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Abstract: Serious games are video games that are intended to support learning while entertaining.
They are considered valuable tools to improve user-specific skills or facilitate educational or therapeutic
processes, especially in children. One of the disadvantages of computer games, in general, is their
promotion of sedentary habits, considered as a significant risk factor for developing diseases such as
obesity and hypertension. Exergames are serious games created to overcome the disadvantages of
traditional computer games by promoting physical activity while playing. This study describes the
development and evaluation of an adaptive component to monitor physical activity in children while
using an exergame. The system is based on wearable technology to measure heart rate and perform
real-time customizations in the exergame. To evaluate the adaptive component, an experiment
was conducted with 30 children between 5 and 7 years of age, where the adaptive system was
contrasted with a conventional interactive system (an exergame without adaptive component). It was
demonstrated that the computer game, using the adaptive component, was able to change in real-time
some of its functionalities based on the user characteristics. Increased levels of heart rate and caloric
expenditure were significant in some of the game scenarios using the adaptive component. Although
a formal user experience evaluation was not performed, excellent game playability and adherence by
users were observed.
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1. Introduction

Childhood obesity is one of the most severe public health issues in the 21st century. In 2016,
41 million children aged five or below were overweight, and emergent economies counted more than
30% of the affected population [1]. The World Health Organization (WHO) recommends a minimum
of 60 min of moderate physical activity (PA) each day for children and adolescents. Moderate PA
means performing activities that accelerate heart rate significantly, for example: walking at a fast pace,
dancing, practicing sports, among others. PA is defined as any corporeal movement enabled by the
musculoskeletal system involving energy expenditure. Given the explained problem, the creation of
new strategies is essential in order to decrease overweight disorders during the life cycle’s early years.
Such strategies include PA interventions for children and teens [2].

Advances in Information and Communication Technologies (ICT) enabled the creation of
innovative solutions to promote PA. Previous research has demonstrated the benefits of using ICT for
PA promotion among the childhood population [3]. Successful studies have incorporated ICT, portable
technologies, sensors, digital games, and ubiquitous systems [4,5]. Serious games are digital games,
virtual reality environments, and related technologies that provide opportunities to engage users in
interactive activities. They have the purpose of informing, influence, and increase well-being and
ultimately convey meaning [6]. Computer game innovations include so-called motion ruled interfaces,
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enabling users to interact with the system through corporeal movements. These interface types are
commonly used in popular gaming consoles, replacing conventional input peripherals with hand-free
and movement-based sensors. Based on this notion, this type of computer games is commonly defined
as a conventional interactive system (CIS). Although this approach has gained ground on many studies
seeking to increase PA levels in players, new complementary solutions have been proposed. One of
them is games based on user adaptive system (UAS) technologies. The main difference between CIS
and UAS is the way how the system determines its next state. For CIS, pre-defined rules are uniformly
applied to all users. In contrast, UAS takes into consideration user-specific information for changing
game behavior.

Typically, exergames belong to the CIS category. Exergames are digital games that require
bodily movements to play, creating an atmosphere that combines working and gaming experiences to
promote PA. The potential of exergames to increase PA through more active gaming experiences has
been previously demonstrated, e.g., by incorporating mobile devices [7], Internet-based assistance [8],
or currently available games running on commercial consoles. Research findings have demonstrated the
positive effects of active video game-based intervention programs for promoting higher PA levels [9–12]
and improved cognitive performance in children. For instance, Zan Gao et al. [9,13] examined the
impact of the interactive dance game DDR (Dance Dance Revolution; Konami Corporation) [14]
on children’s physical health. They suggested that significantly higher energy expenditure and
cardiovascular endurance were strongly associated with using the exergaming DDR unit. Thus they
concluded that active gameplay could potentially be used as part of fitness programs helping children
to engage in a more physically active lifestyle.

Non-active traditional console video games are popular among young children. However,
these leisure time activities are characterized by minimal movement, often staying in the same
position for extended periods. For example, television viewing constitutes everyday sedentary
activities, preventing children from getting the recommended daily 60 min of PA. Regarding this
objective, research has also found that active gameplay over short periods can count toward the
recommended individual’s daily healthy activity time. These activities are comparable with traditional
fitness conditioning activities such as walking or jogging [10]. Although these results may seem
promising, evidence suggests that PA intensity levels and playtime strongly depend on children’s
motivation [15,16].

Regarding the motivation constructs, intrinsic motivation (IM) is more commonly exhibited by the
young population while playing console video games. Notably, there is an inherent enjoyment while
interacting with fictional characters on a screen instead of engaging to pursue particular PA outcomes.
Therefore, most interventions deployed existing playing consoles and commercial games, which are
more effective in engaging the user. Those games, although they lead to definite benefits, show a lack
of user-based gaming interactions to help setting goal difficulty and therapeutic outcomes, besides not
allowing user’s (patients) to follow up. From a technical perspective, raw data analysis of video or
physiological signals is not possible with commercial gaming consoles. Therefore, new approaches are
needed to boost children’s motivation and to track and improve therapeutic effectiveness.

PetsGo is an exergame that aims at promoting PA in children aged 5 to 7 [17]. This game is made
up of different scenarios. The main game interface is an alphanumeric floor mat acting as a keyboard
called Hopscotch [18]. The scenarios at the beginning of the game include warm-up exercises, which are
performed stepping on the floor mat. Other scenarios require upper and lower limb movements and
stretching exercises. The three scenarios used in this study (excluding the warm-up exercises) are
scenario 1, where a flying bird-like character is displayed with the objective of catching coins appearing
on the screen while moving horizontally. Scenario 2 presents an interface with a bathtub. This scenario
uses two-color blocks and a counter. The objective is to press the button before the counter reaches
zero. Finally, scenario 3 displays a tree from which color blocks are generated. The objective is to
touch the button before the color blocks hit the ground. These previously mentioned scenarios are
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illustrated in Figure 1. A detailed description of the scenarios in the context of the experimental design
is presented in Section 2.2.7.
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After a pilot evaluation of PetsGo was performed, the main limitation identified was its poor
adaptability to the user’s specific needs. The reviewed literature revealed the potentiality of novel
approaches based on the integration of heart rate (HR) sensors to monitor PA levels. Therefore,
we propose a software component that can be integrated into PetsGO to keep track of the user’s HR and
calorie expenditure. The software component is designed to work independently from PetsGo. Data are
acquired from a commercial wearable device (Microsoft Band, Microsoft Corporation, Redmond, WA,
United States). Quantifiable rules (see Section 2.2.7) are applied to determine game difficulty variations
that provide game personalization. Personalization includes the character’s movement speed, object
generation frequency, and timing conditions.

This paper describes the development of a software component known as adaptation component
(AC) for exergames. A controlled experiment was conducted to evaluate the AC. The results are
expected to demonstrate that the use of PetsGo with the adaptation component increases the user’s
HR and caloric expenditure.

2. Materials and Methods

The AC development process rigorously followed the general adaptivity model (GAM) [19],
which is a methodology used to incorporate adaptive models into computer systems. We used PetsGo
as the base software system to identify AC’s requirements and constraints. After implementing the AC,
the adaptability of the component was evaluated with an experiment (described in detail in Section 2.5).

2.1. Adaptive Systems

From a software engineering perspective, adaptive systems are computational systems able
to modify their next state based on previously stored information (e.g., user properties collected
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through different means, see Section 2.2.4). User properties are continuously updated when the
user interacts with the software. Therefore, no state is entirely predictable by the latest user-system
interaction. Notably, these extra elements are quantifiable data gathered from the user and are
known as the user model. Data stored in this model are diverse and can come from different sources.
PA-related measurements are of particular interest to this research. This is the reason why wearable
technology plays a main role as it allows us to measure HR and caloric expenditure under swiftly
moving conditions.

2.2. Adaptation Model and Methodology

For better understanding the methodology used for developing the AC, we first introduce some
concepts such as user modeling and user model. User modeling refers to the discovery, analysis,
and subsequent selection of user characteristics for customization purposes. In contrast, the user model
refers to the result of this process, a consolidated data source for decision-making. The user modeling
cycle can be classified into two categories: classic and improved. The main difference between these
categories is that the classic loop performs a static data collection process, whereas, for the improved
cycle, this process is continuous. Following, the eight steps of the methodology are described.

2.2.1. Step 1: Define Application Outline

This is the cornerstone for later phases. It involves the identification, description, and documentation
of pertinent system elements for the given context. In the case of exergames, this includes active
interfaces, an active interface’s underlying goals, and options.

Active interfaces: Graphical user interfaces that require players to perform bodily movements as
required to add up points and get rewards.

The underlying objective of the active interface: Each active interface that is part of an exergame
is narrowly linked to the user’s PA goal. PetsGo incorporates four scenarios (active interfaces) with the
following underlying objectives: upper extremities strengthening, strengthening lower limb muscles
through jumps, and sideways mobility.

Active interface options: Choices displayed to the user on the active interfaces during playtime.
These choices may vary from one interface to another and can be modified by an alphanumeric input
using the mat. In particular, PetsGo exhibits basic active interface options such as play, select game
options, and exit buttons. The interfaces, in conjunction with key moments (actions) during the
exergame runtime, conform to the following general execution scheme: main screen->login->scenarios
screen->select scenario->playtime->exit scenario or score screen->scenarios screen.

2.2.2. Step 2: Define Personalization

Implementing the GAM includes identifying all potential customizations of the analyzed
exergame. For PetsGo, this defines a set of customizations that allow promoting specific PA goals.
The customizations are game alterations backed by the user model that runs dynamically, thus requiring
no effort on the user side to activate/deactivate them. The following list presents a set of possible
customizations to be implemented.

• Transitions Game Scenario Flow (C1): Changing the order in which scenarios are executed by
the game based on the user’s average HR history and calorie expenditure so as to ensure the less
physically demanding scenarios for each user get executed prior to the more demanding scenarios.

• Elongated Adjustable Body Motions (C2): The movement of the body is variable, depending on
the characteristics of the user. The game autonomously decides if more elongation or contraction
of the body parts is required to achieve the goal of the game scenario.

• Free Choice (C3): Freedom to choose the desired scenario to play, subject to personalized
recommendations. This means that depending on the characteristics of the user or the levels
previously accomplished in the game different scenarios can be enabled or disabled for the user.
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• Overall Operations of the User Interface (C4): Modification of options displayed by the user
interface (UI) backed by the user’s preferences. This refers to colors, avatar, or general settings
such as sound, among other configurations.

• Execution Based on Physiological Measures (C5): Adjusts the exergame runtime parameters to
the user’s physiological measures.

2.2.3. Step 3: Define Customization Questions

Each customization is associated with at least one question. The next list shows possible questions
for each one of the customizations identified in Section 2.2.2.

• C1. What are the user’s current PA measurements in order to go to the next game scenario? (Q1)
• C2. How accurate are the user’s body movements for the current scenario? (Q2).
• C3. Which are the best-ranked scenarios for a particular user? (Q3)?
• C4. What is the user experience reported for any given UI? (Q4).
• C5. What is the user’s physiological response during gameplay? (Q5).

These are the questions that the AC should answer for each of the chosen customizations to be
implemented. The technical feasibility of the customizations will be determined by analyzing any
implementation constraints that might exist (see Section 2.2.6).

2.2.4. Step 4: Describe User Properties

To successfully implement customizations, user properties must be collected, processed, and
recorded to build the user model. The AC uses these properties to respond to the customization
questions. First, user data for answering C1 involves a log of all played scenarios (activitiesHistory)
and their corresponding final score (scoreRecord), as well as a collection of historical data on HR,
caloric expenditure, or variables that allow PA to be measured. Second, data for C2 is similar
to that of C1 except that it adds a scenario counter to keep track of the game frequency. Third,
data for C3 is the result of objectively assessed user experience. This can be done through digital
(analyticsPostGame) or body signal processing (analyticsInPlace) with questionnaires or sentiment
analysis techniques, respectively [20]. Fourth, C4 requires a full log of the values assigned by the user
to each UI option (confParamHistory). Fifth, data for C5 can be any physiological measure collected
from the user reflecting PA exertion while playing the exergame (physiological signals). The reviewed
literature showed how the usage of the HR as a physiological measure to change game difficulty
achieved significant results in corresponding scenarios with adults. Hence we decided to use the same
physiological variable but with a different target population, children.

2.2.5. Step 5: Describe Events

In software engineering, events are state alterations of constituent parts of the software
system [21]. The user-exergame interaction requires to collect the necessary user properties. The events
“activityStarted” and “scoreObtained” allow us to obtain the “activitiesHistory” and “scoreRecord”
user properties (Figure 2). The event “activityStarted” triggers a flag when a scenario starts, whereas
“scoreObtained” saves the score when this is over. For the latter, and to secure a correct score,
the event “activityFinished” is responsible for establishing whether the scenario completed its
normal execution or not. For the “analyticsPostGame” and “analyticsInPlace” user properties,
the events “registerPostAnalytics” and “executionMovement” are activated, respectively. The first
event registerPostAnalytics” notifies when questionnaire-based user experience is submitted to
the system, while “executionMovement” identifies each point in time the AC evaluates the user
experience. Finally, the event “signalActivation” indicates when to start collecting data for the
“psychophysiologicalSignals” user property.
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2.2.6. Step 6: Pruning

All identified customizations serve as a useful guide to a working implementation. Nevertheless,
restrictions regarding wearable technology, information accessibility, and the project’s particular goals
have to be considered. The customization C1 is discarded as PetsGo implements a linear execution
sequence of scenarios, thus to alter this sequence would require major changes to PetsGo’s source
code. C2 is not considered because the technology implemented in PetsGo does not allow capturing
body movements. Therefore, considering that PetsGo features only four playable scenarios, there are
not enough recommendations to achieve the desired effect. C3 implementation requires a dataset
associating user experience labels with body signals. C4 customization possesses a similar downside
found in C1, as in this case, there is a lack of configurable UI. Finally, C5 was selected to be reported in
this work because of its relevance with PA tracking, and because of the feasibility of using commercial
wearable devices.

2.2.7. Step 7: Describe the Dynamic Behavior

The dynamic behavior of the AC is described through a series of HR-based equations describing
displacement speed, timing, and frequency of the game scene. This step is not formally included
in the GAM methodology, but we considered it important to describe the dynamic behavior of the
adaptation process.

For the scenario 1 in the game, the user controls a character that moves horizontally at a speed vh.
This speed gets updated when the character has spanned a distance d;

if (d < deltaD and avgHR < 95) {
d = d + 1

} else if (d > deltaD and avgHR < 95) {
d = 0

deltaD = deltaD + deltaD × w
vh = vh − deltaD × w

} else {
d = 0

deltaD = deltaD - deltaD × w
vh = vh - vh × w

}

(1)
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where d = traveled distance, deltaD = updated distance, avgHR = Average HR, vh = displacement
speed, w = mean of last 20 scaled HR records.

For scenario 1, if the spanned distance is less than a deltaD value, and the HR has not exceeded
the 95 threshold, then the spanned distance increments by one unit. This is a repetitive cycle that
updates the covered distance by 1. If the condition is not meet, however, the spanned distance is reset
to 0, and the deltaD value and the character’s displacement speed get incremented by using a factor w
computed as the mean of the last 20 scaled HR records (the scaled HR records have values between 0
and 1). This ensures to track smooth HR changes during gameplay. In case the spanned distance is
greater than deltaD, and the average HR surpassed the 95 threshold, the game begins to lower down
the distance and character speed.

For scenario 2 showing a bathtub, the user must cover a round trip distance of 6 m from where
the Hopscotch is installed, before pressing a button shown on the screen. When the button is pressed,
a new button pops up, and the user starts over again. The user is initially given 10 s to complete the
task. Either the button is pressed or the time is over, and a new countdown is calculated based on the
user’s HR. If the task is completed on time (countdown greater than zero), the user gains one point.
Otherwise, the user loses one. The maximum possible time allowed for the task completion is 15 s,
and the minimum is 5 s. Equation (2) shows the decision-making rules for scenario 2.

if (bpressed and countdown > 0 and avgHR < 95){
points = points + 1

countdown = countdown − 1; countdown ≥ 5
} else if (bpressed and countdown > 0 and avgHR > 95){

points = points + 1
countdown = countdown + 1

} else if (countdown = 0) {
points = points − 1

countdown = countdown + 1; countdown ≤ 15
}

(2)

where bpressed = Hospcotch button, countdown = time for task completion, avgHR = Average HR,
points = score.

In Equation (2), the decision-making flow is as follows: if the user presses the correct button
(bpressed is a boolean variable), the countdown is greater than zero (user still has time to complete the
task), and the HR is less than 95 the user gains one point and the countdown increments by 1 (lower
limit of 5). Similarly, if bpressed is True, the countdown is greater than zero but the HR this time is
greater than 95 (which means the user has exceeded this value), the user gains one point but the time is
increased by one to give the user more time to accomplish the task, thus requiring less effort. Finally,
if the countdown gets to zero (meaning the user couldn’t finish the task in the allotted time), the user
loses one point, and the countdown increments by one (upper limit of 15).

For scenario 3, the user sees a sequence of square blocks being generated at an initial frequency Ut

of 0.366 s. These blocks start falling from the tree’s top to its bottom. The user must then press the
corresponding square on the Hopscotch before the square goes off the screen, if it does so, the score
increases by one point. Otherwise, it loses one point. In this case, the user’s HR determines the square
blocks generation rate as follows :
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if (Spressed and Sonscreen and avgHR < 95){
points = points + 1

Sgenerate = Sgenerate + 0.1; Sgenerate > 0
}else if (Spressed and Sonscreen and avgHR > 95){

points = points + 1
Sgenerate = Sgenerate − 0.1; Sgenerate < 5 × 0.366

}else if (!Sonscreen){
points = points − 1

}

(3)

where Sonscreen = True. If the square button is on screen, or False otherwise, and Spressed = True if the square
button is pressed or False otherwise, points = score Sgenerate = Block generation, avgHR = Average HR,
0.1 = Increase rate in the blocks generation frequency.

For the last scenario (Equation (3)), there are two separate rules. The first rule controls the user’s
points by comparing the boolean variable from the sensors on the Hopscotch, along with another
boolean variable indicating whether the square block is present on the screen or not. So if the user steps
on the correct button, which is shown on the screen, the user gets one point, otherwise loses one. As to
the second rule, this controls the block generation frequency with the user’s HR; if this is less than the
95 threshold, then the generation frequency increases by 0.1 from its initial value (blocks are generated
more frequently). Whereas, if the user’s HR is greater than the threshold, the generation frequency
decreases by 0.1 (blocks are generated less frequently). The generation frequency has a lower and
upper limit.

The parameters in all equations were empirically chosen to generate a more realistic gaming
experience. For the HR threshold, for example, we used a lower value than the one recommended for
adults, which are 50–70% of maximal HR. The maximal HR for adults is commonly estimated based
on individual age (220 bpm-age) [22]. Therefore, for an average age of 6 years, the target HR would
be 104 bpm–149.8 bpm. However, during early system testing, children hardly achieved those levels
while using PetsGo2.0, so lower and upper HR boundaries of 95 bpm and 105 bpm were set.

2.2.8. Step 8: Evaluation

The AC underwent a two-phase evaluation. In the first phase, the source code was inspected
using conventional software engineering testing methods (peer-review evaluation method) to check
that all constituent units of the code worked properly. Peer review in software engineering is
a technique employed to assess the integrity and reliability of the source code. This technique uses
a role assignment approach to ensure that all project members actively participate in finding issues in
the code or functionalities. To facilitate the review process, the source code was broken down into
entities, i.e., small snippets of re-usable source code that can be tested individually using standardized
summary documents to report inconsistencies [23].

The second phase was an experimental evaluation conducted after integrating the AC into PetsGo.
This was performed following the “experimental evaluation in software engineering” guidelines [24]
described in detail in Section 2.5.

2.3. Wearable Technology Selection

A wearable device can be regarded as a portable, battery-powered electronic instrument that
incorporates sensors to measure and estimate different parameters related to the person wearing
it. One of the most popular wearables for PA tracking is the Smartwatch [25,26], a device with
a watch-like appearance that combines an ordinary wristwatch with activity/fitness tracker features.
The selection criteria to determine the smartwatch to use were commercial availability, HR sensor,
raw data accessibility, and Software Development Kit (SDK) availability. Secondary selection criteria
were the device size, cost, and part of the body where it is placed. Numerous devices were studied:
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The Misfit Shine was discarded because of the lack of an HR sensor. The Huawei Talk Band B2
was discarded because it does not provide a complete application programming interface (API).
The Samsung Gear 2, Fitbit, Jawbone Up3, Xiaomi Mi Band2, and Garmin VivoSmart HR, did not
provide easy access to the raw HR data. Finally, the Microsoft Band 1 and 2 met all requirements.
This device is equipped with an HR sensor; the data has to be accessed via an API, but it is possible to
get raw data. In addition to the wearable device, the system also incorporates a Hopscotch mat.

A calibration test was carried out in order to guarantee that readings from the Microsoft Band
1 and Microsoft Band 2 are equivalent. Seven subjects (aged 5–7 years) were asked to voluntarily
participate in the testing procedure (parental consent previously obtained, see Section 2.5). The test
consisted of three activities in which the subject goes up and down a 25 cm stair for 3 min with
a single 5 min resting period in the beginning. For each activity, the participants carried on a school
backpack (27.5 × 37 × 13.5 cm) with an increasingly more massive load (1lb, 2lb, and 3lb). Participants
wore the Microsoft Band 1 and 2 on the left and right wrist respectively for HR data acquisition.
The experimental results indicated a difference of 9.13 bpm on average between Microsoft Band 1 and
2. This value was subtracted from each HR value recorded by the Microsoft Band 2 during the second
phase of AC assessment. The software tools that backed the data in this research were Unity, Xampp,
C#, Python, and Android Studio, all free access and open programming languages and platforms.

2.4. Implementation Architecture

Figure 3 shows system architecture including the architecture of the adaptation component,
the mobile application, and the PetsGo 2.0 game. Data acquisition is the core component of the system.
First, an Android application was developed using Android Studio to connect a smartphone to the
Microsoft Band. The App collected raw data from the HR sensor and stored it into a local database.
A test scenario was developed in order to test the integrated solution’s proper functioning. It displays
a square block on the screen moving from left to right, passing by a straight vertical line in the middle,
simulating an obstacle the user avoids by jumping on the Hopscotch. The user’s HR controlled the
block’s horizontal displacement speed: the block’s speed would increase one unit every 20 s if the last
HR reading were below 80 bpm. Otherwise, it would decrease the same amount.

2.5. Experimental Evaluation

To assess the AC, the following hypothesis was proposed: the integration of the Adaptation
Component increases HR and calorie expenditure in children using PetsGo 2.0. A two-part assessment
schema was planned, designed, and executed based on the empirical software engineering method [24],
a pilot study, and a field test study. The study group consisted of children aged 5 to 7 years (same as
PetsGo original version), enrolled in kindergarten’s first and second grade. Once the school principal’s
permission was issued, a meeting with the participant’s parents was held to ensure their agreement.
Because of the participants’ age, parents were requested to sign a written consent that included, among
other items, volunteer participation, and data privacy statements. The recruitment of children for
the experimental evaluation method includes the mandatory ethical elements that govern scientific
research in Colombia (Helsinki code—resolution Nuremberg code 08,430 of 1993).

2.5.1. Pilot Study

For the pilot study, we recruited children (N = 3; 5–7 years old) to test the game at the research
group laboratory of the Universidad del Cauca, Colombia. The pilot evaluation was carried out in
a closed environment and under controlled conditions. In this test, children were asked to enter the test
room individually, where the UAS and CIS systems were previously installed. Once inside, each child
was guided to follow a specific protocol. The first 5 min were devoted to familiarizing the child with
the general rules of the game in both systems, for example, how points are earned or lost or how
to respond to the different adaptations in each scenario (UAS). At the end of this training period,
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2.5.2. Field Test Study

For the field test study, a total of 30 children from a local kindergarten in Popayan-Colombia,
aged between 5 and 7 years, were recruited. The data were collected on the school premises. In order
not to interrupt the academic activities of the participants, the test was run entirely during recess
hours. First, the test site located in the institution’s playground was established occupying an area of
7 × 15 m. In this area, both the AC-integrated system (UAS) and the non-AC-integrated system (CIS)
were deployed simultaneously. The participants were randomly chosen by pairs, and before starting
the test, then while one of the kids would play with the UAS, the other would use the CIS. The children
were allotted 10 min to play with the initially assigned system before taking a 10-min break to slow
down their HR to the baseline. Then they could move on to switching positions and start playing with
the system they did not use previously. Each participant was handed over a gift upon concluding the
entire test.

3. Results

This section presents the pilot and field test results. The records were taken at a default sampling
rate of 1 Hz with Microsoft Band 1 and 2 wearables, and the data set was preprocessed before performing
the corresponding analyzes. The analysis covered a descriptive and inferential statistics analysis
computed with the free software application PSPP (PSPP GNU Project; Free Software Foundation,
Boston, MA, United States).
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3.1. Pilot Study Results

The results of the pilot study constitute the first step toward an objective and quantifiable
evaluation of the possible effects an adaptation component such as that developed to traditional
exergame systems may provide. The pilot user study resulted in the collection of 1200 samples of HR
and caloric expenditure for each of the three participants, equivalent to a total of 3600 records of HR
and caloric expenditure, distributed between the UAS and the CIS and the three scenarios that each
one includes (see Figure 1).

3.1.1. Descriptive Analysis

For the descriptive analysis, there are a total of 12 variables distributed between the UAS and CIS
systems. The naming convention for all variables was Hrate for HR or Gcal for caloric expenditure; P1,
P2, or P3 for scenarios 1, 2, or 3 respectively; and finally, the UAS or CIS for the testing systems.

The statistical analysis presented in Table 1 reveals important statistical measures for the variables
of HR and caloric expenditure, the latter of a cumulative type. In descending order, it is found that for
the set of samples N, there is a minimum average difference of 6.6 bpm (scenario 2) and a maximum
of 22.03 bpm (scenario 3) between the UAS and CIS systems with respect to the HR. Regarding the
caloric expenditure, these differences were 1.66 (scenario 2) and 6.34 (scenario 3) calories between
the UAS and CIS. The results found for the standard deviation show that most of the variables are
closely distributed around the mean, possibly because of the larger variations in response to the
required exercise intensity. It is also found that the variables with the exception of HrateP1UAS have
a negative asymmetry, which indicates that their tails have an inclination to extend to the left side of
their distributions, consistent with the nature of the HR variation under conditions of physical exertion
starting at lower values and increasing gradually. Finally, the intervals are presented, within which the
analyzed variables are distributed. All the variables corresponding to the UAS exhibit larger values in
relation to those of the CIS, allegedly because of the higher variations as a consequence of the changing
physical effort required during game play.

3.1.2. Inferential Analysis

The inferential analysis includes the t-test of paired samples, establishing whether the increase in
HR and caloric expenditure records between the two systems were statistically significant.

The results reported in Table 2 show that to all scenarios, the HR and caloric expenditure variables
were statistically significant (p < 0.05). Table 2 also presents the lower and upper bounds for the
mean difference (lower and higher), where to all paired samples, this difference lies within a positive
value range.

3.2. Field Test Results

For the field test, seven hundred raw data measurements of HR and calorie expenditure were
registered during each game session. They generated approximately 1400 records of data per participant,
amounting to roughly 42,000 stored records of HR and calorie expenditure. Empty records were
dropped out, and outliers were suppressed.

3.2.1. Descriptive Analysis

The HR frequency and caloric expenditure are the descriptive analysis variables for both UAS
and CIS. The naming convention is as follows: Hrate for HR frequency; P1, P2, or P3 for scenarios 1, 2,
or 3 respectively; and CIS or UAS for the conventional or adaptive system. Similarly, for the caloric
expenditure variables, the naming convention was Gcalorico for calorie expenditure; 1, 2, or 3 for
scenarios 1, 2, or 3, respectively; and CIS or UAS for the testing systems. The detailed analysis of these
variables is summarized in Table 3.
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Table 1. Descriptive analysis of heart rate (HR) and caloric expenditure variables for the pilot study.

Statistics HrateP1CIS HrateP2CIS HrateP3CIS HrateP1UAS HrateP2UAS HrateP3UAS Gcalorico1CIS Gcalorico2CIS Gcalorico3CIS Gcalorico1UAS Gcalorico2UAS Gcalorico3UAS

N 3 3 3 3 3 3 3 3 3 3 3 3
Mean 72.31 72.06 66.56 88.41 78.66 88.59 5.67 7.67 4.33 10.33 9.33 10.67

Std. Dev 3.05 3.74 2.77 4.68 2.34 9.07 2.89 2.52 1.53 3.51 3.06 1.53
Variance 9.31 13.98 7.65 21.94 5.46 82.21 8.33 6.33 2.33 12.33 9.33 2.33

Asymmetry −0.74 −1.73 −1.12 1.63 −0.38 −0.20 1.73 −0.59 0.94 0.42 −0.94 −0.94
Interval 6.04 6.56 5.38 8.60 4.66 1812 5.00 5.00 3.00 7.00 6.00 3.00

N: number of observations; Std. Dev, standard deviation.

Table 2. t-Test for paired HR and caloric expenditure variables according to the scenario (pilot study).

Dependent Variables
Differences Paired t-Test

Average Std. Dev Av. Sta. Err Lower Higher t df Sign

HrateP1UAS-HrateP1CIS 16.09 4.88 2.82 3.98 28.21 5.72 2 0.029
HrateP2UAS-HrateP2CIS 6.60 1.88 1.08 1.94 11.27 6.09 2 0.026
HrateP3UAS-HrateP3CIS 22.03 8.80 5.08 0.17 43.88 4.34 2 0.049

Gcalorico1UAS-Gcalorico1CIS 4.67 1.53 0.88 0.87 8.46 5.29 2 0.034
Gcalorico2UAS-Gcalorico2CIS 1.67 0.58 0.33 0.23 3.10 5.00 2 0.038
Gcalorico3UAS-Gcalorico3CIS 6.33 2.31 1.33 0.60 12.07 4.75 2 0.042

Std. Dev, standard deviation; Av. Sta. Err, average standard error.

Table 3. Descriptive analysis of HR and caloric expenditure variables for field test.

Statistics HrateP1CIS HrateP2CIS HrateP3CIS HrateP1UAS HrateP2UAS HrateP3UAS Gcalorico1CIS Gcalorico2CIS Gcalorico3CIS Gcalorico1UAS Gcalorico2UAS Gcalorico3UAS

N 29 29 29 29 29 29 29 29 29 29 29 29
Mean 76.44 78.94 79.78 78.95 83.83 80.73 7.41 10.28 8.03 9.90 12.28 9.76

Std. Dev 10.39 9.43 13.70 6.92 9.55 11.61 3.26 4.84 3.77 5.39 6.09 6.03
Variance 107.95 89.85 187.81 46.56 91.13 134.72 10.61 23.42 14.25 29.02 37.06 36.33
Kurtosis 1.25 0.55 2.04 −0.63 1.86 7.67 1.17 −0.24 −0.21 4.70 7.52 3.83

K. Stad. Err. 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
Asymmetry 1.41 1.11 1.45 0.33 1.31 2.54 1.13 0.67 0.89 1.41 2.35 1.73

Interval 38.91 35.90 58.47 24.78 40.97 55.93 13.00 17.00 13.00 28.00 30.00 28.00

N, Number of observations; Std. Dev, standard deviation; K. Stad. Err, Kurtosis standard error.
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Twenty-nine observations were included in the statistical analysis. One record was discarded
because of data inconsistencies. In general, UAS’s scenarios demonstrated higher average HR frequency
than those obtained by the CIS. Notably, scenario 2 of the UAS obtained the highest mean HR frequency.
This scenario also registers essential variations on the standard deviation with high intervals. On the
other hand, UAS’s scenario 1 obtained the lowest standard deviation and shortest interval (range of
values; maximum-minimum) among scenarios belonging to the same system and higher than those
obtained by the CIS.

The caloric expenditure is cumulative, which means it starts at zero and keeps incrementing until
the scenario ends. The results show that the amount of calories in the UAS scenarios was, on average
higher than that of the CIS scenario.

3.2.2. Inferential Analysis

The results of applying the t-test on the HR and caloric expenditure variables for the field test are
shown in Table 4. Average HR in scenario 2 and calorie consumption in scenario 1 were statistically
significant (p < 0.05). Differences in the remaining scenarios were not statistically significant.

Table 4. t-Test for paired heart rate and caloric expenditure variables according to the scenario
(field test).

Dependent Variables
Differences Paired t-Test

Average Std. Dev Av. Sta. Err Lower Higher t df Sign

HrateP1UAS-HrateP1CIS 2.51 13.25 2.46 −2.53 7.55 1.02 28 0.316
HrateP2UAS-HrateP2CIS 4.89 10.51 1.95 0.90 8.89 2.51 28 0.018
HrateP3UAS-HrateP3CIS 0.96 19.19 3.56 −6.34 8.25 0.27 28 0.790

Gcalorico1UAS-Gcalorico1CIS 2.48 6.12 1.14 0.15 4.81 2.18 28 0.037
Gcalorico2UAS-Gcalorico2CIS 2.00 6.25 1.16 −0.38 4.38 1.72 28 0.096
Gcalorico3UAS-Gcalorico3CIS 1.72 6.28 1.17 −0.67 4.11 1.48 28 0.151

Std. Dev, standard deviation; Av. Sta. Err, average standard error.

4. Discussion

In order to answer the study question about whether or not the AC improves the child’s HR and
caloric expenditure, data were collected and analyzed, as shown in Section 3 from both the pilot and
the field studies. The results from the pilot study show that under a controlled laboratory setting,
the HR and caloric expenditure was higher for the UAS’s players compared to those of the CIS’s.
Particularly, the highest average differences found between the UAS and CIS were 22.03 bpm for HR
in-game scenario 3, and 6.34 calories for caloric expenditure in-game scenario 3, (see Table 1). This is
a major increase from resting HR for children at the target age. For the remaining game scenarios,
similar results were also found at different scales. These partial results are then reviewed in the light of
the inferential statistics, shown in Section 3.1.2. The results prove a statistically significant difference
(p < 0.05) in all game scenarios (see Table 2), meaning that for the pilot study groups and its particular
study design, the goal of increasing HR and caloric expenditure was achieved.

Following the initial pilot study, the field test study was carried out using the same experimental
design. The results shown in Section 3.2 for this particular setting suggest a completely different figure
from that obtained at the pilot study. Beginning with the descriptive statistics exploration described in
Section 3.2.1, the average HR difference was lower for all three game scenarios. The highest average
difference between the UAS and the CIS was 4.89 bpm (game scenario 2) and 2.49 calories (game
scenario 1) for the HR and caloric expenditure variables, respectively. In other words, they are far lower
than those obtained for the pilot study. Moving on to the inferential statistics shown in Section 3.2.2,
the descriptive analysis discussion reaffirms this by indicating a statistically significant difference for
the HR and caloric expenditure variables only in-game scenarios 2 and 1, respectively. These results
not only indicate a small impact on the participant’s HR and caloric expenditure during the field test
intervention by looking at the small average differences but also that this was common across nearly
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all game scenarios. Thus the goal of increasing the HR and caloric expenditure with AC was not fully
achieved. It is worth, however, considering all factors and circumstances under which this field test
was carried out and which could potentially be influencing the outcome.

In the line of properly developing and subsequently assessing the AC, this research mainly relied
on two methods, the GAM for the component development, and the software engineering methodology
for the component assessment. The detailed description of the methods used to develop the component
would allow future reusability and adaptation of the solution. Although the GAM is recommended
when the underlying software is not completely known beforehand, some limitations may arise.
For instance, the original version of PetsGo was designed to run with a motion-sensing accessory
(Kinnect, Microsoft), which was not available at the time of this research, fomenting the rejection of one
of the customizations. The same applies to other PetsGo-specific features. These drawbacks could have
been overcome by developing a brand new exergame to incorporate the AC, although this may imply
significantly longer development time. Furthermore, it impedes the initial objective of demonstrating
that the component is flexible enough to be integrated into legacy (existing) exergames.

After having developed the AC, we performed its evaluation following a standard two-stage
structure in health informatics research. First, a pilot user study was completed under controlled
conditions, as described in Section 3.1. Second, the AC was tested under more realistic conditions in
a field test. This two-way testing of the AC revealed some flaws on the component, especially while
operating under less strict environments such as a kindergarten, perhaps related to the distracting
activities and surroundings around the participants during playtime, as well as not very explicit
feedback strategies (countdown or changing speed) to encourage the desired behaviors. During the
pilot test, users received personalized training on the game, and more time was allowed to get used
to the different game scenarios. Another factor that could influence the study findings is the data
acquisition devices in terms of available quantity and size. For both experimental tests, we used three
Microsoft wristbands to track the HR and caloric expenditure of participants. But this was certainly
not an issue for the pilot study where each child received one, and there was sufficient time to instruct
participants. Contrary, we encountered divers inconvenience with regards to constantly exchanging
these devices among participants after each session during the field test. Consequences have been
missing calibration, not adequate size fitting, and lack of a close follow-up of instructions by the
subjects. Nevertheless, it was possible to prove these hurdles should be addressed in research with
children for getting satisfactory results in more practical contexts.

In terms of the relevance of the results, our main contribution was the component for the real-time
adaptation of an exergame functionality backed by the algorithms illustrated in Section 2.2.7 and
explicitly devised for children between 5 and 7 years. The algorithms adapt the game’s displacement
speed, timing, and frequency of the game scenes based on children’s HR. Our AC proved to be
effective in a rigorous laboratory domain but demonstrated some weaknesses in more realistic
settings. This finding is in agreement with other studies, however. For instance, López [27] developed
an exergame that changes adaptively based on the participant’s physiological reactions (HR), showing
a clear boost in HR of adult participants. But this will probably not promote PA in younger people
because of different HR fluctuations that can vary by age. A second important insight from our results,
which is in partial compliance with other studies, is the need for a more explicit feedback strategy.
In [28], the biofeedback game Health Ninjas was developed, concluding that children need to be
provided with a more intuitive biofeedback strategy to perform the target behavior. In this perspective,
we found that children struggled to understand the feedback from the game during the field test, thus
failing to properly react to the changes in the exergame’s difficulty. Other studies followed a similar
approach to promote PA in children (8–13 years old) by using the number of steps per minute as
the regulating factor of a mobile phone game [7]. The study reported the game-based intervention
was successful in enhancing the PA in children; however, some limitations were found. The primary
constraint was poor adherence by the participants on wearing the activity monitors as instructed, likely
because of the relatively young age of the participants, emphasizing substantial issues in research
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involving young users. Despite the promising outcomes, the study concludes a higher sample size is
required to improve the results.

5. Conclusions

This study describes the development and evaluation of an adaptive component to monitor
physical activity in children while using an exergame. It demonstrates that the computer game,
using the adaptive component, was able to change in real-time some of its functionalities based on the
user characteristics. Increased levels of HR and caloric expenditure were significant in some of the
game scenarios using the adaptive component. Increasing PA levels and encouraging more physically
the active habits in children with a technological approach based on adaptive personalization has
a great future potential as it was determined by how the AC implementation contributed to boosting
the HR and calorie expenditure in the pilot study. Derived from the field test results, we would
nevertheless recommend more in-depth research on a number of factors that could influence the
exergame effectiveness in more practical settings. Thereby, more intuitive feedback mechanisms,
a better quality of the sensors, and the control of environment variables present in kindergarten settings
should be addressed.
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