lt)

β

(L0)β

)
, SE0

× SEt , 0;
(8)

∆SEt
Q =


0, SE0

× SEt = 0;∑
i

wi ln
(

Qt
i

Q0
i

)
, SE0

× SEt , 0; (9)

∆SEt
SI =


0, SE0

× SEt = 0;∑
i

wi ln
(

SIt
i

SI0
i

)
, SE0

× SEt , 0; (10)

∆SEt
EI =


0, SE0

× SEt = 0;∑
i

wi ln
(

EIt
i

EI0
i

)
, SE0

× SEt , 0; (11)
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∆SEt
EE =


0, SE0

× SEt = 0;∑
i

wi ln
(

EEt
i

EE0
i

)
, SE0

× SEt , 0; . (12)

∆SEt
UR =


0, SE0

× SEt = 0;∑
i

wi ln
(

URt
i

UR0
i

)
, SE0

× SEt , 0; (13)

∆SEt
FA =


0, SE0

× SEt = 0;∑
i

wi ln
(

FAt
i

FA0
i

)
, SE0

× SEt , 0; (14)

∆SEt
WI =


0, SE0

× SEt = 0;∑
i

wi ln
(

WIt
i

WI0
i

)
, SE0

× SEt , 0; (15)

∆SEt
SR =


0, SE0

× SEt = 0;∑
i

wi ln
(

SRt
i

SR0
i

)
, SE0

× SEt , 0; (16)

where,

w〉 =
SEt
〉
− SE0

〉

ln SEt
〉
− ln SE0

〉

(17)

For A is a constant,
ln

(
At/A0

)
= 0 (18)

This study gave no consideration on it. National data, such as GDP, fixed asset investments,
employed numbers, and provincial data, such as GRP, industrial output, fixed asset investments,
total population, urban population (2005–2017), and investment in industrial waste gas treatment
projects (2004–2017) were all derived from the National Bureau of Statistics of China. The urban
population from 2000 to 2004 were acquired from the China Compendium of Statistics 1949–2008.
Investment in industrial waste gas treatment projects from 2000 to 2003 were obtained from the
China Statistical Yearbook (2001–2004). Provincial number of employed in urban areas were from the
Economy Prediction System (EPS) database. Data of total energy consumption were from the China
Energy Statistical Yearbook (2001–2018). Interpolation had been used to fill a small amount of missing
data. The data of GDP and industrial output value in this paper had been converted to comparable
prices based on the year 2000.

3. Results and Discussion

3.1. Spatial-Temporal Analysis of (De)Coupling Conditions

According to the results of decoupling indexes assessment, as shown in Table 1, there were five
decoupling states within the scope of this study, namely, strong decoupling (SD), weak decoupling
(WD), expansive negative decoupling (END), expansive coupling (EC), and recessive coupling (RC),
sorting from most to least. Based on the decoupling state classification, see Table 1, SD is the most
desirable condition where SO2 emissions decline along with economic development. Therefore,
the frequent emergence of SD indicated that the overall decoupling status of provinces in China
was favorable.

From the perspective of temporal contrast, as shown in Figure 1, the overall decoupling condition
in China was improving. At the beginning of the 21st country, the GDP and SO2 emission went up
together, showing the characteristics of EC. Then, the decoupling situation was unstable from 2001 to
2011 for the fluctuation of SO2 emission change rates. With economic growth consistently positive,
the change rate of SO2 emissions had been negative since 2012, so that the decoupling condition had
remained to SD. It is worth noting that significant decline of SO2 emissions occurred in 2016 and 2017,
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which showed the performance of China’s vigorous efforts to combat air pollution in recent years;
those efforts consolidated the achievement of reaching SD.
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Figure 1. Decoupling conditions in China 2000–2017.

However, the situation varies from province to province; see Table 4. From 2001 to 2014, there were
many changes and fluctuations of the decoupling state. After 2015, 28 provinces reached the SD state,
accounting for 93.3% of the provinces studied. Among all the administrative units, Beijing was in the
best state, which had almost achieved SD in all periods within this study, except 2004. This situation
shows that Beijing’s decoupling condition had been relatively stable.

On the contrary, some provinces should be focused on. As shown in Table 4, Guizhou was in WD
scenario in 2017, where the SO2 emissions grows more slowly than the economy, which was not the best,
but an acceptable condition. The condition in Liaoning became RD in 2016, which means the economy
was in recession while the SO2 emissions decreased even more significantly. Although this condition
was good from an environmental point of view, emission reduction at the cost of economic recession
was not acceptable. To achieve the goal of sustainable development, the situation in Liaoning province
needed to be carefully considered. Moreover, Hainan, Qinghai, and Xinjiang had the fewest SD states
among the provinces studied, only six times from 2001 to 2017, which means their situations were
precarious and complicated in former years. However, these three provinces reached SD state after
2015, which suggested that their situations were expected to gradually stabilize. For these provinces,
recent experience could be referenced and efforts should be made to consolidate their SD situations.

Figure 2a—from the perspective of spatial analysis. In the context of positive economic growth in
all provinces, SO2 emissions increased in only three provinces (Qinghai, Xinjiang, and Ningxia) and
fell in all others, so that Qinghai, Xinjiang, and Ningxia failed to achieve SD condition; see Figure 2b.

The Moran Index scatter plot was used to further assess the spatial relationship among provinces,
as shown in Figure 3a. The x-axis represents the normalized provincial decoupling index (et+1) and the
y-axis represents the lagged value, that is, the normalized et+1 of adjacent units of each province. The
diagonal in the graph can be regarded as the linear fitting of the scatters. The Moran’s I is the slope of
the diagonal, which is greater than 0, representing positive spatial autocorrelation. This result was
permutated 999 times to test its significance and the p value was 0.001, indicating at least 99% certainty
that the results were significant. Moreover, it is worth noting that there is an upper-right outlier in
Figure 3a. To exclude its influence on the result, Moran’s I was recalculated after removing the outlier
for robust check, as shown in Figure 3b. The recalculated Moran’s I was still greater than 0, and its
p value after 999 times permutating was 0.028, which was lower than 0.05, indicating that the results
were significant at least 95% certainty. That is, generally, the outlier did not have a decisive influence
on the results; the decoupling conditions of neighboring provinces would affect each other.
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Table 4. Annual decoupling condition of each province.

Category Province 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Provinces in
favorable stages

Beijing SD SD SD WD SD SD SD SD SD SD SD SD SD SD SD SD SD
Tianjin SD SD WD SD EC SD SD SD SD SD SD SD SD SD SD SD SD
Hebei SD SD EC WD WD WD SD SD SD SD END SD SD SD SD SD SD
Shanxi SD WD EC WD WD SD SD SD SD SD EC SD SD SD SD SD SD

Inner Mongolia SD EC END SD EC WD SD SD SD SD WD SD SD SD SD SD SD
Jilin SD WD WD WD END WD SD SD SD SD EC SD SD SD SD SD SD

Heilongjiang SD SD END WD END WD SD SD SD SD WD SD SD SD SD SD SD
Shanghai WD SD WD WD WD SD SD SD SD SD SD SD SD SD SD SD SD
Jiangsu SD SD WD SD WD SD SD SD SD SD WD SD SD SD SD SD SD

Zhejiang SD WD EC WD WD SD SD SD SD SD SD SD SD SD SD SD SD
Anhui WD WD END WD END WD SD SD SD SD SD SD SD SD SD SD SD
Fujian SD SD END WD END WD SD SD SD SD SD SD SD SD SD SD SD
Jiangxi SD SD END END END WD SD SD SD SD WD SD SD SD SD SD SD

Shandong SD SD WD SD WD SD SD SD SD SD END SD SD SD SD SD SD
Henan WD WD EC END END WD SD SD SD SD WD SD SD SD SD SD SD
Hubei SD SD END END WD WD SD SD SD SD WD SD SD SD SD SD SD
Hunan SD SD END WD WD WD SD SD SD SD SD SD SD SD SD SD SD

Guangdong WD WD WD WD EC SD SD SD SD SD SD SD SD SD SD SD SD
Guangxi SD SD END WD WD SD SD SD SD SD SD SD SD SD SD SD SD

Chongqing SD SD EC WD WD WD SD SD SD SD SD SD SD SD SD SD SD
Sichuan SD SD WD WD WD SD SD SD SD SD SD SD SD SD SD SD SD
Yunnan SD WD END WD EC WD SD SD SD WD END SD SD SD SD SD SD
Shaanxi SD WD END WD EC WD SD SD SD SD END SD SD SD SD SD SD
Gansu WD END END SD END SD SD SD SD EC EC SD SD WD SD SD SD

Ningxia SD EC END WD END EC SD SD SD SD END SD SD SD SD SD SD

Provinces in
need of

attention

Liaoning SD SD WD WD END WD SD SD SD SD EC SD SD SD SD RD SD
Guizhou SD SD SD SD WD WD SD SD SD SD SD SD SD SD SD SD WD
Hainan WD EC WD WD SD WD WD SD WD END EC WD SD WD SD SD SD
Qinghai EC SD END END END WD WD WD WD WD WD SD WD SD SD SD SD
Xinjiang SD SD EC END WD WD WD WD WD SD END WD WD WD SD SD SD
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Product (GRP) and SO2 emissions. (b) The overall decoupling indexes.
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To give a more comprehensive analysis of spatial relationships between provinces, Figure 3a
takes all provinces into account. Specific to each province’s situation, the four quadrants identify
four kinds of spatial relationships and they can be further categorized into two groups: positive and
negative spatial autocorrelation [34]. Provinces in the first and third quadrants, respectively, exhibited
high–high (H–H) and low–low (L–L) aggregation, indicating that these provinces tended to be adjacent
to provinces with similar decoupling indexes, that is, positively autocorrelated. Provinces in the
second and fourth quadrants exhibited low–high (L–H) and high–low (H–L) aggregation separately,
indicating that these provinces tended to be adjacent to provinces with opposite decoupling indexes,
which is called negative autocorrelation. The map of Local Indications of Spatial Association (LISA)
aggregation was applied to analyze the spatial correlation and the significance of each province. The
LISA is a space-based statistical technique; it gives an indication of the extent to which a significant
spatial clustering of homogeneous values existing around a particular observation [35,36]. The results
of LISA, which indicate spatial correlation of decoupling index in 30 provinces, can be calculated
through software GeoDa, as shown in Table 5.

Table 5. Spatial correlation of decoupling index in 30 provinces.

Quadrant Spatial Correlation Provinces

I H–H Xinjiang *, Gansu, Yunnan
II L–H Beijing, Sichuan, Guizhou, Tianjin

III L–L Inner Mongolia, Heilongjiang, Jiangxi *, Hainan, Anhui **, Qinghai,
Fujian *, Ningxia

IV H–L
Hebei, Shanxi, Liaoning, Jilin, Shanghai **, Jiangsu *, Zhejiang **,

Shandong, Henan *, Hubei, Hunan, Guangdong, Guangxi,
Chongqing, Shannxi

* indicates p value ≤0.05; ** indicates p value ≤0.01.

Four provinces, Xinjiang, Jiangxi, Anhui, and Fujian showed significantly positive autocorrelation.
Cross-regional coordination could be considered in these regions. Among these provinces, Xinjiang
did not, overall, reach SD state; see Figure 2. Its conditions could have a bad effect on neighboring
provinces. Therefore, in order to maintain favorable decoupling status, the provinces adjacent to
Xinjiang should give Xinjiang the necessary assistance to make it achieve SD faster. Moreover, there
were four provinces in states of significantly negative autocorrelation, Shanghai, Jiangsu, Zhejiang,
and Shaanxi; they were all in H–L condition. All of these provinces had, overall, reached SD state;
see Figure 2. However, their developments might have dampening effects on the surrounding areas.
For these provinces, there might be trade-offs with their neighbors. Therefore, these provinces should
learn the decoupling trends of neighbors and complement each other when seeking self-development.

3.2. Driving Factors Decomposition of SO2 emissions

Nevertheless, the understanding of decoupling conditions alone cannot maximize the efficiency
of SO2 reduction. Therefore, panel data of 30 provinces from 2000 to 2017 were used to identify the
effect of each driving factor on SO2 emissions. Decomposition and analysis were carried out according
to Equations (7)–(17). For the whole country, decomposition factors were calculated, taking the year
2000 as the benchmark; the results are shown in Table 6.

In general, the impact of elements on SO2 emissions was negative within this study; see row ∆SEtot,
indicating that SO2 emissions had been overall suppressed in China from 2000 to 2017. The driving
factors can be categorized into two groups: the positive factors, which would cause emissions increase,
and the negative factors, which could facilitate emissions reduction. As shown in Table 6, the capital
(∆SEt

K), the labor (∆SEt
L), the economic growth level (∆SEt

Q), the proportion of secondary sector of
economy to GRP (∆SEt

SI), the urbanization rate (∆SEt
UR) and the fixed assets investment (∆SEt

FA) were
positive drivers. Obviously, all of these positive drivers are important factors to promote social and
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economic development, which means that China’s socio-economic development, indeed, led to an
increase in SO2 emissions.

Table 6. The overall influencing factors decomposition in China.

Indicators 2000–2017

The capital input (∆SEt
K) 334.4

The labor input (∆SEt
L) 40.3

The economic growth level (∆SEt
Q) 350.2

The industrial structure (∆SEt
SI) 279.8

The energy intensity (∆SEt
EI) −1052.9

The energy efficiency (∆SEt
EE) −1460.1

The urbanization rate (∆SEt
UR) 638.6

The fixed assets investment (∆SEt
FA) 3264.4

The waste gas treatment investment (∆SEt
WI) −2050.8

The investment efficiency requirement (∆SEt
SR) −3061.4

The total effect (∆SEtot) −2717.5

On the contrary, the energy consumption intensity (∆SEt
EI), the energy efficient (∆SEt

EE), the waste
gas treatment investment (∆SEt

WI), and the investment efficiency requirement (∆SEt
SR) were negative

drivers. The first two negative factors are related to energy consumption, which shows that China’s
energy management has played a beneficial role in reducing SO2 emissions. The negative impact
of these energy factors is favorable for China, because China remained the world’s largest energy
consumer in 2017, accounting for 23.2% of global energy consumption and 33.6% of global energy
consumption growth, according to the 2018 British Petroleum (BP) World Energy Statistical Yearbook
(http://www.199it.com/archives/767423.html). As China develops further, it will be difficult for its
energy consumption to decline in short-term. Therefore, energy management will continue to be
important to SO2 emissions reduction; the inhibitory effect of energy factors can be good to China’s
atmospheric environment protection in the long run. The latter two negative factors are related
to investment in waste gas treatment projects, indicating that China’s investment in waste gas
treatment has made achievement in reducing SO2 emissions. The most significant negative driver
is ∆SEt

SR, which denotes the requirement of waste gas reduction investment efficiency. In order to
meet the investment efficiency requirement, the Chinese government and enterprises accelerated
technological innovation of SO2 emission reduction and adopted a series of mandatory emission
reduction policies. At the second National Conference on Environmental Science and Technology
of China, the minister of Ministry of Environmental Protection (now the Ministry of Ecology and
Environment) said that technological progress accounted for 66% of sulfur dioxide emissions reduction
(http://www.cinic.org.cn/zgzz/cx/136582.html). Moreover, China issued at least 237 air pollution
control regulations at the national level from 2000 to 2017 (data were obtained from the websites
of the Ministry of Ecology and Environment (http://www.mee.gov.cn/), Ministry of Finance (http:
//www.mof.gov.cn/index.htm), Resource Conservation and Environmental Protection division of
National Development and Reform Commission (https://www.ndrc.gov.cn/fzggw/jgsj/hzs/), and the
Laws and Regulations Database of Peking University), which urged and guided the emission reduction
of SO2 and other air pollutants. All of these reasons made ∆SEt

SR become the most important emission
reduction driver.

However, only a macro analysis of the overall situation of China cannot reveal the changes of
each factor over the years. For a rapidly developing country, the effects of each factor are likely to
be different at different development stages. Therefore, the analysis of the changes in the impact
of various factors in different years will provide a more specific reference for China’s SO2 emission
reduction. To compare the changes of decomposition factors over the years, this study calculated each
decomposition factor taking the previous year as the benchmark, the results are shown in Table 7.

http://www.199it.com/archives/767423.html
http://www.cinic.org.cn/zgzz/cx/136582.html
http://www.mee.gov.cn/
http://www.mof.gov.cn/index.htm
http://www.mof.gov.cn/index.htm
https://www.ndrc.gov.cn/fzggw/jgsj/hzs/
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Table 7. The annual contribution of driving factors to SO2 emissions.
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2000–2001 5.6 9.1 20.6 7.6 −72.5 −99.6 47.8 211.6 −920.7 570.5 −220.1
2001–2002 2.5 5.3 23.1 29.0 −65.7 −123.9 59.9 198.9 −449.4 172.4 −147.9
2002–2003 30.4 6.3 40.0 65.2 −23.0 −260.4 −23.9 545.3 −84.8 −167.9 127.1
2003–2004 77.1 8.6 69.1 58.0 122.4 −445.1 71.9 460.2 754.1 −1203.2 −26.7
2004–2005 22.2 7.6 41.4 58.1 −35.8 −329.4 153.2 433.1 44.9 −330.3 65.0
2005–2006 20.6 6.6 13.2 68.5 −132.1 −219.6 62.8 442.6 −10.5 −474.9 −222.9
2006–2007 55.9 7.0 12.2 55.3 −162.8 −224.7 67.3 505.2 −92.0 −614.6 −391.3
2007–2008 91.9 5.6 56.6 25.7 −162.2 −124.6 68.4 481.7 −615.9 −98.2 −271.0
2008–2009 −20.8 6.3 51.5 29.3 −152.2 −117.5 54.5 548.7 −906.2 181.2 −325.0
2009–2010 35.8 5.7 56.3 63.4 −148.3 −177.3 86.9 380.9 −951.2 438.4 −209.5
2010–2011 57.2 6.9 58.7 47.5 −116.3 −180.9 64.4 224.4 77.2 −343.5 −104.5
2011–2012 9.7 6.0 60.2 27.7 −135.3 −105.9 64.3 353.4 −129.1 −400.4 −249.3
2012–2013 2.6 5.2 37.6 15.7 −282.6 84.0 46.7 332.4 1739.8 −2203.4 −222.1
2013–2014 5.2 4.3 16.2 4.4 −100.7 −52.9 47.3 229.3 −12.6 −343.8 −203.4
2014–2015 −21.0 2.5 11.7 −20.8 −87.1 −21.9 47.6 90.3 −1065.8 801.0 −263.6
2015–2016 −5.4 1.4 5.1 −16.6 −57.5 −16.8 36.3 13.2 −81.4 −733.4 −855.2
2016–2017 38.7 0.2 3.5 −11.1 −31.8 −20.2 23.2 −30.5 −190.1 −35.8 −253.9
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From the perspective of total effect, as shown in column ∆SEtot, the impact of elements on SO2

emissions was negative only expect that from year 2002 to 2003 and from year 2004 to 2005, indicating
that SO2 emissions suppression in China was relatively stable. The overall positive effect of elements
in 2002–2003 and 2004–2005 had leaded to significant increase of SO2 emissions in China; see Figure 1,
which was the result of multifactorial interaction. To find out the key factors, as shown in row
2002–2003, the positive effect of the fixed assets investment per person (∆SEt

FA) was relatively high,
while the negative effect of the energy intensity (∆SEt

EI) was the lowest compared to other periods.
In other words, the fixed assets investment per person significantly contributed to SO2 emissions
increase, while the industrial energy intensity control did not have adequate restraining effect on SO2

emissions from 2002 to 2003. From 2004 to 2005, the urbanization rate (∆SEt
UR) was much greater than

that in other periods, while the contribution of ∆SEt
EI was still relatively low, which means that rapid

urbanization contributed significantly to SO2 emissions while the inhibition effect of industrial energy
intensity control on SO2 was relatively weak compared with other stages.

From the perspective of positive factorization, there were two factors that always behaved as
positive drivers, the labor (∆SEt

L) and the economic growth level (∆SEt
Q), indicating that labor and

economic development always contributed to higher SO2 emissions in China. Besides, the capital
(∆SEt

K), the proportion of secondary sector of economy to GRP (∆SEt
SI), the urbanization rate (∆SEt

UR),
and the fixed assets investment per person (∆SEt

FA) exhibited acceleration impact on SO2 emissions in
no less than 14 years. Among all the positive drivers, the labor (∆SEt

L), the economic growth level
(∆SEt

Q), the capital (∆SEt
K), the urbanization rate (∆SEt

UR), and the fixed assets investment per person
(∆SEt

FA) are key indicators of national progress, and cannot be suppressed just for the sake of SO2

emission reduction. While, the proportion of secondary sector of economy to GRP can be weighed in the
future. In fact, the adjustment of economic structure has been attached great importance by the Chinese
government, and great breakthroughs have been made in the past period of time. However, according
to data from the World Bank World Development Indicator (WDI) database, in 2017, the proportion
of secondary industry was 40.5% in China, while this proportion was less than 30% in developed
countries, such as the United States, Japan, and Canada, which means that China’s economic structure
still has potential for optimization. To reduce the proportion of secondary industry and, thus, its impact
on SO2 emissions, the Chinese government should continue to encourage non-industrial enterprises
to drive the economy. For example, the government could sequentially improve the proportion of
primary and tertiary industry in GRP to optimize the structure of enterprises in China.

From the perspective of negative factorization, the intensity (∆SEt
EI) and the efficiency (∆SEt

EE)
of energy consumption had suppression impact on SO2 emissions in 16 years, and they all remained
negative after year 2013, indicating that the inhibition of SO2 emissions by energy management was
stable over years, which is beneficial for China, referring to the macro analysis of the whole country
above. For the waste gas treatment investment (∆SEt

WI), and the investment efficiency requirement
(∆SEt

SR), the conditions before 2015 were unstable, while these two factors remained negative from
2015 to 2017. Whether they will change next is still uncertain; thus, the government and enterprises
need to take necessary measures to stabilize their negative influence.

3.3. Limitations

Due to the lack of public data, some factors affecting sulfur dioxide emissions, such as indicators
measuring the development of SO2 filtration technology, were not taken into account in the model.
This issue also made some indicators be not straightforward. As there is no available public data on
investments specifically for SO2 treatment, the investment in industrial waste gas treatment projects
was used to estimate the investment strength of waste gas treatment and the investment efficiency
requirement. However, the waste gas projects mainly include desulfurization and denitrification,
they do not solely consider SO2. In addition, at the provincial level, comprehensive energy consumption
data for the secondary industry are not directly disclosed in China. For China’s energy consumption
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is mainly generated by the secondary industry, the total energy consumption, instead of the energy
consumption for the secondary industry, was used to measure the energy intensity and efficiency.

Moreover, this paper used the data of each province in China to study the factorization of the
whole country, and the analysis was relatively macro, while the situation of each province was different,
so the factorization of each province would be more targeted. However, according to the principle
of the GLMDI model, more microscopic data are needed to realize the factor decomposition at the
provincial level, such as the data of cities within the jurisdiction of each province. At present, some data
of key driving factors, such as the investment data of waste gas treatment, are not publicly available at
the city level, which limits further refinement of the study. In future research, further optimization of
index selection can be considered, and different theoretical models can be tried to achieve the impact
factor decomposition at the provincial level.

4. Conclusions

According to the spatial-temporal analysis of (de)coupling condition, China’s decoupling scenario
had become better from 2000 to 2017. Over the entire time period, Qinghai, Xinjiang, and Ningxia failed
to achieve SD condition. The overall relationship between SO2 emission and economic growth had
achieved the SD stage since 2012. Provinces, except Liaoning and Guizhou, had all reached SD state
since 2015. Among the provinces, Beijing has the most stable decoupling condition, which can provide
reference for other provincial administrative units. While, Liaoning and Guizhou need to be paid more
attention to by the Chinese government in the future, as their decoupling situations were still unstable in
recent years. The decoupling indexes of neighboring provinces indicated significant spatial dependence
at more than 95% certainty. Coordinated development across provinces could be taken into account
in Xinjiang, Jiangxi, Anhui, and Fujian. In particular, the provinces adjacent to Xinjiang should give
Xinjiang the necessary assistance for maintaining their own SD state. Complementary development
with neighboring provinces should be considered in Shanghai, Jiangsu, Zhejiang, and Shaanxi.

According to the driving factors decomposition, as a whole, SO2 emissions suppression in China
was relatively stable, while the driving factors demonstrated different impacts on SO2 emissions over the
years. Thus, China should examine the influence of various factors from a dynamic perspective to make
correct decisions in SO2 emission reduction. The positive driver that should be paid most attention to is
the proportion of the secondary sector of the economy to GRP. This is not only because of the adjustment
potential of this driver, but also because optimizing this factor to reduce SO2 emissions will not be at
the expense of the country’s socio-economic development. The main negative drivers were related to
energy consumption and investment in waste gas treatment. The inhibitory effect of energy factors
can be beneficial to China’s SO2 emissions reduction in the long run. Moreover, the negative drivers
that should be focused on are waste gas treatment investment and investment efficiency requirement,
because their effects are still uncertain. To stabilize the negative effect of these factors, the direction of
investment in waste gas treatment should be optimized. The government should focus on the support
of low-cost and high-efficiency technologies for SO2 reduction. The enterprises should speed up the
elimination of backward production and invest more in environmentally friendly production.
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