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Abstract: In recent years, haze pollution has had a wide impact in China. This research systematically
studies the influence mechanism of haze pollution from a new perspective of urban innovation
efficiency. We use a generalised space two-stage least squares method to analyse the correlation
between urban innovation efficiency and haze pollution. The periodic and regional influences
of urban innovation efficiency on haze pollution is explored using a threshold regression model.
Through the mediating effect model, we accurately identify the transmission mechanism of urban
innovation efficiency affecting haze pollution. The results show a significant inverted ‘U’ relationship
between improvement of urban innovation efficiency and haze pollution. The regional innovation
activities of innovative cities differ greatly from those of non-innovative cities. The effect of innovation
efficiency improvement in innovative cities on haze governance is better than that of non-innovative
pilot cities. In eastern cities with a higher level of economic development, the improvement of
innovation efficiency has a stronger impact on haze governance. Industrial structure and population
agglomeration have a mediating effect on the impact of urban innovation efficiency on haze pollution,
providing directions for the rational formulation and effective implementation of haze governance
policies in China, as well as in other countries.
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1. Introduction

In recent years, haze pollution in China has become increasingly serious with the rapid
development of urbanisation and industrialisation. It has occurred at a high frequency and has
had a wide range of impacts, the governance of which has proven to be difficult. As such, there is an
urgent need to control haze pollution. In the context of China’s coal-dominated energy structure, the
management of haze is a scientific and systematic issue that requires cooperation between both the
government and enterprises. On the one hand, the government intensifies environmental regulations
and forces enterprises to upgrade their technologies. This fundamentally changes the mode of economic
growth from the pursuit of scale and speed to improved efficiency. On the other hand, it is necessary
for responsible enterprises to take the lead in terms of social responsibility, introduction of advanced
technology, and promotion of industrial upgrading. Innovation now plays an increasingly prominent
role in haze governance. Only by constantly promoting technological progress can manufacturers
realise chained emission reduction from clean production to terminal control as soon as possible. Most
of the existing analyses on the influencing factors of haze governance only focus on economic impacts
such as urbanisation [1], industrial structure [2], and fiscal expenditure [3]. Few scholars have focused
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on the relationship between innovation and haze governance, especially the impact of improvement in
urban innovation efficiency (UIE) on the latter.

Innovation efficiency is an important indicator for measuring the level of innovation [4,5]. An
interesting phenomenon in China is that regions with high innovation efficiency and high levels of
haze pollution overlap to a large extent. China’s PM2.5 (fine particulate matter) high-emission regions
are concentrated in the Beijing-Tianjin-Hebei and Yangtze River Delta urban agglomerations and
surrounding areas, including Beijing, Tianjin, Shanghai, Jiangsu, Zhejiang, and other regions [2,6].
Similarly, the Yangtze River Delta, including Shanghai, Jiangsu, and Zhejiang provinces, and the
Beijing-Tianjin-Hebei region, represented by Beijing, Tianjin, and other cities, are also agglomerations
with high urban innovation efficiency [7]. Is this phenomenon an inevitable result of the process of
economic development? What is the mechanism of its occurrence? Does innovation efficiency promote
or mitigate haze pollution? Is the performance of different cities the same? How can we effectively
achieve the ‘win-win’ goal of innovation development and haze governance based on a city’s economic
development level? These are all urgent questions for academic circles to answer.

In view of this, this study uses data envelopment analysis (DEA) to measure the innovation
efficiency of 283 prefecture-level cities in China from 2012 to 2016. The PM2.5 concentration is used to
refer to the degree of haze pollution. Through generalised spatial two-stage least squares (GS2SLS),
which can control both spatial spill over effects and endogeneity, this study conducts an empirical
analysis of the influence of innovation efficiency on haze pollution. The marginal contribution of
this research is threefold: (1) A systematic study is conducted on the influence mechanism of haze
pollution from a new perspective—that of improving the efficiency of urban innovation. Considering
that the core spatial carrier of China’s national innovation system is the city, 283 prefecture-level
cities in China were considered as the research object. (2) We adopt a threshold regression model
and use night-time light as the threshold variable. The staged and regional impact of UIE on haze
pollution under different economic development levels is considered from a non-linear perspective. (3)
According to the mediating effect test principle [8], we construct a mediating effect model composed
of three regression equations to accurately identify the transmission mechanism through which UIE
affects haze pollution. This is done to provide empirical support for the rational formulation and
effective implementation of haze governance policies in China, as well as in other countries and regions.

2. Literature Review and Theoretical Hypotheses

At present, the purpose of most academic research is to explore the impact of technological
progress on environmental pollution. Scholars have formed two diametrically opposed views based
on this relationship: One is that technological progress has increased environmental pollution [9,10],
while the other is that it has reduced environmental pollution [11,12]. It is generally believed that the
relationship between innovation and environmental pollution is linear, ignoring the stage characteristics
of innovation on environmental pollution, especially haze pollution. The impact of innovation on
environmental pollution shows a trend of intensifying and then mitigating [13]. This is because
in the initial stage of innovation, companies are more focused on developing production-oriented
technologies at the expense of resources and the environment [10]. Because of the excessive pursuit of
business value and economic growth by companies and governments, initial innovations are often
solely focused on generating economic value, ignoring any environmental pollution problems caused
by production [14]. Thus, increased research and development (R&D) investment causes environmental
quality to decline due to the ‘squeeze out’ effect of the polluting manufacturing sector. The government
then gradually realises the problem of environmental pollution and begins to adopt pollution emission
restrictions and R&D subsidies for the clean energy sector. Investment in R&D gradually flows to
the clean input sector, and the environmental pollution situation gradually improves [15]. Thus, the
impact of an improvement in UIE on haze pollution is not a simple linear relationship; it may show an
inverted ‘U’ trend of ‘positive followed by negative’. Based on the above views, we put forward the
first theoretical hypothesis:
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Hypothesis 1 (H1). There is a nonlinear inverted ‘U’ relationship between UIE and haze pollution.

Cities are the centre of regional economic and social development. They serve as the most
important base for national economic output where various innovative elements and resources
gather [7]. The development of cities has a major impact on the overall development of regions and
countries. In order to give full play to the city’s core role in promoting independent innovation and
accelerating the transformation of its economic development mode, China began to implement a pilot
project of building an innovative city in 2008. The scope of the pilot has since continuously expanded.
Innovative cities refer to those that mainly rely on innovation factors, such as science and technology,
knowledge, manpower, culture, and systems, to drive its development. Such cities have high-end
radiation and play a leading role for other regions. The innovation efficiency of innovative cities differs
greatly from non-innovative cities, creating a large gap in the role of haze governance. With the in-depth
advancement of the pilot project for innovative cities by the Chinese government, their innovation
resources have continued to increase due to investment. The innovation factor agglomeration also
continues to increase. Accordingly, the second hypothesis of this study is proposed:

Hypothesis 2 (H2). There are regional differences in the effect of UIE improvement on haze governance, and
the effect of UIE improvement in innovative pilot cities on haze governance is superior to non-pilot cities.

As the economy develops, the intensity of government environmental regulations continues
to increase, and the market welcomes more environmentally friendly technologies. In response to
government requirements and market demand, companies invest more money in green innovation,
which is conducive to environmental governance [12]. In addition, there are some economic factors
that may influence the green investment strategy of enterprises, for example, our findings show that
a longer relationship with the main bank fosters firms’ involvement in green investment strategies
in order to reduce their environmental impact [16]. At the same time, based on the findings of Lin
et al. [17], environmental regulation has a significant impact on the progress of green technology,
showing a U-shaped trend where it first inhibits progress, then promotes it. That is, when the level
of economic development is low and the intensity of environmental regulation is relatively strong, it
cannot effectively promote the green technological progress of enterprises. If both the level of economic
development and the intensity of environmental regulation increases, the effect of such regulations
in promoting green technological progress improves. Therefore, due to the difference in the level of
regional economic development, regional innovation activities are not the same. Likewise, the impact
of innovation on the environment also varies. This indicates that in the mechanism of innovation’s
effect on haze pollution, the level of economic development may play an important role and affect the
position of the ‘inflection point’ in the relationship between the two. There may also be a threshold
value of UIE improvement to mitigate the impact of haze pollution. That is, when the economic
level is low, an improvement in UIE cannot reduce haze pollution, but it plays a restraining role on
haze pollution when a certain economic level threshold is crossed. Therefore, the third hypothesis
is proposed:

Hypothesis 3 (H3). There is a threshold effect in the process of UIE improvement on haze governance, and the
level of economic development can affect the position of the inflection point in the relationship between the two.

Through the analysis of existing literature [2,18,19], we believe that innovation efficiency may
affect the degree of haze pollution through the factors presented in Figure 1.
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Figure 1. The mechanism of innovation efficiency on haze pollution.

An improvement in UIE can promote the optimisation of the industrial structure in the following
ways. First, the process of improving innovation efficiency guides the flow of innovation resources
to more efficient sectors. It promotes further agglomeration of innovation resources, such as funds
and capital for R&D, thereby enhancing the level of industrial technology and improving production.
Second, such improvement continuously expands the potential boundary of production by improving
production technology efficiency and production scale efficiency. These two ultimately promote an
advanced industrial structure. A high proportion of secondary industries is an important reason for the
aggravation of haze pollution [20,21]. Innovation promotes the transformation and upgrading of the
industrial structure, which leads to the gradual phasing out of pollution-intensive secondary industries.
Additionally, it actively develops modern service, technology-intensive, and tertiary industries [19].
With the optimisation of the industrial structure, the emission of air pollutants during the production
process has decreased, and the haze pollution situation has gradually improved.

The improvement of UIE can greatly promote technological progress, especially the development
of green innovative technologies, which can effectively reduce pollution emissions and alleviate haze
pollution. Generally speaking, there are two main ways to control haze pollution: One is reusing
air pollution emissions, and another is controlling the emission of air pollutants through advanced
technologies [22]. Green technological progress, which usually comes from green innovation, refers
to new technologies and products developed to reduce environmental damage [23]. This kind of
progress promotes cleaner and more efficient production technology, which is conducive to promoting
clean production and end governance to reduce pollutant emissions [12]. Technological advancements
brought about by the improvement of UIE can improve energy efficiency and reduce the consumption
of fossil fuels [24]. Most of the gas pollutants contained in haze come from fossil fuels [18]. Therefore,
technological innovation can minimise the use of fossil fuels and other energy sources to reduce
haze pollution.

With the improvement of UIE and the optimisation of industrial structure upgrading, an urban
population inevitably gets attracted to the area, with R&D personnel as the core and various service
industry employees to assist. This accelerates agglomeration, thereby exerting a certain influence
on haze pollution. On the one hand, population gatherings have exacerbated haze pollution. An
increase in the number of people leads to a higher demand for housing, household appliances, and
consumption. There is also an increase in the discharge and incineration of domestic garbage, and
the burning of heating energy during winter, inevitably raising the difficulty of haze governance. On
the other hand, population agglomeration promotes haze governance to some extent. Population
concentration means shorter commutes for urban residents, fewer cars in use per capita, and lower
emissions of air pollutants in high-density urban areas [25]. In addition, it also leads to a concentration
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of enterprises and public facilities, which is conducive to the sharing of infrastructure, especially
environmental pollution treatment facilities [26]. In summary, the fourth hypothesis is proposed:

Hypothesis 4 (H4). UIE can affect haze pollution through the transmission of intermediary factors, such as industrial
structure effects, technological progress effects, energy saving effects, and population agglomeration effects.

3. Measurement Model and Index Description

3.1. Benchmark Model

The IPAT model proposed by Ehrlich and Holdren [27] is widely used for analysing the impact of
human activities on the environment [28]. The basic equation of the model is I = PAT, where I stands
for pollution, P is population, A is affluence level, and T is technical level. The IPAT model does not
allow each influencing factor to change in non-monotonic or different proportions, so its application is
greatly limited. To overcome this defect, Dietz and Rosa [29] developed the IPAT equation into the
STIRPAT model:

Ii = a × Pi
b
× Ai

c
× Ti

d
× ei (1)

When the natural logarithm is taken on both sides, the equation becomes:

lnIi = lna + b(lnPi) + c(lnAi) + d(lnTi) + εi (2)

The subscript i is the observation unit; a is a constant term; b, c, and d are the coefficients of each
variable to be estimated; e is the error term; and ε is the logarithmic form of e. The advantage of the
STIRPAT model is that it allows each coefficient to be used as the parameters can be estimated, and
also allows each influencing factor to be decomposed.

Based on the STIRPAT model and Environmental Kuznets Curve (EKC) hypothesis [11], this study
first constructed the following benchmark model for Hypothesis 1 to examine the impact of innovation
efficiency on haze pollution:

lnPMit = α0 + α1 lnEit + α2(lnEit)2 + α3Xit + εit (3)

3.2. Variable Selection and Data Source

The interpreted variable is haze pollution (PM), expressed as the annual average concentration of
PM2.5. The global average annual value of the PM2.5 concentration was obtained from the International
Geoscience Information Network Center of Columbia University. The ArcGIS software (Environmental
Systems Research Institute, Redlands, CA, USA) was then used to analyse the average annual PM2.5

concentration data of all prefecture-level cities in China.
The core explanatory variable of this study is innovation efficiency (E), and its essence is an

input-output ratio. We took the number of scientific research personnel and financial, science, and
technology expenditures as innovation inputs [30,31]. The number of large patent applications and
the number of scientific papers searched were taken as innovation outputs [32,33]. The number of
scientific papers searched (pieces) consisted of Chinese and English papers, which were taken from the
China Knowledge Network (CNKI) and the Web of Science (WOS) databases, respectively. The three
major patent applications (cases) were retrieved according to the ‘Chinese Patent Full-text Database
(Knowledge Edition)’, and the missing values of a few of the indicator data were completed with the
linear interpolation method. The data envelopment analysis (DEA) method was used to calculate the
innovation efficiency value of each city, and the specific processing was the same as Zhang et al. [34].

The threshold variable is the level of economic development (Eco); drawing on relevant research, we
used the average brightness of night-time lights to represent the level of economic development [35,36].
Based on the EKC hypothesis, we also introduced the first and second terms of the economic variables in



Int. J. Environ. Res. Public Health 2020, 17, 6095 6 of 20

the model. Regarding the night-time light brightness data, we used the stable light data released by the
National Oceanic and Atmospheric Administration (NOAA) website. Additionally, we selected the average
light intensity data from 2012 to 2016. Due to the difficulty in converting the National Polar-Orbiting
Partnership-Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) data and the Defense Meteorological
Satellite Program/Operational Line-Scan System (DMSP/OLS) data, this study selected 2012 as the base
period. This processing technique is based on the methods of Shi et al. [37] and Chen et al. [38].

The intermediary variables include: (1) industrial structure (sec), measured by the proportion of the
output value of the secondary industry to the gross domestic product (GDP); (2) technological progress
(tec), measured by the number of patent licenses per 100 scientific research practitioners; (3) energy
conservation (es), measured by the total annual liquefied petroleum gas supply; and (4) population
agglomeration (pop) is expressed by the number of people per unit area [39,40]. Ma and Zhang [2]
believed that the combustion of fossil fuels is an important source of haze pollution. The use of liquefied
petroleum gas (LPG) reduces the combustion of fossil fuels, which is beneficial to haze governance.

We also included some factors related to haze pollution as control variables into the model:
(1) fiscal expenditure (pe), measured by the number of local government budgetary fiscal expenditures;
(2) transportation (tri), using a measure of the total annual passenger transport of public cars; and (3) the
degree of opening to the outside world (FDI), measured by the amount of foreign direct investment
actually used [41,42].

The data of the above variables were mainly obtained from the ‘China City Statistical Yearbook’
(2013–2017) and the EPS database (see Table 1 for details on the data sources). The collinearity test
results of each variable indicate that there is no correlation between the explanatory variables (Table 1).
Finally, we obtained panel data for a total of 1415 observations in 283 cities in China from 2012 to 2016.
The correlation coefficient of each variable is shown in Table A1.

Table 1. Variable description and data sources.

Variable Type Variable Name Indicator Data Sources

Explained
variable Haze pollution PM2.5 annual average

concentration

Columbia University International Earth
Science Information Network

(https://beta.sedac.ciesin.columbia.edu/)

Core explanatory
variable Innovation efficiency Input-output ratio of innovative

behaviour Calculated by DEA method

Threshold
variable

The level of economic
development Average night light brightness NOAA WEBSITE

(https://ngdc.noaa.gov/eog/index.html)

Intermediary
variable

Industrial structure
The output value of secondary

industry accounts for the
proportion of GDP

China City Statistical Yearbook
(2013–2017)

Technical progress
The number of patent

authorisations per hundred
scientific research practitioners

Energy saving Annual LPG gas supply EPS DATABASE

Population
agglomeration Population per unit area China City Statistical Yearbook

(2013–2017)

Control variable

Fiscal expenditure Local government general
budget expenditure EPS DATABASE

Transportation Total passenger transport of
public motor vehicles

China City Statistical Yearbook
(2013–2017)Trade openness The amount of foreign capital

actually utilised

3.3. Spatial Weight Matrix

Haze pollution has a strong spatial correlation under the influence of natural activities, such
as the atmosphere, and economic activities like industrial transfer. Therefore, the study of haze
pollution needs to include a weight matrix reflecting the spatial relationship in the model. Based on

https://beta.sedac.ciesin.columbia.edu/
https://ngdc.noaa.gov/eog/index.html
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the geography between cities, we constructed a geographical distance spatial weight matrix (W1) to
reflect the influence of geographical factors on the spatial distribution characteristics of haze pollution.
The element wij of W1 represents the nearest highway mileage between cities i and j. In addition, we
also obtained the economic geographic matrix W2, which reflects both urban economic and geographic
information through MATLAB point multiplication. This was used for robustness testing. Referring to
Shao et al. [4], let W2 = ωW1 + (1 − ω) W3, where ω represents the weight of the geographic distance
spatial weight matrix, and the value is 0.5; W3 represents the weight matrix of the economic distance
space, and its element, wij, is the reciprocal of the absolute difference between the annual average per
capita GDP of cities i and j.

3.4. Endogenous Issues

The two-way causal relationship between the explanatory and explained variables may lead to
the existence of endogenous problems. The ‘Porter Hypothesis’ believes that the ultimate effect of
environmental control imposed on companies is the promotion of continuous technological innovation.
Therefore, innovation efficiency can affect haze pollution. In turn, strengthened environmental
control and changes in environmental quality have also affected technological innovation. Serious
endogenous issues will make the ordinary least squares (OLS) biased and inconsistent, and the problem
of heteroscedasticity also exists. Thus, the estimation method will also be invalid. At this time, the
lag item of the explanatory variable can be selected as a tool variable to solve the problem of invalid
estimation, that is, using the 2SLS method for estimation. However, considering the spatial spill
over effect of haze pollution, we further selected the GS2SLS estimation. This method selected all
explanatory variables and their spatial hysteresis terms as instrumental variables, estimated the spatial
panel model based on the 2SLS method [43], and simultaneously controlled the spatial correlation
effect and endogenous problems in the model. When choosing the highest third-order spatial lag term
as the instrument variable, the highest second-order spatial lag term was selected as the instrument
variable in the robustness test.

4. Benchmark Regression Analysis

4.1. Benchmark Regression

Table 2 shows the GS2SLS estimation results of the benchmark model, and columns (1) and (2)
present the estimation results of the fixed-effect and random-effect models considering only the core
explanatory and basic variables of the STIRPAT model. Columns (3) and (4) add other control variables
based on columns (1) and (2). The Hausman test of columns (1)–(4) in Table 2 all passed the significance
level of 1%, which indicates that the fixed-effect model should be selected. The coefficients of the spatial
hysteresis items of the haze pollution in Table 2 are significantly positive at the 1% level, indicating that
haze pollution indeed has a spatial spill over effect, and haze pollution in adjacent regions will transfer
to each other. This is because, on one hand, weather factors such as wind direction, temperature
difference, and rainfall cause natural atmospheric flow. The degree of haze pollution in one area is
closely related to the degree of haze pollution in geographically similar areas. On the other hand,
human factors such as industrial transfer, cross-regional trade, and the externality of environmental
policies have further strengthened the spatial correlation between regional haze governance and
environmental air quality [44]. The regression results in columns (1)–(4) all show that the coefficient of
the primary term of the core explanatory variable, innovation efficiency (E), is significantly positive,
and that of the secondary term is significantly negative. There is a significant inverted ‘U’ relationship
between innovation efficiency and haze pollution, and the latter presents a changing trend of first
rising, and then falling with the improvement of innovation efficiency. According to column (3), we can
also calculate the inflection point value of the inverted ‘U-shaped’ curve between innovation efficiency
and haze pollution. We find that the innovation efficiency value of all cities is less than the inflection
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point value. During the research period, all cities in China are in the stage in which haze pollution
increases with the improvement of innovation efficiency.

Table 2. Benchmark regression.

Variable
(1) (2) (3) (4)

FE RE FE RE

W1 * lnPM 1.098 ***
(0.361)

1.044 ***
(0.075)

1.082 ***
(0.348)

0.925 ***
(0.075)

lnE 0.733 ***
(0.093)

1.322 ***
(0.050)

0.371 ***
(0.109)

0.501 ***
(0.101)

(lnE)2 −0.084 ***
(0.013)

−0.166 ***
(0.008)

−0.034 **
(0.015)

−0.054 ***
(0.014)

lnEco 0.062 ***
(0.010)

0.066 ***
(0.009)

0.046 ***
(0.010)

0.039 ***
(0.010)

(lnEco)2 −0.025 ***
(0.004)

−0.025 ***
(0.004)

−0.025 ***
(0.004)

−0.027 ***
(0.004)

lnpop 0.030 ***
(0.008)

0.047 ***
(0.008)

0.023 ***
(0.008)

0.033 ***
(0.008)

lntec −0.071 ***
(0.011)

−0.059 ***
(0.010)

−0.073 ***
(0.011)

−0.057 ***
(0.010)

lnsec 0.155 ***
(0.036)

0.170 ***
(0.033)

lnes −0.009 **
(0.004)

−0.008 **
(0.004)

lnpe 0.027 *
(0.016)

0.045 ***
(0.015)

lntri 0.041 ***
(0.014)

0.047 ***
(0.013)

lnFDI −0.004
(0.006)

0.001
(0.006)

Adjust R2 0.980 0.980 0.981 0.981

Wald test (p) 293.861
(0.000)

5271.420
(0.000)

358.234
(0.000)

5775.189
(0.000)

Hausman test (p) 94.820
(0.000)

117.609
(0.000)

Note: ***, **, and * represent the significance levels of 1%, 5%, and 10%, respectively; the values in parentheses
below the coefficients are their standard errors; FE and RE represent fixed-effect models and random-effect models,
respectively; this also applies to the following tables.

The first term coefficient of the economic factor (Eco) is significantly positive, and the second term
coefficient is significantly negative. This is consistent with the EKC hypothesis. With the development
of the urban economy, haze pollution first intensifies, and then alleviates. The development level was
used as a threshold variable to explore whether there is a difference in the impact of UIE on haze
pollution at different stages of economic development.

Population agglomeration (pop) has a significant positive effect on haze pollution. This is because
as the urban population grows, the demand for and consumption of housing, household appliances,
and motor vehicles increase, as do emission and burning of household waste and the burning of heating
energy during winter. In addition, the real estate dust caused by population agglomeration, materials
such as freon discharged by household appliances, automobile exhaust, and harmful substances from
coal and garbage combustion are the foundations of haze formation. The coefficient of technical
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progress (tec) is negative. Technological advances have brought clean technologies and advanced
environmental management methods to alleviate haze pollution. The coefficient of industrial structure
(sec) is significantly positive, indicating that increasing the proportion of the secondary industry
exacerbates haze pollution. Consistent with the conclusions of most studies on the relationship
between industrial structure and environmental pollution, an increase in the proportion of secondary
industries will lead to increased environmental pollution [20,21]. The coefficient of energy saving (es) is
negative, and LPG is clean energy. The uses of clean energy can minimise the emission of atmospheric
pollutants, thereby reducing haze pollution.

The coefficient sign of financial expenditure (pe) is positive, which may be because GDP growth
was used as the main performance evaluation indicator in the promotion of Chinese local officials. To
improve political performance, many local officials have excessively invested in construction and even
introduced high pollution and high energy-consuming enterprises. This high-speed economic growth
has brought serious environmental pollution problems. The coefficient of traffic (tri) is significantly
positive, and the use of vehicles and other modes of transportation has exacerbated haze pollution. The
coefficient of foreign investment (FDI) is not significant, and the impact of foreign direct investment on
haze pollution cannot be determined. This indicates that neither the ‘pollution halo’ nor ‘pollution
paradise’ hypotheses have been verified at the Chinese city level.

4.2. Robustness Test

We mainly adopted the method of replacing the explained variable, spatial weight matrix, and
tool variable to test the robustness of the benchmark regression results. The specific approach is as
follows. First, we used PM10 instead of PM2.5 to represent the air pollution variable for regression. The
PM10 data were taken from the website of the Ministry of Ecology and Environment of China. This
website has complete statistics on PM10 data for all prefecture-level cities in China since December
2014. Northern China begins burning coal for heating in December, and the data for December of
the year is representative for studying haze pollution. Therefore, this study selected the monthly
statistical data from December of 2014 to 2016 for testing; the geographical and economic distances
nested weight matrix (W2) were used to replace the weight matrix (W1) from the previous regression.
Based on the GS2SLS regression, the highest second-order spatial lag term was adopted to replace
the highest third-order spatial lag term from the previous regression as the instrumental variable.
Table 3 shows the regression results. The spatial lag term of haze pollution is still significant, and the
inverted ‘U-shaped’ relationship between the core explanatory variable, UIE, and haze pollution is
also significant. This shows that the baseline regression mentioned above has strong robustness.

Table 3. Robustness test.

Variable Replace Explained Variables Replace Spatial Weight Matrix Replace Tool Variables

W * lnPM 0.768 ***
(0.188)

0.146 ***
(0.036)

0.923 ***
(0.076)

lnE 0.135 *
(0.227)

0.614 ***
(0.103)

0.504 ***
(0.101)

(lnE)2 −0.005 *
(0.031)

−0.068 ***
(0.015)

−0.054 ***
(0.014)

lnEco −0.017
(0.012)

0.034 ***
(0.010)

0.039 ***
(0.010)

(lnEco)2 −0.016 ***
(0.006)

−0.029 ***
(0.004)

−0.027 ***
(0.004)

lnpop 0.024 **
(0.012)

0.040 ***
(0.008)

0.033 ***
(0.008)
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Table 3. Cont.

Variable Replace Explained Variables Replace Spatial Weight Matrix Replace Tool Variables

lntec −0.041 ***
(0.015)

−0.045 ***
(0.010)

−0.057 ***
(0.010)

lnsec 0.272 ***
(0.054)

0.201 ***
(0.034)

0.170 ***
(0.033)

lnes −0.009 **
(0.005)

−0.007 *
(0.004)

−0.008 **
(0.004)

lnpe −0.027
(0.027)

0.052 ***
(0.015)

0.045 ***
(0.014)

lntri 0.035 *
(0.019)

0.043 ***
(0.014)

0.047 ***
(0.013)

lnFDI 0.003
(0.008)

0.012 *
(0.006)

0.001
(0.006)

Adjust R2 0.650 0.980 0.981

Wald test (p) 89.025
(0.000)

4863.616
(0.000)

5767.449
(0.000)

Note: ***, **, and * represent the significance levels of 1%, 5%, and 10%, respectively. Due to space limitations, and
based on the Hausman test results, this table only reports the estimation results based on a more desirable random
effect model. The following tables are the same. W represents W1 in the method of replacing explained variables
and instrumental variables, and W represents W2 in the method of replacing space weight matrix.

5. Influence Difference and Transmission Mechanism

5.1. Regional Differences on the Impact of Innovation Efficiency on Haze pollution

To improve the level of innovation in Chinese cities, China began to implement the construction of
an innovative city pilot project in 2008. Altogether, there are 78 pilot cities in China. Lhasa, Shihezi, and
four other cities were not included due to a lack of statistical data. Therefore, a total of 74 innovative
pilot cities were included in the sample. First, a difference analysis was conducted on the data for
innovative pilot and non-pilot cities. The results show that there are significant differences in the mean
values of PM2.5 concentration and innovation efficiency between the two samples, and the grouping
is effective.

Second, a regression of the pilot cities was carried out. The regression results are listed in
Table 4. The relationship between innovation efficiency and haze pollution shows an inverted ‘U’ type
relationship, but the coefficient is not significant. To further illustrate that the regression results are
also meaningful to a certain extent, we drew a scatter plot with the haze pollution of the pilot city as
the y-axis and the innovation efficiency as the x-axis (Figure 2). We find that the fitting curve of the two
showed an inverted ‘U’ shape. Therefore, the regression conclusion is valid: In pilot cities, the increase
in initial innovation efficiency leads to increased haze pollution. When innovation efficiency increases
to a certain level, haze pollution gradually decreases.

Table 4. Grouped inspection results of innovative cities and non-innovative cities.

Group lnPM lnE (lnE)2

Non-policy pilot cities (mean) 3.420 3.482 12.389
Innovative pilot cities (mean) 3.614 3.896 15.506

Mean test (t value) −6.449 *** −12.894 *** −13.461 ***

Note: The mean difference test is to test the t value; *** indicate significance at the levels of 1%.
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We also conducted a regression for non-pilot cities. A significant difference is that the primary term
coefficient of the core explanatory variable, innovation efficiency (E), is significantly negative, while
the quadratic term coefficient is significantly positive. Moreover, the relationship between innovation
efficiency and haze pollution presents a positive ‘U’ shape. Although in the short term, non-pilot
cities are at the stage of haze pollution reduction with the improvement of innovation efficiency, this
scenario is not sustainable. Once the innovation efficiency value exceeds the inflection point value, the
improvement of innovation efficiency will eventually aggravate haze pollution.

Comparing the regression results of the pilot and non-pilot cities, as the efficiency of innovation
increases, haze pollution in pilot cities first increases then alleviates, while haze pollution in non-pilot
cities first alleviates then finally increases. Hypothesis 2 was established, which provides some
policy recommendations for China’s haze governance: The current development method of building
innovative cities and countries implemented in China is environmentally friendly. Although improving
the efficiency of innovation will bring some short-term pollution problems, increased efficiency can
alleviate haze pollution in the long run. China should summarise the existing pilot experience while
expanding the range of pilot innovative cities in an orderly manner.

5.2. The Stage Difference in the Impact of Innovation Efficiency on Haze Pollution

5.2.1. Threshold Model Setting

The benchmark regression results above show that there is a non-linear relationship between
innovation efficiency and haze pollution. Here, we used a threshold regression model to further explore
this relationship. A threshold regression tests whether a sample group parameter divided according
to the threshold value is significantly different [45]. The threshold regression model developed by
Hansen [46] can divide the data interval endogenously according to the characteristics of the data itself,
avoiding the arbitrariness of artificially dividing the sample interval. Therefore, this research utilised
the above threshold regression model, and used the economic development level as the threshold
variable, combined with the logarithmic form in the benchmark model, to set the following model:

ln PMit = ϕ0 + ϕ1 ln Eit �I(ln Ecoit ≤ γ1) + ϕ2ln Eit �I(ln Ecoit > γ1) + ϕ3 ln Ecoit + ϕ4Xit + εit (4)
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I (�) represents an indicative function. When the expression in the brackets is true, the value is 1;
when it is false, the value is 0. ϕ0 is a constant, Eit is the core explanatory variable, and Ecoit is the
threshold variable. Xit represents the control variable, and εit is a random disturbance term. When
lnEcoit ≤ γ1, the coefficient of the core explanatory variable lnEit is ϕ1; when lnEcoit > γ1, the coefficient
of the core explanatory variable lnEit is ϕ2, and the similarities and differences between ϕ1 and ϕ2 are
our focus.

The above model is applicable to the case of a single threshold, and the following model is
applicable to the case of a double threshold:

ln PMit = ϕ0 + ϕ1 ln Eit �I(ln Ecoit ≤ γ1) + ϕ2ln Eit �I(γ1 <ln Ecoit < γ2)
+ ϕ3ln Eit �I(ln Ecoit > γ2)+ ϕ4 ln Ecoit + ϕ5Xit + εit

(5)

Considering the spatial spill over effect of haze pollution and possible endogenous problems
in the model, during threshold regression, the spatial lag term of haze pollution obtained by the
GS2SLS method, and the first-order spatial lag term of each variable were introduced to replace the
original variable.

5.2.2. Threshold Regression Analysis

Innovative pilot and non-pilot cities have significant differences in terms of innovation efficiency,
but there is no significant difference in the level of economic development. There are obvious differences
in economic development among the eastern, central, and western regions of China (there are 115 cities
in the eastern region, including Hebei, Liaoning, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong,
Guangxi, Hainan, Beijing, Tianjin, Shanghai, 12 provinces, autonomous regions, and municipalities.
There are 109 cities in the central region, including Shanxi and Jilin, Heilongjiang, Anhui, Jiangxi,
Henan, Hubei, Hunan, Inner Mongolia, nine provinces and autonomous regions. There are 59 cities in
the western region, including Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Ningxia, Qinghai, Xinjiang,
eight provinces and autonomous regions). Thus, we in turn conducted a single threshold assumption,
double threshold hypothesis, and triple threshold hypothesis test for the overall sample, as well as
for the eastern, central, and western cities; the test results are shown in Table 5. Overall, the whole
sample and the western cities accepted the assumption of the double threshold model at a significance
level of 10%, while the eastern and central cities accepted the that of the single threshold model at
the significance levels of 1% and 10%, respectively. Therefore, Hypothesis 3 is valid. As such, this
study adopted a double-threshold model regression for the whole sample and the western cities, and a
single-threshold model regression for the eastern and central cities (Table 6).

The regression results of the panel threshold model are shown in Tables 7 and 8. The numbers
in parentheses below are the corresponding night-time light brightness values. When the economic
level is below the first threshold value of −0.984 (corresponding to the night-time light brightness of
0.374), the elasticity coefficient of innovation efficiency to haze pollution is −0.249. When the economic
level is between two thresholds, the elasticity coefficient of innovation efficiency to haze pollution is
−0.269. When the economic development level exceeds the second threshold of −0.507 (0.602), the
elasticity coefficient of innovation efficiency on haze pollution is −0.276. This indicates that cities
in China have initially achieved the ‘win-win’ goal of improving the level of innovation and haze
governance. Improvement of the overall innovation efficiency of Chinese cities can effectively reduce
haze pollution. The higher the level of urban economic development, the clearer this mitigation effect
is. Similarly, after the development level exceeds the unique threshold of −0.945 (0.389), the effect of
improved innovation efficiency on haze governance becomes increasingly evident in eastern cities.
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Table 5. Sample regression by region.

Variable Innovative Pilot City Non-Pilot City

W1 * lnPM 0.780 *
(0.408)

1.066 ***
(0.246)

lnE 0.334
(0.299)

−0.601 ***
(0.214)

(lnE)2 −0.025
(0.040)

0.079 ***
(0.030)

lnEco 0.007
(0.024)

0.002
(0.015)

(lnEco)2 −0.025 **
(0.013)

−0.055 ***
(0.006)

lnpop 0.064 ***
(0.019)

0.045 **
(0.018)

lntec 0.041
(0.026)

0.028 *
(0.015)

lnsec 0.496 ***
(0.103)

0.064
(0.056)

lnes −0.032 ***
(0.009)

−0.002
(0.005)

lnpe 0.175 ***
(0.054)

0.050
(0.032)

lntri −0.106 ***
(0.037)

0.054 *
(0.020)

lnFDI 0.058 ***
(0.020)

0.003
(0.001)

Adjust R2 0.538 0.648

Wald test (p) 186.156
(0.000)

289.628
(0.000)

Note: ***, **, and * represent the significance levels of 1%, 5%, and 10%, respectively.

Table 6. Threshold effect test.

Group All the Cities Eastern Cities Central Cities Western Cities

Single threshold 37.920 *** 29.510 *** 13.850 * 17.510 **
Double threshold 14.310 * 16.590 7.480 16.020 *
Three thresholds 11.690 7.820

Note: The data in the table is the F statistic corresponding to the threshold test, and ***, **, and * indicate significance
at the levels of 1%, 5%, and 10%, respectively.

Table 7. Threshold and confidence interval estimation.

Group All the Cities Eastern Cities Central Cities Western Cities

Threshold estimate 1 −0.984 −0.945 −0.424 −1.271
95% confidence interval [−1.008, −0.974] [−1.016, −0.847] [−0.438, −0.423] [−1.295, −1.144]
Night light brightness 1 0.374 0.389 0.654 0.281

Threshold estimate 2 −0.507 −1.037
95% confidence interval [−0.524, −0.505] [−1.048, −1.034]
Night light brightness 2 0.602 0.355
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Table 8. Parameter estimation results of threshold regression model.

Variable All the Cities Eastern Cities Central Cities Western Cities

lnE (lnEco ≤ γ1) −0.249 ***
(0.060)

−0.229 **
(0.090)

0.420 ***
(0.117)

−2.646 ***
(0.722)

lnE (γ1 < lnEco ≤
γ2)

−0.269 ***
(0.059)

−0.262 ***
(0.090)

0.431 ***
(0.118)

−0.139
(0.258)

lnE (lnEco > γ2) −0.276 ***
(0.060)

−0.160
(0.259)

W1 * lnPM 2.241 ***
(0.054)

2.105 ***
(0.071)

2.096 ***
(0.090)

2.552 ***
(0.192)

lnEco −0.195 ***
(0.035)

−0.149 ***
(0.054)

−0.272 ***
(0.060)

0.049
(0.137)

lnpop −0.014
(0.032)

−0.061
(0.144)

−0.511 ***
(0.128)

−0.050
(0.066)

lntec 0.365 ***
(0.045)

0.496 ***
(0.079)

0.175 **
(0.087)

0.503 ***
(0.125)

lnsec −1.319 ***
(0.145)

−0.583 **
(0.226)

−0.851 ***
(0.285)

−1.699 ***
(0.476)

lnes 0.196 ***
(0.026)

0.174 ***
(0.048)

0.207 ***
(0.044)

0.011
(0.057)

lnpe −0.534 ***
(0.079)

−0.550 ***
(0.126)

−0.226
(0.199)

−1.265 ***
(0.256)

lntri 0.235 ***
(0.071)

0.172 *
(0.087)

0.179
(0.135)

−0.109
(0.288)

lnFDI 0.090 ***
(0.023)

0.094 ***
(0.029)

0.060
(0.047)

−0.061
(0.082)

Note: ***, **, and * represent the significance levels of 1%, 5%, and 10%, respectively.

In the central region, when economic level is below the single threshold value of −0.424 (0.654),
the elastic coefficient of innovation efficiency to haze pollution is 0.420, and it is 0.431 after crossing the
threshold. With improvement in the economic development level, the improvement of innovation
efficiency only aggravates haze pollution. This shows that the central region is still in a transition stage
of development, although the innovation technology level has risen in recent years. However, with the
industrial gradient and potential energy difference between the eastern and central regions, the former
has transferred backward production capacity and environmentally polluting industries to the latter,
which has led to increasing innovation efficiency and haze pollution coexisting in the study period.

In cities in the western region, when the first threshold −1.271 (0.281) is not exceeded, the elasticity
coefficient of innovation efficiency on haze pollution is −2.664. When the economic level is between the
two thresholds, the elasticity coefficient of innovation efficiency on haze pollution is −0.269. When the
economic development level crosses the second threshold of −1.037 (0.355), the elasticity coefficient of
innovation efficiency for haze pollution is −0.160. In western cities, as the economic development level
and innovation efficiency increases, the mitigation effect of haze pollution weakens. This is because
the western region of China is economically underdeveloped, and the economic development gap
continues to expand. To eliminate this gap, R&D investment in the western region has gradually
concentrated on improving productivity, and the effectiveness of innovation efficiency in suppressing
haze pollution is becoming increasingly slow.

5.3. The Influence Mechanism of Innovation Efficiency Improvement on Haze Pollution

As can be seen from the foregoing, innovation efficiency may affect haze pollution in four ways:
an industrial structure effect, energy saving effect, technological progress effect, and population



Int. J. Environ. Res. Public Health 2020, 17, 6095 15 of 20

agglomeration effect. Here, a mediation effect model comprising the following three regression
equations was constructed to identify and test the above conduction pathways:

ln PMit = θ0 + θ1 lnEit + θ2 (ln Eit)2 + θ3Υit + ξit (6)

Dit = β0 + β1 lnEit + β2 (ln Eit)2 + β3Υit + µit (7)

ln PMit = γ0 + γ1 lnEit + γ2 (ln Eit)2 + γ3Υit + γ4Dit + τit (8)

Y is a vector set composed of control variables; D is a possible intermediary variable, including
industrial structure (lnsec), energy saving (lnes), technological progress (lntec), and population
agglomeration (lnpop); and E and PM are innovation efficiency and PM2.5 concentration, respectively.
According to the principle of the intermediary effect model [6], if the coefficient θ1 or θ2, β1 or β2, and
γ4 are all significant, and the coefficients γ1 and γ2 become smaller or significantly lower than θ1 and
θ2, then there is an intermediary effect.

According to the test results of the intermediary effect (Table 8), when technological progress is
regarded as an intermediary variable, the coefficients of the first and second terms of the UIE in (8) are
larger than the corresponding coefficients in (6). When energy saving is regarded as an intermediary
variable, the coefficients of the first and second terms of UIE in (7) are not significant. Therefore, it
can be judged that the technological progress effect and energy saving effect are not the transmission
pathways of innovation efficiency affecting haze pollution. For industrial structure and population
agglomeration, the coefficients of the first and second terms of innovation efficiency in Equations
(6) and (7) are significant, and the corresponding coefficients in Equation (8) are reduced compared
with Equation (6). Further, the industrial structure and population agglomeration meet the criteria of
intermediary variables. Therefore, in the effect of innovation efficiency on haze pollution, industrial
structure and population agglomeration effects have an intermediary effect. Thus, Hypothesis 4 is true.
It can be observed that the process of UIE is improving, and the haze reduction effect of industrial
structure optimisation and population concentration has not been effectively exerted, which is an
important reason for the increase of haze pollution in China.

We also conducted the same mediating effect test for samples from different regions. The variables
lnE and (lnE)2 in the basic regression of samples from innovative pilot cities did not pass the significance
test; they did not meet the requirement that the mediating effect model test principle coefficient, θ1 or
θ2, be significant. Therefore, only non-innovative pilot cities were tested in the next step. The results
show that the mediating effects of energy saving, technological progress, and population agglomeration
are not established, and innovation efficiency affects haze pollution through the industrial structure
effect. By comparing the results in Tables 9 and 10, it can be found that under the combined effect
of industrial structure and population agglomeration effects, the relationship between innovation
efficiency and haze pollution is an inverted ‘U-shaped’ curve. In the long run, the improvement of
innovation efficiency will ultimately reduce haze pollution. However, if we only focus on optimising
the industrial structure without giving full play to the population agglomeration effect, there will be
a positive ‘U-shaped’ curve relationship between innovation efficiency and haze pollution. Further,
an improvement in innovation efficiency will eventually lead to the intensification of haze pollution.
The innovation-oriented city pilot policy can promote the concentration of talent, stimulate enterprise
investment, optimise the innovation environment, and exert a positive impact on urban innovation and
haze governance. Thus, on one hand, we should vigorously develop the policy of building innovative
cities and promote its role in achieving the ‘win-win’ goal of improving innovation efficiency and
mitigating haze pollution. On the other hand, attention should be paid to the fact that merely improving
innovation efficiency is not conducive to realising the long-term haze reduction target in the process of
implementing this policy. The focus should be placed on the optimisation of the industrial structure
and population concentration.
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Table 9. Mediation effect test.

Variable
D = lnsec D = lnes

(6) (7) (8) (6) (7) (8)

lnE 0.554 ***
(0.102)

1.185 ***
(0.077)

0.370 ***
(0.109)

0.373 ***
(0.110)

−0.186
(0.800)

0.370 ***
(0.109)

(lnE)2 −0.061 ***
(0.014)

−0.175 ***
(0.011)

−0.033 **
(0.015)

−0.034 **
(0.015)

0.066
(0.113)

−0.033 **
(0.015)

D 0.155 ***
(0.035)

−0.009 **
(0.004)

Variable
D = lntec D = lnpop

(6) (7) (8) (6) (7) (8)

lnE 0.282 **
(0.110)

1.167 ***
(0.283)

0.370 ***
(0.109)

0.397 ***
(0.109)

1.082 ***
(0.365)

0.370 ***
(0.109)

(lnE)2 −0.028 *
(0.016)

−0.062
(0.040)

−0.033 **
(0.015)

−0.037 **
(0.015)

−0.146 ***
(0.051)

−0.033 **
(0.015)

D −0.073 ***
(0.010)

0.023 ***
(0.008)

Note: ***, **, and * represent the significance levels of 1%, 5%, and 10%, respectively.

Table 10. Non-pilot city intermediary effect test.

Variable
D = lnsec D = lnes

(6) (7) (8) (6) (7) (8)

lnE −0.622 ***
(0.213)

−0.264 **
(0.126)

−0.601 ***
(0.214)

−0.602 ***
(0.214)

−0.765
(1.400)

−0.601 ***
(0.214)

(lnE)2 0.081 ***
(0.030)

0.024
(0.018)

0.079 ***
(0.030)

0.079 ***
(0.030)

0.166
(0.194)

0.079 ***
(0.030)

D 0.064
(0.056)

−0.002
(0.005)

Variable
D = lntec D = lnpop

(6) (7) (8) (6) (7) (8)

lnE −0.551 **
(0.212)

1.754 ***
(0.452)

−0.601 ***
(0.214)

−0.602 ***
(0.214)

−0.045
(0.389)

−0.601 ***
(0.214)

(lnE)2 0.076 **
(0.030)

−0.119 *
(0.063)

0.079 ***
(0.030)

0.080 ***
(0.030)

0.026
(0.054)

0.079 ***
(0.030)

D 0.028 *
(0.015)

0.045 **
(0.018)

Note: ***, **, and * represent the significance levels of 1%, 5%, and 10%, respectively.

6. Conclusions

Taking the panel data for 283 prefectures-level cities in China from 2012 to 2016 as samples, this
study systematically investigated the relationship between innovation efficiency and haze pollution by
adopting the GS2SLS method. We further discussed the difference in the impact of innovation efficiency
on haze pollution at different stages of economic development and its transmission mechanism. Based
on our analysis, we reached the following conclusions:

(1) After considering the spatial spill over effect of haze pollution and controlling endogeneity, the
relationship between innovation efficiency and haze pollution in China presents an inverted ‘U’ shape.
With the improvement of innovation efficiency, the degree of haze pollution will be continuously
reduced. However, the innovation efficiency of Chinese cities in the research period has not reached
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the inflection point of the inverted ‘U-shaped’ curve, which is located on the left side of the curve.
In different economic development ranges, the impact of innovation efficiency on haze pollution is
not the same. There is a double threshold effect; as the economic level crosses the first threshold of
−0.984 (night-time light brightness value is 0.374) and the second threshold of −0.507 (night-time light
brightness value is 0.602), the effect of innovation efficiency on haze pollution strengthened.

(2) In terms of regional differences, the innovation efficiency and haze pollution of innovative
pilot cities show an inverted ‘U’ relationship, and the shape of the relationship curve in non-pilot
cities is reversed to a positive ‘U’ type. In the long run, the improvement of innovation efficiency of
innovative cities in haze governance is better than that of non-innovative pilot cities. In the threshold
test, the central region shows that haze pollution is continuously aggravated by the improvement of
innovation efficiency as the economic development level crosses the threshold. The reason for this is
that the central region is still in the transitional stage of economic transformation and development.
In recent years, the level of innovation and technology has constantly improved, but at the same
time, environmental polluting industries in the eastern region have continuously transferred. This
led to the co-existence of innovation efficiency improvement and haze pollution intensification in the
research period. In western China, as the level of economic development crosses the threshold, the
inhibiting effect of innovation efficiency on haze pollution is weakened. Due to the backward economic
development level and widening economic gap in the western region, R&D investment in this region
has been constantly concentrated in the direction of production, ignoring environmental benefits.

(3) The improvement of innovation efficiency can affect haze pollution through the transmission
of two intermediary factors: the industrial structure effect and population agglomeration effect. In
the process of improving UIE, the optimisation of the industrial structure and the effect of reducing
population agglomeration have not been effectively exerted. This is an important reason for the
increase of haze pollution in China. Further, comparing the differences between China as a whole and
its various regions, it can be observed that under the combined effect of the industrial structure and
population agglomeration effects, the relationship between innovation efficiency and haze pollution
is an inverted ‘U-shaped’ curve. However, if we only focus on optimising the industrial structure
without giving full play to the population agglomeration effect, there will be a positive ‘U-shaped’
curve relationship between innovation efficiency and haze pollution. Additionally, improvement in
innovation efficiency will eventually lead to the intensification of haze pollution.

On the basis of our findings, we propose the following policy recommendations for haze
pollution governance:

(1) China should take measures to comprehensively improve the efficiency of innovation. These
can include further increasing government investment in science and technology, or accelerating
the establishment of an effective mechanism for monitoring scientific research results. Crossing
the inflection point as soon as possible should be considered to realise the haze reduction effect of
improving innovation efficiency.

(2) China should continue to adhere to the strategy of innovation-driven economic development,
and through mutual promotion and continuous improvement of the level of innovation and economic
development, form a strong joint force for haze governance. In the process of innovation-driven
economic development, innovation should not only aim at economic benefits, but also pay attention to
green technology innovation. It should avoid the introduction of high-pollution technologies so as to
reduce haze pollution and achieve high-quality economic development.

(3) China should further expand the trial of innovative cities. Through innovative city pilot
policies, cities can attract high-tech industries and high-end talent to promote the optimisation and
upgrading of their industrial structure and population agglomeration. By comprehensively utilising
the effect of industrial structure and population agglomeration, we can ensure that innovation efficiency
plays a role in reducing haze in the long run.

According to the study results presented in this paper, the DEA model has strengthened the
comparability and distinction between DMUs. On the premise of the full respect for objectivity, the
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influence of preference of decision makers is considered properly which is feasible to evaluate the core
explanatory variable innovation efficiency. However, regarding the research on innovation efficiency
at the city level of China’s prefecture-level cities, because the statistics at the prefecture-level cities
in China are incomplete, some innovation indicators do not have relevant statistical data, which
limits this research. In fact, urban innovation efficiency reflects the relative effect of the allocation of
innovative resources in each city, indicating the strength of the ability of each city to allocate innovative
resources, rather than the true value of urban innovation efficiency. This relativity can directly depict
the differences of the efficiency of the allocation of innovative resources in various cities. At the same
time, we believe that with the further advancement of follow-up studies and the application of big data,
the selection of new core explanatory variables for urban innovation efficiency will be more scientific.
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Appendix A

Table A1. Correlation coefficient of each variable.

lnPM lnE (lnE)2 lnEco (lnEco)2 lnpop lntec lnsec lnes lnpe lntri lnfdi

lnPM 1
lnE 0.237 *** 1

(lnE)2 0.237 *** 0.995 *** 1
lnEco 0.396 *** 0.446 *** 0.453 *** 1

(lnEco)2 −0.389 *** −0.116 *** −0.108 *** −0.513 *** 1
lnpop 0.334 *** 0.109 *** 0.110 *** 0.141 *** −0.101 *** 1
lntec 0.298 *** 0.539 *** 0.528 *** 0.451 *** −0.222 *** 0.0727 *** 1
lnsec 0.140 *** −0.0694 *** −0.0750 *** 0.171 *** −0.277 *** −0.00620 0.146 *** 1
lnes 0.178 *** 0.240 *** 0.248 *** 0.318 *** −0.0351 0.168 *** 0.212 *** −0.110 *** 1
lnpe 0.309 *** 0.304 *** 0.317 *** 0.446 *** −0.0314 0.395 *** 0.169 *** −0.138 *** 0.374 *** 1
lntri 0.363 *** 0.206 *** 0.210 *** 0.412 *** −0.226 *** 0.340 *** 0.160 *** 0.134 *** 0.236 *** 0.652 *** 1
lnfdi 0.467 *** 0.305 *** 0.315 *** 0.553 *** −0.235 *** 0.266 *** 0.280 *** 0.0857 *** 0.392 *** 0.620 *** 0.501 *** 1

Note: *** represent the significance levels of 1%.
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