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Abstract: Background: To determine the relationship between physiological fatigue and the quality of
cardiopulmonary resuscitation (CPR) in trained resuscitators in hostile thermal environments (extreme
cold and heat) simulating the different conditions found in an out-of-hospital cardiorespiratory arrest.
Methods: Prospective observational study involving 60 students of the health sciences with training
in resuscitation, who simulated CPR on a mannequin for 10 min in different thermal environments:
thermo-neutral environment (21 ◦C and 60% humidity), heat environment (41 ◦C and 98% humidity)
and cold environment (−35 ◦C and 80% humidity). Physiological parameters (heart rate and lactic
acid) and CPR quality were monitored. Results: We detected a significant increase in the number of
compressions per minute in the “heat environment” group after three minutes and in the mean rate
after one minute. We observed a negative correlation between the total number of compressions and
mean rate with respect to mean depth. The fraction of compressions (proportion of time in which
chest compressions are carried out) was significant over time and the mean rate was higher in the
“heat environment”. Physiological parameters revealed no differences in heart rate depending on
the resuscitation scenario; however, there was a greater and faster increase in lactate in the “heat
environment” (significant at minute 3). The total proportion of participants reaching metabolic
fatigue was also higher in the “heat environment”. Conclusions: A warm climate modifies metabolic
parameters, reducing the quality of the CPR maneuver.

Keywords: hostile thermal environment; physiological fatigue; quality CPR; simulation

1. Introduction

According to the European Resuscitation Council (ERC), more than 275,000 people a year suffer
an out-of-hospital cardiorespiratory arrest in Europe, with a variable incidence depending on the
region, between 38 and 84 cases per 100,000 inhabitants/year [1,2]. According to the Spanish registry
for out-of-hospital cardiorespiratory arrest, in more than half of the cases (56.7%), basic life support was
carried out before the arrival of the Prehospital Emergency Medical Services (PhEMS) [1]. The immediate
performance of cardiopulmonary resuscitation (CPR) protocols become a crucial intervention for the
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survival of the affected patient [1,3]. Survival rates after out-of-hospital cardiorespiratory arrest range
from 5.0% to 30.0% in different European countries, increasing considerably in those cases where early
CPR is performed [2,4].

Intervening quickly increases the victim′s chances of survival. Equally important is that the
intervention meets CPR quality standards, which the American Heart Association (AHA) published in
its 2015 guide on quality CPR, which stipulate a frequency of 100 to 120 compressions per minute at a
depth of 5 to 6 cm in the lower half of the sternum [5,6].

Because the average arrival time of the PhEMS in Spain is 12 min (8–19 min) [1], the intervention
carried out by first responders will involve high-intensity physical exercise that will directly affect the
quality of the CPR, which decreases considerably as time passes [7–9]. Performing CPR for periods of
at least 10 min also affects numerous physiological parameters of the responder (muscle fatigue, heart
rate, pulmonary ventilation), which will be less pronounced if the responder is physically fit [9–12].

In Spain, 57.5% of cardiorespiratory arrests occur outside the hospital setting, so on many occasions
the environmental circumstances in which the initial CPR is carried out will not be controlled [13].
Studies on the quality of CPR maneuvers performed in extreme contexts (resuscitation after rescue
from water, in a hypoxic environment, with personal protective equipment) are becoming more
frequent [14–18]. For this reason, simulating CPR in highly stressful settings could contribute
to alleviate situational anxiety and improve the quality of out-of-hospital interventions in these
settings [19].

The objective of this study was to determine the relationship between physiological fatigue and
CPR quality in resuscitators with basic CPR training in hostile thermal environments (cold and extreme
heat compared to a thermo-neutral environment).

2. Materials and Methods

2.1. Study Design

We conducted a prospective observational cohort study including volunteers over the age of
18 years with accredited basic knowledge of basic life support, all of them students in a Health Sciences
degree. The study was carried out at the Faculty of Health Sciences of the University of Castilla la
Mancha, in Talavera de la Reina (Toledo, Spain), between 6 and 10 May 2019.

The sample size was calculated with an alpha risk of 0.05 and beta risk of 0.2 with bilateral contrast,
assuming three groups of 18 participants each (56 participants), to detect a minimum difference of 0.1
between two groups, and assuming a standard deviation of 0.1 (extracted from previous studies) [14,15].
We estimated a loss to follow-up rate of 5%; hence, the final sample size was 64 participants.

2.2. Population

The study was carried out on students from the University of Castilla-La Mancha who participated
voluntarily. We included participants between 18 and 65 years, with basic knowledge of CPR
(by accredited course or equivalent to training by the AHA or ERC), who read and signed informed
consent. Exclusion criteria were: baseline heart rate greater than 120 beats per minute (bpm) or less
than 35 bpm; systolic or diastolic blood pressure greater than 160 or 95 mmHg or systolic blood
pressure less than 80 mmHg; capillary blood glucose below 65 mg/dL; severe visual or auditory
deficiency or some type of functional impairment preventing them from performing the maneuvers;
major surgery in the previous 30 days; epilepsy; diagnosed current infections; electrocardiogram
with alterations (arrhythmias or changes in the ST segment); oxygen saturation below 92%; body
mass index above 40 kg/m2; body temperature >38 ◦C; cutaneous diseases in acute phase or systemic
immunological diseases.

Applying the selection criteria and arranging the participants randomly in the different
experimental groups, we obtained three homogeneous populations classified as follows: 20 participants
in the thermo-neutral environment (eight men and twelve women), 19 participants in the heat
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environment group (nine men and ten women) and 20 participants in the cold environment group (ten
men and ten women) (Figure 1).
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Figure 1. Flow chart of the selection of participants for this study.

In total, 520 students were contacted, 202 of whom were excluded due to not having basic
knowledge of CPR or not wishing to participate in the study. Of the remaining 318, we excluded 98 for
meeting the exclusion criteria, leaving 220 participants. We randomly selected 64 students in a raffle,
of whom five did not turn up to the study, so the final sample was 59 participants (Figure 1).

2.3. Study Protocol

We quantified physiological variables lactic acid (LA) and heart rate and analyzed them in relation
to the Anaerobic Threshold (AT), which corresponded to LA levels in blood above 4 mmol/L and a
calculated maximum heart rate using the Tanaka formula [20]. To assess CPR quality, we recorded
mean and optimal depth of the compressions, mean rate, compressions in the optimal frequency
zone, compression fraction (proportion of time in which the thoracic compressions are carried out),
compression in the optimal zone of depth (5–6 cm) and frequency (100–120 compressions per minute)
in a Little Anne QCPR mannequin (Laerdal, Stavanger, Norway).

LA values were obtained with an Accutrend Plus lactometer (Roche Diagnostics, Mannheim,
Germany), with a measurement range of 0.8–21.7 mmol/L. The protocol for determining capillary
LA consists of the following phases: (1) after turning on the lactometer, test strip code and code on
device screen are compared to verify match, and expiration date of reagents is confirmed; (2) blood is
drawn from the right index finger using the Solofix® Safety lancet (B. Braun, Melsungen, Germany);
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(3) 15–40 µL of capillary blood is deposited on the strip and a result is obtained within 60 s; (4) the
test strip is removed and the device is cleaned. Heart rate and all quality CPR data were obtained
with the X Series® monitor/defibrillator (Zoll, Chelmsford, MA, USA) and the Real CPR Help® CPR
system (Zoll, Chelmsford, MA, USA) that provides simultaneous real-time feedback on the depth and
frequency of CPR.

The proposed clinical case was identical in all scenarios. The responder had to perform CPR
individually for 10 min in a 20 m2 laboratory, with a sequence of 30 compressions and two ventilations.
The CPR was performed on the floor, positioning the rescuer on the right side of the mannequin.
The temperature and humidity of the room were controlled and differed between scenarios: the
thermo-neutral environment group performed basic CPR at a temperature of 21 ◦C and humidity of
60%, the heat environment group at 41 ◦C and 98% humidity, and the cold environment group at
−35 ◦C and 80% humidity.

Throughout the CPR simulation, heart rate and electrocardiographic rhythm of each volunteer
were continuously monitored to assess their constants and immediately detect possible complications.
In addition, at minutes 3, 6 and 9, a serial lactic acid curve was established using capillary extractions
according to the protocol, while participants minimized CPR during the ventilation phase for sampling.
These parameters were measured again 10 min after the end of the simulation.

Clothing and protective equipment used in each scenario were the standard used by the Emergency
Services of Castilla-La Mancha.

A randomization sequence was generated using random numbers, according to the gender
stratification created with the XLSTAT® BioMED software for Microsoft Excel® (version 14.4.0.)
(Addinsoft Inc., New York, NY, USA), so that each subject had the same probability of being allocated
to any of the three groups (thermo-neutral environment and two intervention groups). This allocation
was coded for the researcher in charge of analyzing the data, and the participants were not informed of
it until the beginning of the simulation.

2.4. Data Analysis

Descriptive statistics (means ± standard deviation (SD)) were used for quantitative variables and
descriptive analysis of frequencies for qualitative variables. The female/male ratio was evaluated
using the χ2 test. The quantitative variables considered in this study were number of compressions
per minute, mean depth, compressions with optimal depth, mean rate, compressions in the optimal
frequency zone, compressions in the optimal zone of depth and frequency, as well as the compression
fraction. We selected heart rate and lactic acid as additional quantitative variables related to the
physiological parameters of the participants.

The physiological baseline of the different variables was established at rest to rule out initial
differences between the different experimental groups. We considered the first minute recorded in the
experimental protocol as baseline.

We verified that the data met the normal distribution using the Kolmogorov–Smirnov test and
then analyzed the data using the ANOVA test. To check if there were significant differences in the
variables at the ten time points evaluated (minutes 1–10), we performed a repeated measures ANOVA
(intra-subject factor: time; inter-subject factor: ambient temperature) with a Bonferroni post-hoc
analysis for multiple comparisons between the ten time points.

Because the variables of the physiological parameters (heart rate and lactic acid) were not normally
distributed, the Kruskal–Wallis non-parametric test was used at the five evaluated time points, i.e.,
baseline, minute 3, minute 6, minute 9 and ten minutes after concluding the simulation. As a post-hoc
analysis we applied the Mann–Whitney test between the different scenarios.

Pearson′s χ2 test was used to analyze the appearance of fatigue in those participants who exceeded
the theoretical anaerobic threshold (TAT) according to the Tanaka formula [20] and lactic acid levels in
blood above 4 mmol/L.
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The Pearson′s correlation coefficient (ρ) was used to determine the degree of association between
the variables’ total compressions in ten minutes and the mean rate with respect to the variable
mean depth.

We used SPSS version 24 (SPSS Inc., Chicago, IL, USA).
Ethical approval for this study was granted (22 January 2019) by the clinical research ethics

committee of Talavera de la Reina, Toledo (CEIC178013/113).
Reporting of the study conforms to the STROBE (Strengthening the Reporting of Observational

Studies in Epidemiology) statement along with references to STROBE statement and the broader
EQUATOR (Enhancing the Quality and Transparency of Health Research) guidelines [21].

3. Results

No significant differences were observed in the mean age of the participants or the female/male
ratio between the three experimental groups (p > 0.05) (Table 1).

Table 1. Differences in parameters in genders and the studied subgroups.

Variable Thermo-Neutral
Environment Heat Environment Cold Environment p-Value **

Number (n (%)) 20 (33.9%) 19 (32.2%) 20 (33.9%)

Age * 20.85 ± 2.94 22.95 ± 2.65 20.40 ± 2.14 0.08

Gender 0.806

Men (n (%)) 8 (40%) 9 (47.4%) 10 (50%)

Women (n (%)) 12 (60%) 10 (52.6%) 10 (50%)

Mean depth * 4.97 ± 0.38 5.03 ± 0.42 4.97 ± 0.3 0.874

Optimum depth of compressions * 410 ± 200 445 ± 204 455 ± 182.2 0.740

Mean frequency * 114.5 ± 8.0 116.7 ± 7.91 110.4 ± 7.33 0.047

Compressions in optimum zone * 598.3 ± 239.4 464.1 ± 207.1 598.8 ± 172.8 0.070

Compression fraction * 84.8 ± 6.13 83.7 ± 5.82 86.1 ± 5.78 0.448

Compressions in optimum depth
zone and optimum frequency * 289.5 ± 214.7 259.8 ± 165.6 319.2 ± 142.6 0.582

* Data expressed as mean + standard deviation. ** p-value of the multifactorial ANOVA.

The variables studied at baseline did not show significant differences between the three
experimental groups (p > 0.05).

When we analyzed if there were significant differences in relation to ambient temperature, we
identified a significant effect over time in the variables’ total compressions (p < 0.001) and mean
frequency (p = 0.047) through the repeated measures ANOVA with Bonferroni. Post-hoc analysis
showed significant effects in the “heat environment” group. A significant increase in the number of
compressions per minute was observed at minutes 4, 5, 7, 8 and 9 compared to minute 3, which showed
a decrease in the number of compressions per minute (Bonferroni M4 vs. M3: p < 0.001; M5 vs. M3:
p = 0.017; M6 vs. M3: p > 0.05; M7 vs. M3: p < 0.001; M8 vs. M3: p < 0.001; M9 vs. M3: p = 0.007; M10
vs. M3: p > 0.05) (Figure 2).

Regarding the mean rate, a significant increase was observed from minute 7 to 10 with respect to
minute 1. (Bonferroni M7 vs. M1: p = 0.003; M8 vs. M1: p < 0.001; M9 vs. M1: p < 0.001; M10 vs. M1:
p < 0.001) (Figure 2).

We found a negative correlation between the variables’ total compressions and mean depth
(Pearson: ρ = −0.509; p = 0.026): as the total compressions increased, the developed mean depth
decreased. Furthermore, the mean frequency also presented a negative correlation with respect to the
mean depth (Pearson: ρ = −0.725; p < 0.001).

Analyzing the compression fraction variable, we identified significant effects over time with the
repeated measures ANOVA (p < 0.001).
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For global values of the different variables studied (total sum of the means obtained during the 10
min), the multifactorial ANOVA showed significant differences between the different experimental
groups in mean rate, being higher in the heat environment group (Table 1).

No statistically significant difference was found in changes in the study participants′ heart rate
over time between the three experimental groups. A greater and faster increase of lactic acid could be
observed in the participants allocated to the heat environment. This increase was significant at minute
3 (p < 0.001). Recovery in this group was better after CPR was completed, although these results did
not reach statistical significance. The three groups presented higher heart rate and lactic acid results
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10 min after concluding the simulation than at baseline, although none of the measurements exceeded
the TAT (Table 2).

Table 2. Mean and standard deviation of heart rate and lactic acid per studied subgroups.

Variable Thermo-Neutral
Environment Heat Environment Cold Environment p-Value **

HEART RATE

Baseline * 79.4 ± 15.4 78.32 ± 13.0 84.2 ± 14.9 0.467

Min. 3 * 135.6 ± 15.1 134.81 ± 17.2 135.2 ± 16.3 0.979

Min. 6 * 161.1 ± 26.4 153.9 ± 28.3 155.9 ± 22.0 0.737

Min. 9 * 158.9 ± 16.9 155.9 ± 21.8 156.8 ± 21.1 0.709

Rest at 10 min. * 96.1 ± 12.2 91.6 ± 15.3 99.7 ± 16.3 0.339

LACTIC ACID

Baseline * 2.2 ± 1.5 1.9 ± 1.0 1.9 ± 1.2 0.734

Min. 3 * 3.8 ± 2.0 6.7 ± 5.4 3.0 ± 2.4 <0.001

Min. 6 * 4.9 ± 2.8 6.3 ± 4.2 5.2 ± 4.9 0.356

Min. 9 * 4.1 ± 2.6 5.1 ± 3.3 5.0 ± 4.2 0.494

Rest at 10 min. * 3.5 ± 1.3 2.8 ± 1.5 2.8 ± 2.1 0.097

* Data expressed as mean ± standard deviation. ** p-values of the non-parametric Kruskal-Wallis test.

The heart rate of some participants exceeded the AT at minutes 6 and 9, although without
statistically significant differences between groups. No differences between groups were identified in
the percentage of participants that exceeded 4 mmol/L of in lactic acid in any of the measurements,
although a different pattern was observed in each group. More than 50% of the participants in the heat
group exceeded the threshold during CPR (73.7% at minute 6), although they recovered more efficiently
after concluding the simulation. In contrast, lactic acid in the thermo-neutral environment group did
not increase as much, although their recovery after finishing CPR was poor: the same percentage
of participants had high lactic acid 10 min after the simulation as in minute 9 of the intervention.
The increase in lactic acid occurred more slowly in the cold environment group, without ever exceeding
50% of the participants above 4 mmol/L (Table 3).
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Table 3. Number and percentage of subjects who exceeded the theoretical anaerobic threshold and
lactic acid of 4 mmol/L per the studied subgroups.

Variable Thermo-Neutral
Environment Heat Environment Cold Environment p-Value **

HEART RATE > Anaerobic threshold

Baseline * 0 0 0 -

Min. 3 * 0 0 0 -

Min. 6 * 9 (45%) 6 (31.6%) 6 (30%) 0.555

Min. 9 * 4 (20%) 5 (26.9%) 6 (30%) 0.764

Rest at 10 min. * 0 0 0 -

LACTIC ACID > 4 mmol/L

Baseline * 2 (10%) 1 (5.3%) 2 (10%) 0.830

Min. 3 * 8 (40%) 11 (57.9%) 4 (20%) 0.052

Min. 6 * 12 (60%) 14 (73.7%) 9 (45%) 0.189

Min. 9 * 8 (40%) 13 (68.4%) 9 (45%) 0.168

Rest at 10 min. * 8 (40%) 3 (15.8%) 4 (20%) 0.175

* Data expressed as n (%). ** p-value of Pearson’s χ2.

4. Discussion

The results of the study suggest an association between CPR quality and adverse climatic
conditions in a heat environment with high ambient humidity (41 ◦C and 98% humidity). However,
the CPR quality in a cold environment (−35 ◦C and 80% humidity) did not differ significantly from
that in the thermo-neutral environment (21 ◦C and 60% humidity).

All participants performed the CPR for 10 min, and the heat environment group suffered a
decrease in CPR quality. These data agree with a study by Mora Rodríguez and Aguado Jiménez [22]
in which they describe that athletes in warm environments (39 ± 1 ◦C), not acclimatized to heat, have
high levels of lactic acid and a higher heart rate compared to neutral temperature (21 ± 2 ◦C). Not only
does prolonged exercise in heat conditions increase lactic acid production, but it is also a short test of
20 min [22].

In any of the studied environments, the lactic acid levels at the baseline were not significantly
different as might be expected. Due to physical exertion, the levels of lactic acid in all cases increased,
until reaching their threshold at minute 6. From that point on, serum lactic acid levels dropped in
all groups, as it began to be metabolized. Lactic acid produced during physical activity (more than
90%) is recycled and converted to pyruvate [23]. In heat environments, lactic acid values increased
or reached the threshold more quickly, although once it had been reached, its behavior was similar
to that in the other environments, hence the remaining time points had no statistically significant
differences [22]. Furthermore, the participants in a warm environment had a greater recovery effect
than those in other environments.

Although the mean of the groups was far from exceeding the TAT, a high percentage of individual
participants exceeded this threshold in the measurements at minute 6 (between 30% and 45%) and at
minute 9 (between 20% and 30%). These data suggest that participants reached metabolic fatigue.

The data from our study indicate that only in the first 3 min of CPR in a heat environment,
are a number of correct compressions achieved. After the third minute, the percentage of correct
compressions decreases progressively, as the number of compressions per minute increases and
the depth of the compressions decreases, as observed in similar studies [24]. Therefore, a fatigued
responder would only be capable of maintaining adequate CPR quality for the first three minutes in a
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heat environment, unlike in the studies by Ochoa et al. [24] and Ashton et al. [25], who affirmed that
the fatigue caused by a CPR maneuver transcended in its quality from the first minute.

In contrast, changes in the ambient temperature modify musculoskeletal aspects [26]. At high
temperatures the contribution of the number of motor units of fast-contracting fibers increases, which
could explain the greater number of compressions carried out by the participants of the heat group at
minutes 4, 5, 7, 8 and 9 with respect to minute 3.

The absence of metabolic adaptation is in line with the gradual decrease in the depth of
compressions observed in all the groups, and which, in the case of our study, directly diminishes the
quality of the said parameter throughout (relative to the appearance of fatigue in the participants as
demonstrated in previous research) [16].

Recently, Barcala-Furelos et al. [27] carried out a similar study analyzing the impact of extreme
heat on rescuers during CPR. As opposed to us, they did not find significant differences on the quality
of the CPR regarding the control group; although in their case, a period of 50 min of acclimation was
included at the end. That could influence on the musculoskeletal adaptation of the participants.

Various confounding factors have been taken into account in our conclusions, especially aspects
such as the continuous observation of the researchers while performing the CPR, the visualization of the
quality of the CPR on the simulator monitor or the momentary interruption of the test to measure lactate
at minutes 3, 6 and 9 of the CPR simulation, which was performed during the ventilation phase to
minimize its impact. We also took into account the protective equipment worn by the participants who
carried out the simulation in a cold environment, which corresponded to that used by the emergency
services in winter. This was done with the aim of minimizing the confounders and to adapt the
simulation as well as possible to the real conditions encountered in out-of-hospital resuscitation.

The main strength of this study is that we recruited students of the health sciences with basic
knowledge of CPR, which favors the representativeness of the results due to the homogeneity of the
sample. This study was strengthened by including scenarios of extreme temperatures of cold and heat
that involved a complex use of resources.

The main limitation is that we found no study to compare these findings with in relation to how
extreme weather affects the performance of CPR (only the study from Barcala-Furelos et al. [27]), which
is why we compared our results with those in physical exercise physiology or on the appearance of
fatigue during CPR simulation. The study sample would also have to be expanded to adapt the results
more to the conditions of the population. One could even consider using qualified health professionals
to check the reproducibility of the study.

5. Conclusions

In conclusion, the simulation carried out in hostile thermal environments allowed us to establish
that the increase in lactate can physiologically affect the rescuer′s performance, reducing the quality
of the CPR maneuver from the third minute onwards in relation to the appearance of fatigue and
musculoskeletal adaptation to the weather.
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