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Abstract: Water environment carrying capacity (WECC) is an effective indicator that can help resolve
the contradiction between social and economic development and water environment pollution.
Considering the complexity of the water environment and socioeconomic systems in Northeast China,
this study establishes an evaluation index system and a system dynamics (SD) model of WECC in
Fushun City, Liaoning, China, through the combination of the fuzzy analytic hierarchy process and SD.
In consideration of the uncertainty of the future development of society, the Monte Carlo and scenario
analysis methods are used to simulate the WECC of Fushun City. Results show that if the current
social development mode is maintained, then the WECC in Fushun will have a slow improvement
in the future, and a “general” carrying state with a WECC index of 0.566 in 2025 will be developed.
Moreover, focusing on economic development (Scheme 1 with a WECC index of [0.22, 0.45] in 2025)
or environmental protection (Scheme 2 with a WECC index of [0.48, 0.68] in 2025) cannot effectively
improve the local water environment. Only by combining the two coordinated development modes
(Scheme 3) can WECC be significantly improved and achieve “general” or “good” carrying state with
a WECC index of [0.59, 0.79]. An important development of this study is that the probability of each
scheme’s realization can be calculated after different schemes are formulated. In turn, the feasibility
of the scheme will be evaluated after knowing the probability, so as to determine the path suitable for
local development. This is of great significance for future urban planning.

Keywords: water environment carrying capacity; uncertainty; Monte Carlo method; system dynamics

1. Introduction

The frequency of water shortages and environmental pollution caused by population growth
and rapid economic growth has been increasing since the 1980s [1,2]. Water environment carrying
capacity (WECC) is defined as the largest population and economic scale that the water environment
can support in a specific region for some period without evident adverse effects on the local water
environment [3]. WECC has been studied for human–water environment sustainability [4].

Since the 1990s, researchers have been working on the relationship between the water
environment and social economy [5]. For example, Wei et al. (2014) developed an index system
that can be used to assess land carrying capacity through the conceptual model of “driving
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force–pressure–state–response–control” [6]. He used the index system method, which is a static
evaluation method, and it is difficult to reflect the nonlinear process and the interaction between
elements in environmental science. Therefore, it is rarely used alone, and is generally used in
combination with other methods. For example, Qian et al. (2015) conducted a comparative analysis
of the land carrying capacity of Xiamen city based on ecological footprint analysis and the indicator
system method [7]. The ecological footprint method is also a static evaluation method and lacks
analysis of the interaction mechanism between system elements. In order to study the system more
effectively, the system dynamics (SD) method is applied. For example, Yang et al. (2015) applied the
coupling system dynamics method to assess the water environmental carrying capacity for sustainable
development in Tieling, Liaohe [8]. This method is a dynamic method, which can establish the coupling
relation of various system elements and simulate and predict the bearing condition of the regional
composite system with the help of the input and output of the model. However, there are still some
deficiencies in forecasting, so how to make up for them is the focus of this paper.

From the author’s point of view, WECC system in the real world is complex [9], and its operation
and development are accompanied by a large number of uncertainties. Strictly speaking, it is
impossible to be absolutely certain of the value of some element in the system at some point in the
future, even if there is a 99% certainty, there is a 1% uncertainty. Therefore, it is more reasonable to give
an interval where the values can vary. The probability of each value in this interval is different, and our
research is to find this interval and the probability of each value in this interval. Such a prediction
of the system’s development would be convincing. Moreover, from the previous studies of WECC,
the lack of uncertainty consideration and uncertainty analysis had produced undesirable consequences.
For example, the distortion of the evaluation results would lead to the failure of the program based on
the evaluation results, and the research results may not provide an effective basis for policy making.
Therefore, it is necessary to analyze the uncertainty of general WECC evaluation results with effective
methods, both theoretically and practically.

Considering the advantage of system dynamics, the Monte Carlo method is introduced and
coupled in this study, Taking Fushun city as an example, and this paper discusses the problem of
WECC uncertainty prediction and puts forward some measures for the current poor water environment
of Fushun City.

2. Materials and Methods

2.1. Study Area and Data

Fushun (123◦39′–125◦28′ E, 41◦14′–42◦28′ N), which is located east of Liaoning Province (Figure 1),
covers an area of 11,271.03 square kilometers. Fushun is an important water source protection area
of Liaoning Province, an important industrial base, and a subcentral city of the Shenyang Economic
Zone. The total population of the city was 2.158 million in 2015, and the GDP was recorded at RMB
121.65 billion. The average precipitation of the city was 690.3 mm, and the water resources totaled
1.951 billion m3. Fushun is rich in water resources, but the ecological functions of rivers and other
water bodies declined due to an increase in industrial and agricultural water and sewage discharge.
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Figure 1. Location of the study area and distribution of major rivers in the area. 

Hydrological data, such as total water consumption, is derived from the Fushun Water 
Resources Bulletin [10]. Pollutant related data, such as NH4N emissions, are gathered from the 
Fushun Statistical Yearbook [11]. Other socioeconomic data, such as total population and GDP, are 
obtained from the Fushun Yearbook [12]. Figure 2 shows the change trend of total water 
consumption, NH4N production, total population and GDP from 2006 to 2015. 

Figure 1. Location of the study area and distribution of major rivers in the area.

Hydrological data, such as total water consumption, is derived from the Fushun Water Resources
Bulletin [10]. Pollutant related data, such as NH4N emissions, are gathered from the Fushun Statistical
Yearbook [11]. Other socioeconomic data, such as total population and GDP, are obtained from the
Fushun Yearbook [12]. Figure 2 shows the change trend of total water consumption, NH4N production,
total population and GDP from 2006 to 2015.
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Fushun WECC index. The Monte Carlo method is introduced to analyze the uncertainty of some 
water environment evaluation indicators, in this manner, the predicted values of the four schemes 
become more realistic and accurate. Finally, the fuzzy WECC development trend is obtained. On this 
basis, policy recommendations are proposed. 
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2.2. Methodology

The main framework of this study is shown in Figure 3, mainly using four methods and divided
into two modules. Combining these two modules can obtain the future development trend of the
Fushun WECC index. The Monte Carlo method is introduced to analyze the uncertainty of some water
environment evaluation indicators, in this manner, the predicted values of the four schemes become
more realistic and accurate. Finally, the fuzzy WECC development trend is obtained. On this basis,
policy recommendations are proposed.
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The first module is the evaluation module. After analyzing the WECC system of Fushun City,
the water environment evaluation index is selected. Based on a fuzzy analytic hierarchy process (FAHP),
the paper constructs a regional water environment carrying capacity evaluation index system to reflect
the causal relationship between human social development and water environment pollution [13].
The second module is the prediction module. The WECC SD model is established after the water
environment evaluation index is selected. The model is divided into three subsystems, namely the
social–economic subsystem, the water environment subsystem, and the water resource subsystem.
To alleviate the contradiction between economic development and the water environment in the Fushun
area, four schemes were designed for comparative study, and the values of various evaluation indicators
in 2016–2025 were predicted, respectively. Combined with the weight of the evaluation indicators in
the evaluation module, the WECC evaluation model is obtained by using the standardization method
of indicators.

Combining these two modules can get the future development trend of the Fushun WECC index.
To make the predicted values of the four schemes more realistic and accurate, the Monte Carlo method
is introduced to analyze the uncertainty of some water environment evaluation indicators, and finally,
the fuzzy WECC development trend is obtained. Based on this, policy recommendations are proposed.

2.2.1. WECC Index System and Index Weight Calculation with FAHP

The establishment of a scientific and reasonable index system would help provide a basis for the
accurate assessment of the regional WECC [14]. This study selected 16 indicators to reflect the ecosystem
health status of Fushun. After considering the actual situation of the study area and consulting with
experts, the system was divided into three categories: water resource, water environment, and human
society. In the present study, some indicators were selected to reflect the ecosystem health status using
available data. Finally, after considering the actual conditions in the study area and consulting with
experts, the evaluation index system for the WECC in the Fushun area was established (Table 1), and the
system was classified into three categories, i.e., water resources, water environment, and human society,
using 16 indicators in total.

Table 1. Weights values of the evaluation indicators.

Object Hierarchy Rule Hierarchy Index Hierarchy Weight Value

WECC in the
Fushun area

System index for
water resources

Primary industry water consumption 0.0305
Second industry water consumption 0.0647

Water supply 0.0484
Water supply and consumption ratio 0.0355

System index for
water environment

COD environmental capacity 0.0637
NH4N environmental capacity 0.0701

Life COD production 0.0626
Life NH4N production 0.0474

COD emissions 0.0934
NH4N emissions 0.0754

System index for
social economy

Total population 0.0752
The level of urbanization 0.0723

GDP 0.0940
Primary industry growth rate 0.0366
Second industry growth rate 0.0714
Third industry growth rate 0.0588

The AHP is a decision analysis method developed by Satty [15]. This method considers qualitative
and quantitative information. As a result, the AHP has a special advantage in multi-index evaluation.
AHP has been applied in many research fields, including nature, economy, and society [16]. However,
the construction of the pairwise comparison judgment matrix usually does not consider the ambiguity
of human judgment and only considers the possible extreme situation of human judgment in the AHP
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of general problems [17]. When conducting expert consultation on some issues, experts often provide
some amount of ambiguity (such as a three-value judgment, namely, the lowest possible value, highest
possible value, and most likely value). In view of such ambiguity, Laarhoven and Pedrycz evolved
AHP into FAHP, bringing the triangular fuzzy number of fuzzy set theory directly into the pairwise
comparison matrix of the AHP [18]. The purpose is to solve vague problems, which occur during the
analysis of criteria and the judgment process. FAHP tolerates vagueness or ambiguity and should
be more appropriate and effective than conventional AHP in real practice [19]. Therefore, FAHP has
been increasingly used by researchers to solve various problems in recent years. Wu et al. [20] used
FAHP to evaluate the performance indicators of intellectual capital in the ecological economy industry.
Sivasangari, A et al. [21] used FAHP to analyze and predict breast cancer.

In this study, trigonometric fuzzy numbers are used to improve AHP. The equations are shown in
Formulas (1)–(4) in Table 2.

Finally, the relative weight of each evaluation index in the system was obtained (Table 1).

2.2.2. System Dynamics Model

The SD model starts from the internal structure of the system, and the first-order differential
equations are used to reflect the causal feedback relationship among the variables in the system;
hence, the SD simulation model is established. The policy simulation of different development
schemes is first performed in the evaluation of carrying capacity, and then the decision variables are
predicted. The decision variables are taken as the index system of the carrying capacity evaluation,
and then the index evaluation method is combined for calculation and analysis. Lastly, the optimal
development scheme and the corresponding carrying capacity are obtained. The SD model method
simulates the behavior of a real-world nonlinear complex system over time and has advantages in
dynamic monitoring, which can consider the interaction between various factors within the system [22].
This method is suitable for dealing with long-term and periodic problems and is an effective tool for
analyzing complex systems [23].

In this study, the administrative boundaries of Fushun City (including Xinfu District, Wanghua
District, Dongzhou District, Shuncheng District, Fushun County, Xinbin Manchu Autonomous County,
and Qingyuan Manchu Autonomous County) are taken as the system boundaries. The simulation time
is 2016–2025, and the simulation time interval is one year. In accordance with the WECC evaluation
index system (Table 1) and the social and economic development status of the Fushun area, the WECC
system is divided into three subsystems: social and economic, water resource, and water environment.

The WECC SD model as a simulation model for an actual system must be consistent with
the objective reality. In this study, DP, total population, urban population, COD production,

NH4N production, and total water consumption were selected as the major variables for a historical test
to confirm the validity of the model after the sensitivity analysis of the model parameters. Table 3
shows the calculated relative error between the simulated and actual values. The results show that the
model error is less than 10%, the test error is within the allowed range, and the simulation period is
very short. Therefore, the model can represent the real system and meet the requirements of prediction.
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Table 2. Equations.

Equation Number Function of Equations Equation Supplementary Instruction

(1) The function µM represents the membership of M µM(x) =


1

m−x x− l
m−l x ∈ [l, m]

1
m−u x− u

m−u x ∈ [m, u]
0 x ∈ (−∞, l]∪ [u,+∞)

M is a fuzzy number on the domain R (R∈[0, 1]);
l ≤ m ≤ u;

l and u represent the lower and upper bounds of M;
m is the median of the membership degree of M;

The general triangular fuzzy number M is expressed
as (l, m, u).

(2) Dk
i is the comprehensive fuzzy value of the element i of the Kth layer

(initial fuzzy value)
Dk

i =
n∑

j=1
ak

i j/

 n∑
i=1

n∑
j=1

ak
i j

, i = 1, 2, . . . , n

(3) The probability of M1 ≥M2 (It is defined by the triangular fuzzy function)

v(M1 ≥M2) = supx≥y[min(µM1 (x),µM2 (y))]
or
v(M1 ≥M2) =

1 m1 ≥ m2
l2−u1

(m1−u1)−(m2−l2)
m1 ≤ m2, u1 ≥ l2

0 otherwise

M1(l1, m1, u1) and M2(l2, m2, u2) are any given two
fuzzy numbers

(4) Definition of the probability that one fuzzy number is greater than the
other K fuzzy numbers

v(M ≥M1, M2, . . . . . . , MK) = min(M ≥Mi), i =
1, 2, . . . , k

(5) For the indicator, “the smaller the value, the more favorable the WECC” Qi j =
max

j=1,2,...,m
ei j−ei j

max
j=1,2,...,m

ei j− min
j=1,2,...,m

ei j
Qi j is the score of i-index (i = 1, 2, ..., 15, 16) in

j-scheme (j = 1, 2, 3, 4);
ei j is the value of i-index in j-scheme; e∗i j is the

optimized value of interval index, which is the
average of ei j in the study.

(6) For the indicator, “the larger the value, the more favorable the WECC” Qi j =
ei j− min

j=1,2,...,m
ei j

max
j=1,2,...,m

ei j− min
j=1,2,...,m

ei j

(7) For the indicator, “the closer the value is to a certain value, the more
favorable the WECC” Qi j = 1−

∣∣∣∣ei j−e∗i j

∣∣∣∣
max

j=1,2,...,m
ei j− min

j=1,2,...,m
ei j

(8) WECC index R j calculation formula R j =
n∑

i=1
CiQi j

Qi j is the standardized score of i-index in j-scheme;
Ci is the weight of i-index determined by FAHP.
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Table 3. Error test.

Index 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

GDP
(hundred million Yuan)

Actual value 457.8 547.2 662.4 698.6 890.2 1113.3 1242.4 1340.4 1276.6 1216.5
Simulation value 501.5 586.3 624 685.5 851.1 1081 1206 1316 1289 1230

Relative error −9.55% −7.15% 5.80% 1.88% 4.39% 2.90% 2.93% 1.82% −0.97% −1.11%

Total population
(million people)

Actual value 2.24 2.24 2.23 2.23 2.21 2.20 2.19 2.18 2.17 2.16
Simulation value 2.24 2.23 2.23 2.22 2.21 2.20 2.19 2.18 2.17 2.15

Relative error 0.00% −0.32% −0.31% −0.50% −0.14% −0.23% −0.25% −0.07% −0.28% −0.19%

Urban population
(ten thousand people)

Actual value 148.32 147.96 147.30 146.41 145.48 144.54 143.64 142.32 142.60 141.20
Simulation value 148.30 147.50 146.80 145.70 145.30 144.20 143.20 142.20 141.10 142.30

Relative error −0.01% −0.31% −0.34% −0.48% −0.13% −0.24% −0.31% −0.08% −1.05% 0.78%

NH4N production(t)
Actual value 6688 6731 6743 6762 6863 7003 7054 7083 7125 7148

Simulation value 6625 6711 6766 6801 6921 7040 7105 7162 7111 7023
Relative error −0.94% −0.30% 0.34% 0.58% 0.85% 0.53% 0.72% 1.12% −0.20% −1.75%

COD production(t)
Actual value 163,575 163,732 163,744 164,318 164,796 164,880 164,730 164,556 164,002 163,050

Simulation value 161,678 161,821 162,164 163,201 163,814 164,800 165,581 166,746 164,846 161,684
Relative error −1.16% −1.17% −0.96% −0.68% −0.60% −0.05% 0.52% 1.33% 0.51% −0.84%

Total water consumption
(One hundred million cubic meters)

Actual value 5.14 5.056 4.608 4.923 4.924 4.74 4.43 4.18 4.18 4.85
Simulation value 4.94 5.29 4.57 4.9 4.88 4.78 4.66 4.49 4.19 4.69

Relative error −3.89% 4.63% −0.82% −0.47% −0.89% 0.84% 5.19% 7.42% 0.24% −3.30%
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2.2.3. WECC Evaluation Model

Given that WECC evaluation indicators have different dimensions, units, and sizes, evaluating
them comprehensively is difficult. Therefore, this study divides the evaluation indicators into three
categories, namely, “the greater, the better;” “the smaller, the better;” and “the closer a certain value
is, the better”. The index standardization method is used to determine the standard score for each
evaluation indicator, and the WECC index is introduced to quantitatively describe the running state of
the system. The equations are shown in Formulas (5)–(8) in Table 2.

Many WECC studies are limited to qualitative descriptions, but several quantitative analyses
have been performed [24]. No uniform classification and calculation method for carrying capacity
has been identified. Therefore, based on the membership degree and water environment carrying
capacity state classification method in fuzzy mathematics, the carrying state is divided into five groups
according to the WECC index value (Table 4).

Table 4. Water environment carrying capacity (WECC) carrying state table.

WECC Index Carrying State

0.8–1.0 excellent
0.6–0.8 good
0.4–0.6 general
0.2–0.4 poor
0–0.2 very poor

2.2.4. Monte Carlo Method

The Monte Carlo method is a stochastic simulation method based on probabilistic and statistical
theoretical methods. The basic idea is to link the problem that needs to be solved with a probability
model and generate a series of random numbers for the model through the computer. All the statistical
characteristic values of the parameters are obtained after repeated calculation, and the approximate
values of the results are given. The accuracy of the result can be expressed by the standard error
of the estimate. The Monte Carlo method can randomly simulate the dynamic relationship among
various variables and estimate the distribution of model results through repeated simulation to solve
several complex problems with uncertainty [25]. In recent years, this method has often been used
in conjunction with other methods, such as with Fermi DwiWicaksono et al. [26], who coupled the
FAHP and Monte Carlo methods and proposed a new multi-criteria decision analysis method based
on the Normative Monte Carlo Fuzzy Analytic Hierarchy Process (NMCFAHP), which combined
the fuzziness of judgment with probability uncertainty and cognitive uncertainty. This study also
combines system dynamics and Monte Carlo method to study WECC in Fushun region. Below are the
general steps for using Monte Carlo method.

Assume a function Y = f(x1, x2, x3, . . . , xn), where x1, x2, x3, . . . , xn is a statistically independent
random variable, and the probability distribution is known. In practical problems, f (x1, x2, x3, . . . , xn)
is often unknown or a complex functional relationship and has difficulty solving relevant probability
distributions and numerical features using analytical methods. The Monte Carlo method uses a
random number generator to extract the value x1i, x2i, x3i, . . . , xni of each set of random variables x1,
x2, x3, . . . , xn through direct or indirect sampling and determines the value of the function Y by the
relation of Y to x1, x2, x3, . . . , xn:Yi = f (x1i, x2i, x3i, . . . , xni).

A batch of sampled data of the function Y can be obtained by repeatedly sampling multiple times
(i = 1, 2, 3, . . . ). When the number of simulations is sufficient, the probability distribution and digital
features of function Y, which are close to the actual situation, can be provided.
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3. Results and Discussion

3.1. Results

3.1.1. Analysis of the Current Situation of the Water Environment Carrying Capacity in Fushun City

The WECC index of the Fushun area in 2015 was 0.398 after calculation. Overall, WECC was
in a “poor” carrying state, which indicates that the water environment in the Fushun region has
been poor and polluted in recent years [27]. From a partial point of view, the author analyzed the
current situation of the WECC in the Fushun area from the aspects of social economy, water resources,
and water environment.

This study selected the total population, urbanization level, GDP, and the growth rate of the three
industries to describe the social and economic conditions of Fushun City. The total population of
Fushun City was 2.158 million in the end of 2015, of which the urban population was 1.489 million,
and the rural population was 0.669 million. Compared with the data of previous years, the total
population and urbanization water showed a downward trend. Population is a key constraint to
economic development in the process of social development. The population quantity and quality
directly determine the speed and scale of economic development; thus, the population of Fushun City
reduced, especially the urban population, thus inevitably affecting economic development. Policies
can be formulated to attract population, increase the total population of Fushun City, and improve the
level of urbanization to promote economic development in the future. Another important indicator in
the social and economic system is GDP and the growth rate of three industries. As the most direct
indicator of the level of economic development, Fushun City’s GDP in 2015 was RMB 121.65 billion,
a slight increase from the previous year (calculated at comparable prices). The growth rate of three
industries were 4.4%, 1.6%, and 7.1%, respectively. The economic development was slow, with the
second industry growth rate still falling. Investment in agriculture and industry can be increased to
speed up economic development in the future.

The water resource system had the least impact on the WECC in the three systems because of
many rivers in Fushun, including the Hunhe, Qinghe, Chaihe, Fuerjiang, and Liuhe rivers. Hence,
the water reserves are sufficient. The total water consumption of Fushun City in 2015 was 485 million
m3, including 259 million m3 for the primary industry and 158 million m3 for the secondary industry.
Although water consumption has increased from last year, the total water consumption and the trend
of the three-production water consumption have been declining in recent years. The ratio of water
supply to consumption in Fushun in 2015 was 1.56, which clearly showed that the amount of water in
Fushun can meet the needs of the entire city. Appropriate water-saving policies should be formulated
in the future, but economic development should not be affected.

WECC is affected by the water environment system, and the current water environment in Fushun
is not remarkable. The COD and NH4N emissions of Fushun City were 10,400 and 4491.39 t in 2015,
respectively. Both decreased but were not evident in comparison with that from the previous year.
Pollutant emission remains large, and the environmental situation is grim. Two major approaches to
control pollutants in the future are identified. The first approach is reducing the production of industrial
and agricultural pollutants of ten thousand Yuan of added value starting from the pollutant source.
The feasibility of this method is not high because the traditional production process of industry and
agriculture is difficult to change in a short time, and the effect of several small improvements is limited.
The second approach involves strengthening the research and development of pollutant treatment
technology, improving the treatment rate of pollutants, and reducing the emission of pollutants from
the treatment of pollutants.

In accordance with the present situation of water environment in Fushun, two major methods
were identified to improve the WECC. First, pollutant emissions must be controlled. Second, the speed
of economic development must be accelerated. Table 1 shows that the indices with great impact on the
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WECC of Fushun at present are COD emission, NH4N emission, total population urbanization rate,
and GDP. This study aims to improve Fushun’s WECC by controlling these indicators.

3.1.2. Scenario Analysis

In order to explore a suitable road for the sustainable development of the Fushun area in the future,
this study proposes four development schemes for comparative study (as shown in Table 5), and the
important evaluation indicators in different schemes need to select some key indicators to control.
Total population and urbanization rate are important evaluation indices of social development, among
which the total population is mainly affected by birth rate, death rate, immigration rate, and emigration
rate. Due to the difficulty of human intervention in birth rate and death rate, this study selected the
coefficient of migration and the coefficient of migration as the key parameters to control the total
population, and selected the urbanization rate as the key parameter to balance the urban population
and the rural population. GDP is the most direct evaluation index of economic development, and the
growth rate of the three industries has an impact on it. Therefore, the growth rate of the three industries
(calculated at comparable prices) is chosen as the key parameter to control GDP. The main pollutants
discharged into the water environment in Fushun area are COD and NH4N, so the COD treatment rate
and NH4N treatment rate are taken as the key parameters to control the discharge of COD and NH4N
in this study. This study mainly controls the development of the scheme by controlling the value of
key parameters.

In the present study, Vensim Software is used to establish the SD model of WECC for Fushun and
to perform the simulation. The SD flowchart of the WECC system is shown in Figure 4. This study
took 2015 as the base year and implemented the scheme from the beginning of 2016. The SD model is
used to simulate the numerical changes of Fushun’s social and economic development, water resource
utilization, and pollutant emission under the background of four development schemes from 2016 to
2025. Lastly, the WECC index was calculated to evaluate WECC, focusing on the development results
of the WECC index of four schemes.
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Table 5. Improvement schemes of water environment carrying capacity in Fushun area.

Scheme Key Development Direction Detailed Procedures

Original scheme Maintained the existing development model of Fushun area

The urbanization rate remained at 0.69, with small natural and mechanical
changes of population; The government lays emphasis on economic
development, industrial investment and agricultural investment remained
at the average level in the past five years, with the growth rate of the three
industries at 6.12%, 14.71%, and 12.67%, respectively; The current COD
and NH4N treatment rates remained at 92% and 70% in terms of
environmental treatment.

Scheme 1 Economic development, especially industrial progress, is
placed in the first place in social development

The urbanization level is stable at 0.8, and the coefficient of migration in
and out is 1.5 and 0.5 respectively; The government strongly supported
industrial development, and the coefficient of industrial policy reached
1.45. The investment in industry was overwhelming that in agriculture
and tertiary industry. The growth rate of the three industries rose to 6.69%,
18.77% and 14.67%; The environmental protection level do not
significantly improve in comparison with the original scheme.

Scheme 2 Economic development was restrained to reduce the
emission pollutants

Industry, as the main driver of water environmental pollution, was
restricted, and the coefficient of industrial policy dropped to 0.9.The
overall economic development will be very slow, the growth rate of the
three major industries will drop to 4.04%, 4.35% and 6.87% respectively,
and the urbanization level will also drop to 0.67.; With the implementation
of government regulations and policies on environmental protection,
the COD and NH4N treatment rates have increased to 96% and 80%.

Scheme 3 Enhance environmental protection while comprehensively
developing the economy

Emission reduction and pollution control technology were widely
promoted in industrial and agricultural production. The treatment rates of
COD and NH4N increased to 94% and 75%, respectively, compared with
the original scheme. In terms of economy, the growth rate of the three
industries (5.46%, 12.16%, and 10.71%) decreased slightly. The GDP
growth rate slowed down, and urbanization level slightly decreased to
0.65, with the coefficient of migration in and out is 1.3 and 0.7 respectively.

Note: the key parameters controlling important evaluation indicators in the scheme setting of this study are mainly migration coefficient, migration coefficient, urbanization rate, growth
rate of primary industry, growth rate of secondary industry, growth rate of tertiary industry, COD treatment rate and NH4N treatment rate.
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As shown in Figure 5, except for the slow decline of WECC in Scheme 1, the future development
of WECC in the other three schemes is on the rise. In 2015, the WECC index was 0.398. In the original
scheme, the WECC rises slowly and can only achieve a “general” carrying state with a WECC index of
0.566 in 2025. The WECC trend in Scheme 2 is very similar to the original one. Although the WECC
index can reach 0.597 in 2025, which is slightly higher than the original scheme, the WECC index in
2016–2022 is lower than the original scheme, so the environmental protection scheme may take a long
time to take effect. The effect is not obvious in the short term, and even the growth of the WECC
index is even slower because it inhibits the economy. In the context of neglecting the environment and
developing the economy at a high speed, the WECC in Scheme 1 has declined slowly, reaching only
0.324 in 2025.Compared with the other three schemes, the advantages of Scheme 3 are prominent and
the upward trend is obvious. The WECC in this scheme will be in a “good” carrying state with a WECC
index of 0.717 in 2025, indicating that coordinated development is the key to solve the WECC problem.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 15 of 20 
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3.1.3. Uncertainty Results

This study analyzed the uncertainty of the WECC results obtained in the economic and water
environment by analyzing the real data of Fushun City in the past 20 years. Regression analysis was
used to identify the relationship between the growth rate of the three industries and the growth rate of
GDP. The probability distribution of the growth rate of the three industries was obtained in accordance
with the Monte Carlo method (as shown in Figure 6). In terms of the water environment, regression
analysis was used to identify the relationship between water availability, COD environmental capacity,
and NH4N environmental capacity and precipitation. Then, the probability distribution of available
water, COD environmental capacity, and NH4N environmental capacity were obtained in accordance
with the Monte Carlo method (as shown in Figure 6).
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This study considered the uncertainty of future social development and developed reasonable
schemes based on past social development.

The key parameters of the original scheme remained unchanged. From the perspective of the
economy, Schemes 1–3 were divided in accordance with the actual probability distribution of the
growth rates of the three industries in the past 20 years. The growth rates of the three industries
in Scheme 1 were [6.18, 7.38]%, [14.97, 21.74]%, and [12.8, 16.24]%, and the realization probability
was 30%. The growth rates of the three industries in Scheme 2 were [3.18, 5.25]%, [0.12, 10.53]%,
and [5.05, 10.26]%, and the realization probability was 30%. The growth rates of the three industries in
Scheme 3 were [5.25, 6.18]%, [10.53, 14.97]%, and [10.26, 12.8]%, and the realization probability was
40%. Table 6 shows the specific parameter changes. As shown in Figure 7, after the uncertainty analysis
of the WECC results of the three schemes, the overall development trend of the WECC index of the
three schemes did not change much. The WECC index of Scheme 1 continues to decline, to [0.22, 0.45]
in 2025. The upward trend of the WECC index of Scheme 3 is still very clear, rising to [0.59, 0.79]
in 2025. The WECC index of Scheme 2 is still not far off from the original scheme, and it can reach
[0.48, 0.68] in 2025.
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Table 6. Parameter settings for four scenarios after uncertainty analysis.

Index Original Scheme Scheme 1 Scheme 2 Scheme 3

Immigration coefficient 1 1.5 0.5 0.7
Emigration coefficient 1 0.5 1.5 1.3

The level of urbanization 0.69 0.8 0.67 0.65
Primary industry growth rate (%) 6.18 [6.18, 7.38] [3.18, 5.25] [5.25, 6.18]
Second industry growth rate (%) 14.97 [14.97, 21.74] [0.12, 10.53] [10.53, 14.97]
Third industry growth rate (%) 12.8 [12.8, 16.24] [5.05, 10.26] [10.26, 12.8]

COD processing rate (%) 92 92 96 94
NH4N processing rate (%) 70 70 80 75
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3.2. Discussion

The benchmark year (2015) in Fushun is in a poor carrying state. As shown in Figure 5, if the
current situation continues to develop, the water environment in Fushun will not improve much by
2025. Therefore, this study proposes three schemes to improve the current poor water environment.
In order to make the predictions of Schemes 1, 2, and 3 more convincing, we performed uncertainty
analysis on the general results of WECC that we have obtained. From the perspective of uncertain
results, this study has achieved its purpose. We have obtained the variation intervals of the WECC
index values and the probability of each value in interval in each of the three schemes from 2016 to 2025.
Compared with the WECC index value predicted when Zhang et al. (2014) studied and evaluated
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the development trend of water ecological carrying capacity in the Siping area by combining system
dynamics and the analytic hierarchy process [28], the uncertain results obtained in this study will have
more reference significance. Figure 7 shows only the WECC index values for the years 2020 and 2025.
It is not difficult to see from the figure that the WECC index value of the maximum probability that can
be achieved in Scheme 3 in 2025 is higher than that of the other two schemes, and the overall interval
value is relatively high.

In addition, Scheme 3 has the highest probability of occurrence, reaching 40%. Therefore, Scheme 3
is the development path proposed in this study that can significantly improve the water environment in
Fushun. This scheme does not emphasize the emphasis on a particular aspect of development but seeks
a balance between the contradiction between economic development and water and environmental
protection, and thus it controls the coordinated development of all indicators within a reasonable range.
In terms of economy, the growth rates of the three industries decreased to [5.25, 6.18]%, [10.53, 14.97]%
and [10.26, 12.8]%, respectively. In terms of population control, the urbanization level declined slightly
to 0.65, and the migration coefficient of people in and out was 1.3 and 0.7, respectively. In terms
of environmental protection, we have extensively applied emission reduction and pollution control
technologies in industrial and agricultural production and raised the rates of COD and NH4N to
94% and 75%, respectively. Due to limited data, the water environment status assessment indicators
selected in this study are not perfect, so the measures adopted in Scheme 3 can only be a general
direction, and a lot of details and other measures should be further studied. This paper supplements
the following suggestions on the basis of the research on the water environment carrying capacity in
Fushun City: (1) actively adjust the industrial structure, vigorously promote the tertiary industry with
low water consumption and waste water discharge, and adjust its growth rate to the same level as the
secondary industry; (2) the old industrial areas in Fushun city are relatively concentrated, therefore,
the establishment of larger sewage treatment plants can reduce the infrastructure investment and cost
per unit of water treated, and also facilitate the improvement of the overall treatment technology level;
(3) in order to effectively reduce the per capita sewage discharge capacity of Fushun city, the water
price can be appropriately raised and the living sewage fee can be levied; (4) industry should pay
more attention to the development of clean production processes and new technologies, especially
water-saving technologies [29]. In agriculture, the development of organic agriculture can reduce the
use of fertilizers and pesticides.

4. Conclusions

This study introduced the Monte Carlo method and SD model to establish a WECC evaluation
index system and a WECC model for Fushun. Three schemes were designed to address ecological and
environmental problems in the region, and the development trends of WECC in the region between
2016 and 2025 were predicted and evaluated using different schemes. The Monte Carlo classical
sampling method was used to study the three schemes.

Results show that the rapid development of the economy adversely affects the water environment
in Fushun, but reducing the pollutant emissions by sacrificing the economy will not effectively
solve the ecological problems, it will only find a balance in the contradiction between economic
development and water environmental protection. Through the adoption of a series of measures,
including industrial restructuring, saving various resources, strengthening residents’ environmental
awareness, and appropriately increasing environmental protection investment, the indicators are
controlled within a reasonable range. In this manner, Fushun City can embark on the road of sustainable
development and fundamentally improve the WECC.

An important contribution of this study is to propose a basis for making a scheme and a method
to verify the feasibility of the scheme, namely the probability of whether the scheme can be realized.
The system dynamics method is adopted to connect the scattered indexes into a whole, the Monte
Carlo method is adopted to analyze the uncertainty of the panel data of each index, and then the
probability of each index within a specific range is simulated. This probability is derived from the
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development of the existing society and is supported by real data, which has important reference
significance for planning the future social development. Although the focus of this study is on the
smooth water environment, the simulation methods adopted in this study can be used for reference for
the simulation of water environment in other regions. It is suggested that big data should be used
for management in future studies [30] to obtain more accurate and reasonable data to populate and
execute the Monte Carlo method–system dynamics model.
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