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Abstract: This work describes a methodology for the definition of indoor air quality monitoring plans
in schools and above all to improve the knowledge and evaluation of the indoor concentration levels
of some chemical pollutants. The aim is to guide interventions to improve the health of students and
exposed staff connected with the activities carried out there. The proposed methodology is based on
the simultaneous study of chemical (indoor/outdoor PM2.5, NO2, CO2) and physical (temperature,
humidity) parameters by means of automatic analyzers coupled with gaseous compounds (benzene,
toluene, ethylbenzene, xylenes, formaldehyde and NO2) sampled by denuders. The important
novelty is that all the data were collected daily in two different situations, i.e., during school
activities and no-school activities, allowing us to evaluate the exposure of each student or person.
The different behaviors of all the measured pollutants during the two different situations are reported
and commented on. Finally, a statistical approach will show how the investigated compounds are
distributed around the two components of combustion processes and photochemical reactions.
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1. Introduction

Indoor air quality (IAQ) is an important determinant for the health of the general population,
especially for susceptible population groups, such as children and adolescents who spend most of
their time in confined spaces (domestic and school) [1,2]. IAQ is conditioned by both external and
internal sources of pollution. The first derives from external pollutants that usually penetrate through
the opening of the windows, whereas the internal sources can come from combustion processes (e.g.,
nitrogen dioxide (NO2)) or can be represented by construction materials, furniture and commonly
used products for cleaning domestic environments (e.g., volatile organic compounds (VOCs)) [3,4].
The indoor environment therefore contributes significantly to the exposure to pollutants, many of
which have a higher concentration indoors than outdoors [5]. Due to the high number of emission
sources that can be identified in confined environments and the consequent high concentration of
pollutants, indoor pollution is therefore considered an extremely complex and difficult to control form
of pollution [6–10]. An increasing number of studies have confirmed that exposure to indoor pollutants
causes a greater risk of respiratory disorders, probably consequent to a marked inflammation of the
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airways, which underlies oxidative stress mechanisms [11–20]. In addition, indoor allergens are the
main cause of sensitization and exacerbation in asthmatic subjects [21]. Among the sources of pollution,
indoor allergens are one of the main causes of sensitization and of exacerbation and triggering of acute
asthma attacks [22–26].

In recent years, the European Union (EU) has promoted and funded important indoor pollution
projects in schools to improve knowledge in this area and encourage the reduction of cases of respiratory
diseases and childhood asthma in Europe. Simultaneously, different Italian groups deal with this issue.
The Health Effects of the School Environment (HESE) study was the first important European project
on health problems related to pollution of the school environment [27], whereas the Schools Indoor
Pollution and Health Observatory Network in Europe (SINPHONIE) [28] and School Environment
and Respiratory Health of Children (SEARCH) [29] projects were part of the European Action Plan
on Environment and Health 2004–2012. Finally, the two-year project Indoor and Outdoor Air quality
and Respiratory Health in Malta and Sicily (RESPIRA) study was developed within the Italy-Malta
Cross-border Cooperation Program [30]. European studies highlight the close relationship between
exposure to indoor pollutants and the appearance of respiratory and allergic symptoms in childhood.
The symptomatology described can significantly compromise the quality of life of children and their
school performance. In line with the European initiative, the Italian Ministry of Health funded a project
“Exposure to indoor pollutants: guidelines for assessing risk factors in the school and defining measures
to protect respiratory health of schoolchildren and teenagers (Indoor-School)” [31]. The project was
aimed to study the exposure of pupils and school staff (of primary and secondary schools) to indoor
pollutants and assess the relationships between this exposure and the effects on health, with the aim of
improving epidemiological knowledge in this area and facilitating the application of the “Guidelines
for the prevention of indoor risk factors for allergies and asthma in schools” by the World Health
Organization (WHO) [32].

In the frame of the Indoor-School project, a task was dedicated to highlight differences in IAQ
in the presence and absence of students. This task is apparently not really important but is becomes
fundamental for a correct student exposure risk assessment. In fact, the studies on the indoor school
are basically oriented to perform measurements of gaseous/aerosol pollutants every day or during
school activities only [33]. In this paper the approach is different: the measurements were performed
taking into account the presence or absence of school activity both for showing the relative contribution
to the IAQ and for studying the inhalation intake by students.

2. Experiments

2.1. Operating Protocol

As part of the Indoor-School project, field surveys were carried out for the determination of
selected chemical pollutants and the main microclimatic parameters with the aim of determining the
levels of these pollutants in the selected school buildings. The pollutants for which the concentration in
this matrix was determined are volatile organic compounds (VOCs) such as benzene, toluene, xylenes,
ethylbenzene, aldehydes, PM2.5 and NO2. The CO2 concentration, the percentage relative humidity,
the temperature and the speed of the air were also determined, thus increasing the information of the
classrooms. For this purpose, the following methods and equipment were used:

1. VOCs by sampling using passive Radiello® (AMS Analitica, Pesaro, Italy) samplers and
quantitative gas chromatographic determination;

2. NO2 by sampling using passive Radiello® samplers and gas chromatography determination;
3. Particulate matter (PM2.5) by means of direct reading analyzers (mod. DustTrak) (TSI, Shoreview,

MN, USA) [34];
4. CO2, humidity, temperature, and air speed by means of a q-track analyzer (TSI).
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Two DustTrak instruments and one Q-Trak instrument were used for the measurements. Both the
DustTraks were used at a sampling rate of 3 L min−1 (it is not possible to change the sampling rate),
and the Q-Trak was used according to the parameters reported in the relative manual.

Before each sampling campaign, a task was dedicated to compare the instruments used for
performing the indoor and outdoor measurements. Figure 1 illustrates this comparison: there is high
correlation (R2 0.945) between the measurements.
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Subsequently, external ambient air samples were taken simultaneously at all sites to estimate their
contribution. The whole study was performed in winter. All data were collected and analyzed in terms
of mean and standard deviation (s.d.) using usual mathematical software: further, mean and s.d. were
also measured during school activities and no-school activities.

2.2. School Buildings to Be Monitored

Before studying the main chemical pollutants in indoor air, it was very useful to collect information
and characteristic data of the environments that are part of the school building (e.g., times and frequency
of use of the classrooms and other spaces). Eight school buildings were selected for the study (three
classes for each school). All the schools were selected in Rome. We paid particular attention to the
selection: in fact, they were chosen in the downtown area, in areas with a high density of traffic,
and with other buildings close to them. Further, the schools are in historical buildings where the
ventilation is only provided by large windows in each classroom. This meant the investigated scenarios
were quite similar. In each classroom, surveys were carried out in one or two sampling points, deemed
suitable for estimating indoor exposure. The most suitable withdrawal point was considered the center
of the classroom or next to the chair if away from windows or ventilation/heating systems. The same
point was used for the measurement of CO2, humidity, temperature, and air speed. In addition,
the chosen pick-up points were the same in all classrooms of the eight schools. Finally, the samplers
were positioned approximately 1–1.5 m above the ground, and not less than 1 m away from the wall.

2.3. Classroom Withdrawals for VOC and NO2

Three different Radiello® were used with picking times divided as follows [35–37]:
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1. 1 + 1 Radiello® must cover the timetable of school activities (i.e., 7:00–14:00),
2. 1 + 1 Radiello® must cover the non-activity time (i.e., 14:00–7:00),
3. 1 + 1 Radiello® must cover the whole day.

At the same time, an additional external withdrawal was performed, to estimate the contribution
of the outdoor exposure (two/three withdrawal points) of 24 h.

In the study, the VOCs of greatest interest from the sanitary point of view were identified and
considered (benzene, toluene, ethylbenzene, o-m-p-xylenes, formaldehyde).

The Radiello® radial diffusion sampler consists of a diffusion tube (cartridge) that uses the physical
diffusion (sampling) process of pollutants, and a cylindrical cartridge in stainless steel mesh containing
activated carbon or another type of adsorbent. During the sampling, the cartridge was placed inside
a microporous cylindrical diffusive body and mounted on a support. These samplers were used for
VOC and NO2 sampling at the sampling sites for a period of six consecutive days.

The Italian situation regarding indoor pollution has moved towards a progressive adaptation to
European standards with the implementation by UNI of the standards of the European Standardization
Committee (CEN) EN 838/95 [38]. The aforementioned standards contain indications for carrying
out sampling of COVs, EN ISO 16000–5: Sampling strategy for volatile organic compounds (VOC),
reporting specific measurement techniques.

2.4. The Chemiometric Approach

Starting with the data obtained by the denuders, the authors applied a chemometric approach for
evaluating possible correlations among the different situations. Tanagra open-source software [39] was
used by means of the centroid merge method and the Euclidean distance as a proximity measure [40,41].

3. Results

One of the main objectives of this project was the definition of the IAQ parameters during school
performances in the areas and environments selected for the study. In particular, environmental data
inside classrooms were simultaneously measured, including temperature, relative humidity, carbon
dioxide (CO2), and particulate matter ≤ 2.5 µm (PM2.5), according to the reference method UNI EN
14907. On the other hand, benzene (C6H6), toluene (C7H8), xylenes (as sum of ortho-, meta- and
para-xylene) (C8H10), ethylbenzene (C8H10), formaldehyde (HCHO) and nitrogen dioxide (NO2) were
determined outside the school.

Table 1 shows the average daily levels measured in different classrooms in eight schools located
in downtown Rome. As it can be seen, even if the sampling campaigns were carried out at the same
time, the microclimate among the different schools was different, meaning possible differences in the
IAQ interpretation. In particular, the temperature ranged between 17.9 and 25.1 ◦C with variability
(as coefficient of variation, cv%) between 2.7 and 15.0%, whereas the relative humidity was between
32.8 and 53.9% with variability from 2.5 and 17.8%. This occurrence could be coupled with the column
showing the carbon dioxide concentrations: the levels ranged from 653 to 1352 ppm with cv% between
8.3 and 70.9%. This large CO2 variability during the day is due to possible non-school activities
in the afternoon, when students are not in, but different events could happen (e.g., gym, theater,
meetings volleyball), typical occurrences in Italian schools. Finally, indoor PM2.5, ranging between
18.4 and 56.2 µg m−3, was determined to understand the effect of the air changes and the presence of
students on the relative levels, whereas outdoor PM2.5, from 11.8 to 79.4 µg m−3, was an index of the
external/internal pollution sources.
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Table 1. Average daily levels of some physical-chemical parameters along with standard deviation
(x + s.d.) and coefficient of variation (cv% 1) simultaneously determined during the entire measurement
campaign in eight schools in downtown Rome.

Site Temperature
(◦C) Humidity (%) PM2.5 Outdoor

(µg m−3)
PM2.5 Indoor

(µg m−3)
CO2 (ppm)

School #A 18.9 ± 2.2 (11.4) 53.1 ± 1.7 (3.1) 13.9 ± 12.8 (91.9) 18.7 ± 6.8 (36.2) 1352 ± 940 (70.9)
School #B 25.1 ± 0.9 (3.5) 53.9 ± 3.3 (6.2) 22.0 ± 7.8 (35.3) 25.5 ± 10.3 (40.3) 774 ± 352 (45.5)
School #C 17.9 ± 2.0 (11.1) 51.9 ± 4.8 (9.3) 11.8 ± 7.3 (62.2) 25.6 ± 17.2 (67.1) 1086 ± 756 (69.6)
School #D 19.2 ± 2.0 (10.3) 43.2 ± 5.3 (12.3) 30.0 ± 35.1 (116.9) 38.6 ± 29.9 (77.5) 1008 ± 691 (68.6)
School #E 22.7 ± 0.8 (3.5) 49.9 ± 6.4 (17.8) 15.2 ± 8.4 (55.4) 18.4 ± 19.9 (108.3) 684 ± 336 (49.0)
School #F 21.8 ± 2.2 (15.0) 44.7 ± 6.7 (15.0) 79.4 ± 62.8 (79.1) 56.2 ± 42.3 (75.3) 851 ± 571 (67.0)
School #G 22.7 ± 0.6 (2.7) 43.4 ± 1.1 (2.5) 61.7 ± 35.4 (57.4) 52.5 ± 23.2 (44.1) 653 ± 54 (8.3)
School #H 22.4 ± 4.1 (12.5) 32.8 ± 4.1 (12.5) 78.5 ± 44.5 (56.7) 51.0 ± 20.9 (40.9) 943 ± 561 (12.5)

1 cv% is reported in bracket.

Starting from these preliminary considerations, the authors focused their attention on the levels
of PM2.5 and CO2 during school activity and no-school activity. Table 2 reports these data. The levels
of two such pollutants determined during school activity (from 7:00 to 14:00, i.e., during the activities
related to the presence of the students) were basically higher that those determined in the other period
(14:00–7:00) when other or no activities occured, except in two cases (school #D and school #G) where
the differences between PM2.5 levels are very close (39.1 vs. 44.9 µg m−3 and 46.7 vs. 48.6 µg m−3) and
CO2 is what is expected (1627 vs. 918 ppm).

Table 2. Daily levels of indoor PM2.5 (µg m−3) and CO2 (ppm), respectively, in eight schools in
downtown Rome.

Site/Activity 1 x + s.d. 2 Min–Max cv% 75th Perc. 95th Perc. 99th Perc.

School #A

PM2.5 activity 18.3 ± 5.8 10.0–57.0 31.6 21.0 27.8 38.8
PM2.5 no activity 17.1 ± 4.0 13.0–34.0 23.1 18.0 27.0 31.0

CO2 activity 2386 ± 480 1401–3022 20.1 2759 2942 2993
CO2 no activity 599 ± 189 464–1653 31.5 644 1041 1171

School #B

PM2.5 activity 31.0 ± 2.8 29.0–33.0 9.1 32.0 32.8 33.0
PM2.5 no activity 23.5 ± 5.5 16.0–101.0 23.2 26.0 30.0 42.8

CO2 activity 1380 ± 207 1233–1526 15.0 1453 1511 1523
CO2 no activity 606 ± 161 462–1218 26.6 653 1032 1182

School #C

PM2.5 activity 23.4 ± 20.6 9.0–312.0 88.3 22.0 53.0 82.2
PM2.5 no activity 12.7 ± 17.5 6.0–324.0 137.6 11.0 32.0 64.1

CO2 activity 2021 ± 667 486–3192 33.0 2595 3033 3170
CO2 no activity 661 ± 325 466–2363 49.2 655 1354 2210

School #D

PM2.5 activity 39.1 ± 7.0 30.0–74.0 18.0 45.0 50.0 57.0
PM2.5 no activity 44.9 ± 14.3 26.0–203.0 31.8 51.0 62.0 97.8

CO2 activity 1627 ± 806 487–2915 49.6 2275 2791 2888
CO2 no activity 918 ± 578 489–2833 62.9 1174 2351 2752

School #E

PM2.5 activity 20.8 ± 5.7 10.0–38.0 27.5 23.0 32.0 35.0
PM2.5 no activity 16.3 ± 2.0 11.0–46.0 33.0 17.0 19.0 22.0

CO2 activity 674 ± 222 494–1316 12.3 710 1218 1308
CO2 no activity 535 ± 71 479–823 13.2 577 691 753
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Table 2. Cont.

Site/Activity 1 x + s.d. 2 Min–Max cv% 75th Perc. 95th Perc. 99th Perc.

School #F

PM2.5 activity 120.9 ± 11.2 101.0–156.0 9.3 126.0 143.0 152.0
PM2.5 no activity 60.7 ± 18.2 34.0–135.0 30.0 74.0 89.4 110.9

CO2 activity 1539 ± 606 521–2298 39.4 2079 2216 2279
CO2 no activity 678 ± 421 469–2049 62.1 537 1735 2004

School #G

PM2.5 activity 46.7 ± 24.8 33.0–66.0 24.8 59.0 64.0 66.0
PM2.5 no activity 48.6 ± 24.4 18.0–118.0 50.2 67.0 94.2 101.8

CO2 activity 651 ± 55 564–845 8.5 688 754 806
CO2 no activity N/A 3

School #H

PM2.5 activity 82.3 ± 41.2 59.0–411.0 50.1 79.5 149.6 264.5
PM2.5 no activity 46.8 ± 8.5 40.0–100.0 18.3 48.0 56.1 90.8

CO2 activity 2206 ± 633 858–3564 28.7 2645 3360 3515
CO2 no activity 697 ± 302 503–2410 43.3 751 1079 2286

1 school activity: 7.00–14.00; no school activity: 14.00–7.00. 2 s.d.: standard deviation. 3 N/A: not available.

Finally, Table 3 shows the levels of benzene, toluene, xylenes, ethylbenzene, formaldehyde and
nitrogen dioxide after sampling with denuders and analysis in the laboratory. The passive samplers
provide averaged concentration values of the pollutants over one or more days and therefore allow
us to evaluate a large period of time and to take into account any changes related to the work cycles
and civil activities that take place on the site in question [42–44]. Indoor levels of gaseous pollutants,
such as benzene and ethylbenzene, are below the limit of detection (LOD) of the methodology used,
whereas relevant formaldehyde concentrations were determined in both situations, especially in two
schools during the no-school activity.
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Table 3. Indoor and outdoor levels (µg m−3) of gaseous pollutants sampled by denuders in eight schools in downtown Rome.

Pollutant 1 School #A School #B School #C School #D

Class 1ˆ 3 2ˆ 3ˆ 5ˆ 5ˆ 4ˆ 1ˆ 2ˆ 2ˆ 3ˆ 4ˆ 5ˆ

Benzene
OA 2 2.6 1.1 0.98 1.5

A <0.02 <0.02 <0.02 0.32 0.43 0.33 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02
NA <0.02 0.8 3.1 0.60 <0.02 3.1 <0.02 1.8 6.3 <0.02 2.7 <0.02

Toluene
OA 7.9 6.6 8.6 9.0
A 7.7 6.4 8.2 7.7 7.4 8.2 9.2 7.1 6.7 8.9 5.8 9.4

NA 13.1 4.6 19.3 13.4 5.3 19.4 14.0 6.9 23.1 18.3 7.0 <0.02
Xylenes

OA 2.6 3.2 2.9 2.5
A 2.2 2.1 4.6 2.7 1.9 5.1 3.1 4.6 4.9 3.4 4.3 6.0

NA 3.9 4.1 8.8 4.5 5.0 7.6 5.2 7.9 9.7 4.6 6.8 <0.02
Ethylbenzene

OA <0.02 <0.02 <0.02 <0.02
A <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

NA 0.4 0.5 <0.02 0.4 0.5 <0.02 0.9 1.6 <0.02 2.1 1.6 <0.02
Formaldehyde

OA 39.4 21.1 24.3 23.2
A 76.6 62.5 63.2 83.7 82.9 95.6 82.6 65.6 57.4 84.8 81.8 92.4

NA 38.5 38.3 37.4 46.3 55.3 59.1 83.7 40.8 51.7 113.6 115.8
Nitrogen dioxide

OA 254 245 266 99
A 24 12 12 12 14 12 13 12 12 27 31 27

NA 49 42 35 58 70 50 27 61 68 35 54 29

Pollutant 1 School #E School #F School #G School #H

Class 1ˆ 2ˆ 3ˆ 1ˆ 2ˆ 2ˆ 1ˆ 2ˆ 2ˆ 1ˆ 2ˆ 3ˆ

Benzene
OA 2.8 <0.02 1.0 1.2
A <0.02 <0.02 1.2 <0.02 <0.02 <0.02 4.2 <0.02 <0.02 <0.02 <0.02 <0.02

NA 5.1 5.2 5.3 <0.02 0.9 2.7 6.5 5.6 8.1 0.3 1.5 4.4
Toluene

OA 10.1 3.8 4.4 4.1
A 7.7 6.3 39.2 4.6 5.5 4.6 15.1 <0.02 13.5 6.1 6.4 5.8

NA 19.4 20.1 20.3 13.1 7.0 17.4 20.2 18.0 26.3 17.0 6.8 18.4



Int. J. Environ. Res. Public Health 2020, 17, 6695 8 of 17

Table 3. Cont.

Pollutant 1 School #E School #F School #G School #H

Class 1ˆ 2ˆ 3ˆ 1ˆ 2ˆ 2ˆ 1ˆ 2ˆ 2ˆ 1ˆ 2ˆ 3ˆ

Xylenes
OA 2.2 2.7 16 2.3
A <0.02 <0.02 <0.02 3.2 2.6 4.1 4.0 <0.02 <0.02 2.9 3.0 5.2

NA 4.2 4.4 4.6 3.8 6.0 9.3 5.0 4.2 5.7 4.9 7.3 8.4
Ethylbenzene

OA <0.02 <0.02 3.5 <0.02
A <0.02 <0.02 <0.02 <0.02 <0.02 0.3 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

NA <0.02 <0.02 <0.02 0.9 1.2 0.6 2.1 <0.02 <0.02 0.7 1.0 <0.02
Formaldehyde

OA 27.5 18.7 33.5 15.4
A 55.0 52.5 51.9 90.9 82.8 43.0 34.5 70.6 81.3 64.8 70.5 72.1

NA 36.6 38.2 35.8 165.2 40.5 44.6 45.3 42.5 51.3 62.6 56.3
Nitrogen dioxide

OA 133 226 143 344
A 36 29 33 14 22 19 19 15 13 15 12 10

NA 73 55 67 74 96 136 145 98 95 49 35 35
1 activity: 7:00–14:00; no-activity: 14:00–7:00; 2 OA: outdoor; A: activity; NA: no-activity; 3 1ˆ,2ˆ,3ˆ,4ˆ,5ˆ: the class level in the Italian schools (different sections).
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4. Discussion

4.1. IAQ: Gaseous/Airborne Pollutants and Denuders

IAQ is strongly influenced by furnishings as possible sources of pollutants. Another important
aspect for the IAQ evaluation concerns the management of cleaning [45,46]. Guidelines establish that
it is appropriate to carry out the cleaning operations in the absence of the students and at least a few
hours before their entry into the classroom.

This paper would like to propose a methodology for identifying possible sources of air pollution
during use and in the presence of students and staff, determining the concentration levels of some
pollutants in different classrooms, and comparing the different concentrations with the guide values,
as well as checking the correct functioning of the air conditioning technology and specific air exchanges.

According to the data, although less than half of the schools had operating protocols indicating the
procedures to be followed when cleaning, these were carried out mainly after the lessons. The sources
present in the indoor environments of the eight school buildings investigated, together with the type
of activity carried out by the students, entailed the release of various types of chemical pollutants into
the air.

Figure 2 shows the typical indoor/outdoor PM2.5 and CO2 trends in two consecutive days in
schools where only school activities are present.
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(14:00–7:00); B: school activity (7:00–14:00).

As can be seen, the indoor PM2.5 and CO2 rapidly increase their levels as soon as the activities
begin, e.g., administrative staff from 7:00 and students from 8:00. In this period, a strict correlation
between PM2.5 and CO2 is detected in all schools where no other activities are present. This correlation
is around 0.75 but, in some cases, it even reaches 0.86. Further, another parameter in regards to the
effects of outdoor PM2.5 is opening windows. The effect of this is to temporarily dilute the pollutants
and increase the IAQ (recorded in Figure 2 as partial decreases in CO2). At the end of school activities,
i.e., the end of both lessons and work by administrative staff (14:00), a clear decrease of indoor PM2.5

and CO2 is detected. A CO2 peak can be revealed around 16:00 along with a low PM2.5 increase.
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This occurrence, due to the cleaning procedures performed by the staff, is carried out without paying
attention to opening the windows; the effect is to increase the CO2 levels in that moment but, mainly,
to increase the background level of indoor PM2.5 that will persist until the next day. This means that
the effects of cleaning processes not performed according to safety procedures can create risks for the
health of exposed people, even after hours. Furthermore, as will be shown later, it is also necessary
to consider the persistence and the relative effect of both the VOCs emitted by the products used for
cleaning or even the cigarette smoke by the cleaning operators.

Figure 3 shows a highlight of the previous figure. It is evident that the start of activities as well as
the effect of air exchange at the end of every lesson is evidenced by hourly CO2 decreases, whereas
PM2.5 constantly increases its values up to an almost steady state, with some relevant peaks due
to occasional events (opening windows). This typical behavior, occurring in every class when no
activities are performed after the lessons, allow us to draw a baseline level of these two pollutants
in any situations and estimate the risk assessment for the exposed personnel (students, teachers,
administrative staff, etc.).
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Figure 3. Typical indoor PM2.5 and CO2 behaviors in classes where only school activities are
daily performed.

The schools host daily afternoon events from 15:00 until 19:00 or 20:00 (some events are also at
night). These events could be volleyball/basketball gym, theater, or dance school, and often include a
lot of people. These situations commonly occur in Italy, especially in schools present in big urban cities
such as Rome. Because of this, we investigated the pollution during such occurrences. Figure 4 shows
the effects of an intense afternoon/evening activity on the indoor PM2.5 and CO2.
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The most interesting issue is related to the occurrence after the end of school-activities. As can be
seen, two different situations can be detected: from 14:00 to 17:00, indoor and outdoor PM2.5 show
almost the same levels, which are quite low without relevant peaks. During this period, indoor PM is
higher than outdoor, as can be expected, whereas CO2 reaches high levels (up to 3500 ppm) from 14:00
to 17:00 due to presence of students in the gyms. The authors would like to remember that the average
residential indoor CO2 level is recommended to be 1000 ppm [47] but in some countries it can reach
levels of 1200–1250 ppm [48,49], 1500 ppm [50], or up to 3500 ppm [51]. From 19:00 this occurrence is
completely changed, the behaviors are overturned: CO2 becomes stationary, almost constant, around
500 ppm, whereas indoor/outdoor PM2.5 increases up to 230 µg m−3. What accounts for these findings?
A retrospective analysis shows a close relationship between indoor and outdoor PM2.5 and low CO2

level: this suggests the presence of an event where the air exchange is really important (low CO2) and
simultaneously there is high airflow from outside (similar PM values). In fact, the School White Night
occurred with a large participation of people and high air remixing.

The approach followed in this study shows a few limitations, essentially due to the sampling
procedure. In fact, sampling carried out in the outdoor environment should follow the same protocol
as the indoor sampling (showing a difference between the time of activities and no activities), to be
able to consider the influence of the outdoor environment on the indoor environment.

During the measurement campaigns, denuders played an important role. Gaseous pollutants
were determined following the sampling and the laboratory analysis. As reported in Table 3, denuders
allowed us to take information on some indoor/outdoor gaseous pollutants such as benzene, toluene,
xylenes, ethylbenzene, formaldehyde and NO2. Few papers have dealt with the pollutant determination
by denuders in schools [52–56] but no papers address the relative evaluation differentiating between
school activity and no-school activity. Once again, this is the main novelty of this paper. The authors
would like to underline that this difference could be useful for determining the risk of personal exposure
of each student.

In this case, the scenario is quite different than the one shown for PM2.5 and CO2, except in very
few cases, the levels determined during no-school activities, i.e., between 14:00 to 7:00, are higher than
those determined during school activities, i.e., 7:00–14:00. These high levels are essentially due to the
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cleaning procedures occurring in the afternoon. A recent paper demonstrated the levels of ultrafine
particles produced by floor cleaning products [46]. It is reasonable to think that the different cleaning
products used in the different schools are responsible for the high PM2.5 levels as well as for the high
levels of some gaseous pollutants. Further, the formaldehyde levels are quite interesting: although they
could appear high, they are below the WHO guideline values [9] (100 µg m−3). Its levels were above
the guideline value (113.6, 115.8 and 165.2 µg m−3) only in three situations (two classes in school #D
and 1 in school #F, respectively), due to smoking by cleaning staff. An isolated analysis for determining
acetaldehyde in the three situations confirmed the theory [57]. The outdoor determinations confirmed
some issues. For instance, the ratio between toluene/benzene, which is 3–5 in urban air, verifies the
hypothesis that no other sources of these pollutants, except the autovehicular emissions, are present in
the investigated areas [58,59]. Ethylbenzene is always below the LOD, whereas the xylenes are in line
with previous determinations [60].

4.2. A Chemometric Approach

Cluster analysis (CA) and principal component analysis (PCA) showed similarities among the
data. In showing these similarities, we first used CA (Figure 5) for understanding how the dataset can
be divided. The data are in five clusters:

1. cluster #1 is composed of three elements: formaldehyde outdoor, NO2 indoor during activity and
toluene indoor during no-activity;

2. cluster #2 is composed of three elements: formaldehyde indoor during activity, formaldehyde
indoor during no-activity, NO2 indoor during no-activity;

3. cluster #3 is composed of four elements: xylenes outdoor, xylenes indoor during no-activity,
toluene outdoor, toluene indoor during activity.

4. cluster #4 is composed of seven elements: benzene outdoor, benzene indoor during activity,
benzene indoor during no-activity, xylenes indoor during activity, ethylbenzene outdoor,
ethylbenzene indoor during activity, ethylbenzene indoor during no-activity.

5. cluster #5 is composed of one element: NO2 outdoor.
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CA actually showed the presence of five clusters: for a better understanding of the representation,
the authors would like to show the PCA. The first information regarding Component 1 and Component 2
is able to explain 92.3% of the overall data. In particular, Component 1 (i.e., a component formed by NO2

and formaldehyde determined indoor/outdoor) is related to compounds associated with photochemical
reactions, whereas Component 2 (i.e., a component formed by toluene, benzene, ethylbenzene and
xylenes determined indoor/outdoor) is related to compounds connected to combustion processes. As can
be seen in Figure 6, the levels of NO2 and formaldehyde, both outdoor and during activity/no-activity,
are distributed along Component 1, meaning that in such situations these compounds are predominant,
whereas benzene, toluene, ethylbenzene and xylenes are relevant along Component 2, as expected.
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5. Conclusions

The pursuit of improving IAQ in schools translates into a significant lifetime benefit for the health
of students, teaching staff, technical and administrative staff. This paper would like to highlight the
importance of some issues in the IAQ in schools:

1. to understand the close relationship between the school environment, health and indoor air pollution
in the heterogeneous school context, through the acquisition of data on chemical pollutants;

2. to stimulate the correct choice and use of energy efficient processes;
3. to understand the need for regular air exchange;
4. to modernize classrooms, specialized didactic laboratories, gyms, offices, etc.;
5. to provide furnishings that are increasingly suitable for teaching;
6. to choose educational and consumer materials taking into account the emission levels of pollutants

of the individual materials.

IAQ takes on particular significance and importance, both for the vulnerabilities of the subjects
(e.g., students and workers, some with more or less complex diversified susceptibility and disability, or
with respiratory, asthmatic and allergic diseases, or alteration of the immune system, etc.), and for
the high residence times. In general, the environments and school spaces represent, after the home
environment, the places where students spend more time, on average about 6–8 h a day for at least five
days a week for nine months of the year, whereas for teachers, staff and administrative staff, it can be
extended for shorter or longer periods.
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For all these reasons, a series of new strategies, particularly appropriate and organized
interventions, must be set up, which depend on many factors that cannot be limited to individual
items (e.g., electrical, water, seismic, fire, architectural, or energy efficiency), without including the
IAQ improvement among the interventions or priorities. All these adjustment interventions contribute
significantly to the IAQ and the health of students and all staff.
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