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Abstract: In this paper, a formula for estimating the prevalence ratio of a disease in a population that
is tested with imperfect tests is given. The formula is in terms of the fraction of positive test results
and test parameters, i.e., probability of true positives (sensitivity) and the probability of true negatives
(specificity). The motivation of this work arises in the context of the COVID-19 pandemic in which
estimating the number of infected individuals depends on the sensitivity and specificity of the tests.
In this context, it is shown that approximating the prevalence ratio by the ratio between the number of
positive tests and the total number of tested individuals leads to dramatically high estimation errors,
and thus, unadapted public health policies. The relevance of estimating the prevalence ratio using the
formula presented in this work is that precision increases with the number of tests. Two conclusions
are drawn from this work. First, in order to ensure that a reliable estimation is achieved with a
finite number of tests, testing campaigns must be implemented with tests for which the sum of
the sensitivity and the specificity is sufficiently different than one. Second, the key parameter for
reducing the estimation error is the number of tests. For a large number of tests, as long as the sum of
the sensitivity and specificity is different than one, the exact values of these parameters have very
little impact on the estimation error.

Keywords: SARS-CoV-2; Covid-19; cross-sectional studies; prevalence ratio; sensitivity and
specificity; molecular, serological and medical imaging diagnostics; number of infections; false
positive and false negative probabilities; policy-making and testing campaigns

1. Introduction

In the absence of a vaccination or effective medical treatment against the SARS-CoV-2, the global
population must cohabitate with the virus. For succeeding in this task, different strategies to slow
down the outbreak can be implemented, for example, encouraging social distancing, isolation of
infected individuals, mobility restrictions, lockdowns, and contact tracing. The main objective is
to guarantee that the number of infected individuals that develop critical forms of symptoms does
not exceed the capacity of local health care systems. Nonetheless, most of the strategies to slow
down the outbreak induce dramatic economical consequences, and thus, public health policies must
be designed based on reliable predictions of the evolution of the pandemic to minimize undesired
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effects on the global economy. For doing so, estimating the values of variables such as the proportion
of susceptible, infected and recovered individuals in the population, among other variables, is of
paramount importance. This is due to the fact that such variables are the inputs of mathematical models
that help to predict the evolution of the pandemic [1,2], and thus, impact public health policy-making.
Reliable estimations of these variables can be achieved in part by testing the population. Nonetheless,
diagnosing SARS-CoV-2 is a challenging task given that designing highly reliable tests for massive
testing is still an open research problem, c.f., [3–5].

In the general realm of epidemiology, the reliability of tests is measured in terms of two parameters:
sensitivity and specificity. The former is the probability with which a test is able to correctly identify
the presence of a condition, for example, a SARS-Cov-2 infection. Alternatively, the latter is the
probability with which a test is able to correctly identify the absence of such condition. Within this
context, the main contribution of this work is a mathematical formula for estimating the fraction of
individuals that exhibit the condition in a population in which every individual has been tested once
with identical unreliable tests. In the following, this fraction is referred to as the prevalence ratio [2].
In these terms, the main result is Theorem 1 in Section 4, which presents an estimator of the prevalence
ratio in terms of the sensitivity, specificity and the fraction of positive test results. More importantly,
the estimation error induced by such estimator is proved to decrease with the number of tests.

The novelty of this work with respect to existing methods for estimating the prevalence ratio,
such as the method of multipliers, capture and recapture methods, among others [2,6], is that it takes
into account the effects of both false positive and false negative probabilities. This consideration has
already been discussed by several authors, c.f., [7–10]. Nonetheless, a simple general formula for
estimating prevalence ratios in terms of the sensitivity, specificity, and the fraction of positive test
results is not available in current literature. This said, the prevalence ratio estimation presented in this
work is based exclusively on the results of data obtained through testing campaigns with unreliable
binary tests. The main hypotheses adopted in this work are: (a) Individuals are tested once and
test results are independent of each other; and (b) the prevalence ratio is assumed constant during
the duration of the testing campaign. This breaks away from the studies based on mathematical
regressions in which some assumptions on the proabability distribution of the random variables are
adopted and whose correctness is often the ground of vivid discussions, c.f., [11–14].

The main conclusions of this work are:

(i) The number of positive tests might be drastically different than the number of infected individuals
in a population depending on the sensitivity and specificity of the tests. Hence, the ratio between
the number of positive tests and the total number of tested individuals is not a reliable estimation
of the prevalence ratio;

(ii) Testing campaigns using tests for which the sum of the sensitivity and specificity is different than
one, always allow a reliable estimation of the number of infected individuals when a sufficiently
large number of individuals is tested in the population (Lemma 1 in Section 4);

(iii) Testing campaigns using a test for which the sum of the sensitivity and the specificity is equal to
one, lead to data from which it is impossible to estimate the prevalence ratio independently of
the number of tested individuals (Lemma 7 in Section 4); and

(iv) When the objective is to estimate the prevalence ratio in a population, the key parameter for
reducing the estimation error is the number of tests (Lemma 5 in Section 4). That is, as long as
the sum of the sensitivity and specificity is different than one, and a large number of test results
is available, the exact values of both sensitivity and specificity have very little impact on the
estimation error.

The remaining sections of this paper are organized as follows: Section 2 presents a brief overview
of the tests for diagnosing SARS-CoV-2 and the reliability of the existing tests; Section 3 formulates the
problem of estimating the prevalence ratio taking into account the sensitivity and specificity of the
tests; Section 4 presents an estimator of the prevalence ratio using data obtained from unreliable tests,
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and the proofs of the main results; Section 5 introduces some examples in which the impact of the
sensitivity, specificity and number of tests on the estimation error is numerically analyzed; Section 6
concludes this work.

2. Case Study: SARS-CoV-2

Tests for SARS-CoV-2 can be broadly divided into three groups: virological tests, serological tests,
and tests based on medical imaging. Each of these groups provide information about different aspects
of the infection and exhibit different reliability parameters.

2.1. Virological Tests

Virological tests inform about the presence of the SARS-CoV-2 virus genome in nasopharyngeal
(nasal swab) or oropharyngeal swabs (oral swab), blood, anal swab, urine, stool, and sputum
samples [15]. Individuals with positive virological tests are declared capable of contaminating others,
and thus, virological tests are central in decision-making and policy-making, c.f. [3,5].

The reliability of virological tests in terms of sensitivity and specificity depends on a variety
of parameters. These parameters include the type of clinical specimen, the materials and methods
used for obtaining the specimens, specimen transportation, viral density of patients, and human
errors in data processing in laboratories. In the case of respiratory specimens, viral density appears to
play a central role in the sensitivity and specificity of virological tests, c.f., [16,17]. This stems from
the fact that during the first week after infection, the virus can be detected by nasopharyngeal or
oropharyngeal swabs. During the second week and later, the virus might disappear in the upper parts
of the respiratory system and migrate to the bronchial tube and the lungs. From the studies in [16,17],
it appears that specimens from the lower respiratory track increase the sensitivity and specificity of
virological tests.

Virological tests are based on several techniques: (a) Reverse transcription polymerase chain
reaction (RT-PCR), c.f., [18,19]; and (b) Reverse transcription loop-mediated isothermal amplification
(RT-LAMP), c.f., [20,21]; and (c) other techniques, c.f., [19,22,23].

2.2. Serological Tests

Serological tests determine whether an individual has developed anti-bodies or antigens against
the SARS-CoV-2 virus. Nonetheless, an individual produces anti-bodies against SARS-CoV-2 only
several days after contracting the infection. Typically, the time between infection and the production of
anti-bodies ranges from seven to fourteen days, c.f., [24–26]. Serological tests are based on the enzyme
linked immunosorbent assay (ELISA) and exhibit high specificity and sensitivity, after fourteen days of
infections [24]. This drastically limits the use of serological tests in the early detection of the infection
and policy-making, c.f., [3,4]. In a nutshell, on the one hand, a serological test answers the question
whether an individual is or has been infected. On the other hand, serological tests do not allow
determining whether an individual has immunity to the SARS-CoV-2 virus or whether the individual
is currently spreading the virus. Up to the day of publication of this paper, serological tests are not
considered for massive testing in France, c.f., [4].

2.3. Medical Imaging

Medical Imaging for detection of SARS-CoV-2 includes chest X-Ray and chest computed
tomography (CT) scans, which reveal ground-glass opacities and consolidations in the periphery
of the lungs of infected individuals [27]. Nonetheless, the sensitivity and specificity of CT depends
on the experience of radiologists to distinguish SARS-CoV-2 pneumonia from non-SARS-CoV-2
pneumonia [28]. In [29], it is reported that the sensitivity of CT is better than the one achieved
by RT-PCR tests.
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3. Prevalence Ratio and Unreliable Tests

Consider a population subset of n individuals whose state is either susceptible (S) or infected (I)
and assume that all individuals of this population subset are tested with the same type of test. Let the
actual state of such n individuals be represented by the vector x ,

(
x1, x2, . . ., xn

)
. That is, for all

t ∈ {1, 2, . . . , n}, it follows that xt ∈ {I, S} is the true state of the individual t. The result of testing
individual t is denoted by yt ∈ {I, S}. Hence, the outcome of a testing campaign over such population
is a vector y ,

(
y1, y2, . . ., yn

)
∈ {I, S}n. Due to the fact that tests possess strictly positive probabilities

of false negatives and false positives, the vectors x and y might be different. That is, some individuals
that are infected could have been declared susceptible and vice versa.

A central observation in this analysis is that a test for determining whether an individual is
contaminated by SARS-CoV-2 can be modeled by a random transformation PY|X for which the
input and output sets are {I, S}. More specifically, if an individual whose state is x ∈ {I, S} is
tested, the result y ∈ Y is observed with probability PY|X(y|x). Figure 1 shows this binary-input
binary-output model.

Figure 1. A SARS-CoV-2 test represented by a random transformation from {I, S} into {I, S} via the
conditional probability distribution PY|X .

Using this notation, the sensitivity of the test is PY|X(I|I); and the specificity of the test is
PY|X(S|S). The probability of a false positive is PY|X(I|S) = 1− PY|X(S|S); and the probability of a
false negative is PY|X(S|I) = 1− PY|X(I|I). This said, a test is fully described by any of the following
pairs of parameters:

• The sensitivity and the specificity;
• The sensitivity and the probability of a false positive;
• The probability of a false negative and the specificity; or
• The probability of a false negative and the probability of a false positive.

Let X be random variable taking values in {I, S} and denote by PX : {I, S} → [0, 1] its
probability distribution such that PX(I) is the actual fraction of infected individuals among the n
individuals. That is, PX(I) is the prevalence ratio of SARS-Cov-2 in this population subset. For this
reason, the probability distribution PX is referred to as the ground-truth input probability distribution.
Let Y be a second random variable taking values in {I, S} such that its joint probability distribution
with X is PXY and for all (x, y) ∈ {I, S}2,

PXY(x, y) = PX(x)PY|X(y|x), (1)
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where the conditional distribution PY|X is the test. See, for instance, Figure 1. Often, the probability
distribution PY is referred to as the ground-truth output probability distribution and it is obtained as the
marginal of PXY. That is, for all y ∈ {I, S},

PY(y) = ∑
x∈{I,S}

PX(x)PY|X(y|x). (2)

The problem consists in using the data y obtained through a testing campaign with tests in
which parameters are modeled by PY|X to determine the fraction PX(I) of infected individuals in the
population, i.e., the prevalence ratio. More formally, the problem can be stated as follows: Consider
two random variables X and Y with the joint probability distribution PXY in (1). The problem consists
in estimating the probability distribution PX based only on n realizations y1, y2, . . ., yn of the random
variable Y, with n a finite integer. This problem is reminiscent to the problem of population recovery
introduced in [30] and further studied in [31,32].

4. Estimation of the Prevalence Ratio Using Unreliable Tests

Given the data y ∈ {I, S}n collected during a test campaign, the fraction of the population
reporting positive and negative tests form an empirical distribution denoted by P̄(n)

Y on the set {I, S}
such that,

P̄(n)
Y (I) ,

1
n

n

∑
t=1
1{I=yt}, and (3a)

P̄(n)
Y (S) ,

1
n

n

∑
t=1
1{S=yt}, (3b)

where 1{·} is the indicator function. Essentially, P̄(n)
Y is a counting probability measure for which the

values P̄(n)
Y (I) and P̄(n)

Y (S) represent the fraction of positive and negative test results. Hence, P̄(n)
Y (I) +

P̄(n)
Y (S) = 1. In the following, such probability measure is often referred to as the output empirical

distribution obtained from the data y.
Let P̂(n)

X : {I, S} → R be a function representing the estimation of PX based on the data y.

The error induced by estimating PX using P̂(n)
X can be measured by the total variation, which is denoted

by
∥∥∥PX − P̂(n)

X

∥∥∥
TV

and satisfies,

∥∥∥PX − P̂(n)
X

∥∥∥
TV

,
1
2

(∣∣∣PX(I)− P̂(n)
X (I)

∣∣∣+ ∣∣∣PX(S)− P̂(n)
X (S)

∣∣∣) (4)

=
∣∣∣PX(I)− P̂(n)

X (I)
∣∣∣ . (5)

Note that in the case of binary tests, the total variation is simply the absolute difference between
the actual prevalence ratio PX(I) and the estimate P̂(n)

X (I).

4.1. Main Result

The following theorem presents the main result of this work.

Theorem 1. Consider a population of n individuals whose true ratio of infected (I) and susceptible (S)
individuals is PX(I) and PX(S) = 1− PX(S), respectively, with PX(I) ∈ [0, 1]. Assume that all individuals of
such population are tested with a test PY|X that satisfies

PY|X(S|S) + PY|X(I|I) 6= 1. (6)
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Let P̄(n)
Y be the resulting output empirical probability distribution in (3) and assume that P̄(n)

Y (I) satisfies
the following condition,

min{PY|X(I|I), PY|X(I|S)} 6 P̄(n)
Y (I) 6 max{PY|X(I|I), PY|X(I|S)}. (7)

Then, the estimator P̂(n)
X : {I, S} → R of PX , such that

P̂(n)
X (I) =

1− P̄(n)
Y (I)− PY|X(S|S)

1− PY|X(I|I)− PY|X(S|S)
, and (8a)

P̂(n)
X (S) =

P̄(n)
Y (I)− PY|X(I|I)

1− PY|X(I|I)− PY|X(S|S)
, (8b)

forms a probability measure that satisfies

lim
n→∞

∥∥∥PX − P̂(n)
X

∥∥∥
TV

= 0, almost surely. (9)

In a nutshell, Theorem 1 states that approximating the prevalence ratio PX by P̂(n)
X induces

an error that vanishes when the number of tests n increases. Nonetheless, despite the fact that
P̂(n)

X (I) + P̂(n)
X (S) = 1, it holds that for a small number of tests n, P̂(n)

X (I) and P̂(n)
X (S) do not necessarily

form a probability measure. That is, it might be observed that either P̂(n)
X (I) < 0 and P̂(n)

X (S) > 1;

or P̂(n)
X (I) > 1 and P̂(n)

X (S) < 0. Later, in Lemma 4, it is shown that with a large number of test results,

the fraction of positive results P̄(n)
Y (I) satisfies the inequalities in (7). Note also that the condition in (7)

is necessary and sufficient to observe that 0 6 P̂(n)
X (I) 6 1 in Theorem 1. This highlights the need for a

sufficiently large number of tests in order to obtain a valid estimation of PX(I) using Theorem 1.
Finally, note that the formulas in (8) are given in terms of the sensitivity PY|X(I|I) and specificity

PY|X(S|S) of the test. Nonetheless, it can be expressed in terms of the probabilities of a false positive
and a false negative, or any combination of the parameters describing the test. The following corollary
shows the formulas in (8) in terms of the probabilities of a false positive PY|X(I|S) and a false negative
PY|X(S|I).

Corollary 1. Consider a population of n individuals whose true ratio of infected (I) and susceptible (S)
individuals is PX(I) and PX(S) = 1− PX(S), respectively, with PX(I) ∈ [0, 1]. Assume that all individuals of
such population are tested with a test PY|X that satisfies (6). Let P̄(n)

Y be the resulting output empirical probability

distribution in (3) and assume that P̄(n)
Y (I) satisfies condition (7). Then, the estimator P̂(n)

X : {I, S} → R of PX ,
such that

P̂(n)
X (I) =

P̄(n)
Y (I)− PY|X(I|S)

1− PY|X(S|I)− PY|X(I|S) , and (10a)

P̂(n)
X (I) =

1− PY|X(S|I)− P̄(n)
Y (I)

1− PY|X(S|I)− PY|X(I|S) , (10b)

forms a probability measure that satisfies (9).
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4.2. Proof of Theorem 1

The proof of Theorem 1 leverages the following intuition: Under the assumption that P̄(n)
Y ,

which is obtained from the data y as in (3), is a valid estimation of the ground-truth output probability
distribution PY, i.e., it satisfies (7), then a distribution P̂(n)

X that satisfies(
P̄(n)

Y (I)
P̄(n)

Y (S)

)
=

(
PY|X(I|I) PY|X(I|S)
PY|X(S|I) PY|X(S|S)

)(
P̂(n)

X (I)
P̂(n)

X (S)

)
, (11)

is a good estimation of the input probability distribution PX . This intuition builds upon the observation
that the output distribution P̄(n)

Y induced by the data, must be the marginal of a joint distribution
consisting of the product of the conditional PY|X and the input distribution. That is, for all y ∈ {I, S},

P̄(n)
Y (y) = ∑

x∈{I,S}
PY|X(y|x)P̂(n)

X (x),

which is equivalent to the system in (11).
With this intuition in mind, the proof proceeds as follows. First, it is shown that under the

condition in (6), there exists a unique pair (P̂(n)
X (I), P̂(n)

X (S)) that satisfies the equality in (11). This is
essentially due to the fact that the equality in (11) forms a linear system of two equations with two
variables, and thus, if it is consistent, it has either a unique solution or infinitely many solutions.

Lemma 1. Consider the empirical output distribution P̄(n)
Y in (3) obtained by a test described by the conditional

probability distribtuion PY|X . Then, the following five statements are equivalent:

• The system of equations in (11) has a unique solution;
• The sensitivity PY|X(I|I) and specificity PY|X(S|S) satisfy

PY|X(I|I) + PY|X(S|S) 6= 1; (12a)

• The sensitivity PY|X(I|I) and the probability of a false positive PY|X(I|S) satisfy

PY|X(I|I) 6= PY|X(I|S); and (12b)

• The probability of a false negative PY|X(S|I) and the specificity PY|X(S|S) satisfy

PY|X(S|S) 6= PY|X(S|I). (12c)

• The probability of a false positive PY|X(I|S) and the probability of a false negative PY|X(S|I) satisfy

PY|X(I|S) + PY|X(S|I) 6= 1. (12d)

Proof. The proof of Lemma 1 follows from the fact that a unique solution to (11) is observed if and
only if the determinant of the matrix(

PY|X(I|I) PY|X(I|S)
PY|X(S|I) PY|X(S|S)

)

is different than zero (Rouché–Fontené theorem [33]). That is,

PY|X(I|I)PY|X(S|S)− PY|X(S|I)PY|X(I|S) 6= 0. (13)

The proof is complete by verifying that the expression in (13) is equivalent to those in (12).
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Note that all conditions in (12) are equivalent to each other, and thus, they are equivalent to the
condition in (6).

The proof of Theorem 1 continues by showing that when such a unique solution exists, it is
identical to the one shown in (8).

Lemma 2. Consider a test PY|X that satisfies at least one of the conditions in (12). Then, under the assumption

that the empirical output distribution P̄(n)
Y in (3) satisfies (7), the unique probability distribution P̂(n)

X that
satisfies (11) is:

P̂(n)
X (I) =

1− P̄(n)
Y (I)− PY|X(S|S)

1− PY|X(I|I)− PY|X(S|S)
, and (14a)

P̂(n)
X (S) =

P̄(n)
Y (I)− PY|X(I|I)

1− PY|X(I|I)− PY|X(S|S)
. (14b)

Proof. The proof of Lemma 2 follows from solving the system of equations in (11) and observing that
P̂(n)

X is a probability measure if and only if condition (7) holds.

The rest of the proof of Theorem 1 consists of showing that the error vanishes with the number
of test results. This is shown in three steps. The first step consists of showing that the total variation
between PX and P̂(n)

X , denoted by
∥∥∥PX − P̂(n)

X

∥∥∥
TV

, is equivalent to the total variation between PY and

P̄(n)
Y , denoted by

∥∥∥PY − P̄(n)
Y

∥∥∥
TV

, up to a scaling factor.

Lemma 3. Consider a test PY|X that satisfies at least one of the conditions in (12). Then, under the assumption

that the empirical output distribution P̄(n)
Y in (3) satisfies (7), the estimation P̂(n)

X in (8) of PX satisfies∥∥∥PX − P̂(n)
X

∥∥∥
TV

=
1∣∣∣1− PY|X(I|I)− PY|X(S|S)

∣∣∣
∥∥∥PY − P̄(n)

Y

∥∥∥
TV

, (15)

where PX and PY are the input and output probability distributions in (1) and (2), respectively.

Proof. The proof of Lemma 3 follows from the definition of total variation in (4) and from equalities
in (14).

Note that Lemma 3 proves the intuition over which the proof of Theorem 1 is based on. That is,
if P̄(n)

Y is sufficiently close to PY, then P̂(n)
X must be sufficiently close to PX . The following lemma shows

that the more test results are available, the closer P̄(n)
Y and PY are in total variation.

Lemma 4. Consider a test PY|X that satisfies at least one of the conditions in (12). Then, the empirical output

distribution P̄(n)
Y in (3) satisfies

lim
n→∞

∥∥∥PY − P̄(n)
Y

∥∥∥
TV

= 0, almost surely, (16)

where PY is the ground-truth output probability distribution in (2).

Proof. The proof of Lemma 4 is a consequence of the Theorem of Glivenko and Cantelli [34].

Finally, from Lemma 3 and Lemma 4, it holds that by increasing the number of tests, the error of
approximating PX by P̂(n)

X in (14) can be made arbitrarily small. The following lemma leverages this
observation.
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Lemma 5. Consider a test PY|X that satisfies at least one of the conditions in (12). Then, under the assumption

that the empirical output distribution P̄(n)
Y in (3) satisfies (7), the input distribution PX and the estimation P̂(n)

X
in (8) satisfy

lim
n→∞

∥∥∥PX − P̂(n)
X

∥∥∥
TV

= 0, almost surerly. (17)

Proof. The proof of Lemma 5 is an immediate consequence of both Lemma 3 and Lemma 4.

This completes the proof of Theorem 1.

4.3. Connections to Maximum Likelihood Estimation

In this section, it is shown that the estimator presented in Theorem 1 is also the maximum likelihood
estimator. For doing so, note that under the assumption that the prevalence ratio is P̂(n)

X (I) ∈ [0, 1],
the probability of observing y ∈ {I, S}, as the result of testing any of the individuals of the population
with a test described by the conditional probability distribution PY|X is:

P̂(n)
Y (y) , ∑

x∈{I,S}
PY|X(y|x)P̂(n)

X (x). (18)

From this perspective, the probability of observing the vector y = (y1, y2, . . . , yn), as the result of
a testing campaign over a population of n individuals is

(
P̂(n)

Y (I)
)nP̄(n)

Y (I) (
1− P̂(n)

Y (I)
)n
(

1−P̄(n)
Y (I)

)
, (19)

where P̄(n)
Y and P̂(n)

Y are defined in (3) and (18), respectively. Hence, the log-likelihood function

L : {I, S}n × [0, 1]→ [0, 1] is for all y ∈ {I, S}n and P̂(n)
X (I) ∈ [0, 1],

L(y, P̂(n)
X (I)) = n

(
P̄(n)

Y (I) ln
(

P̂(n)
Y (I)

)
+
(

1− P̄(n)
Y (I)

)
ln
(

1− P̂(n)
Y (I)

))
(20)

= n

(
P̄(n)

Y (I) ln
(

P̂(n)
Y (I)

)
− P̄(n)

Y (I) ln
(

P̄(n)
Y (I)

)
(21)

+
(

1− P̄(n)
Y (I)

)
ln
(

1− P̂(n)
Y (I)

)
−
(

1− P̄(n)
Y (I)

)
ln
(

1− P̄(n)
Y (I)

)
(22)

+P̄(n)
Y (I) ln

(
P̄(n)

Y (I)
)
+
(

1− P̄(n)
Y (I)

)
ln
(

1− P̄(n)
Y (I)

))
(23)

= −n
(

H
(

P̄(n)
Y

)
+ D

(
P̄(n)

Y ||P̂
(n)
Y

))
, (24)

where H
(

P̄(n)
Y

)
denotes the entropy of the probability distribution P̄(n)

Y ; and D
(

P̄(n)
Y ||P̂

(n)
Y

)
denotes

the Kullback–Liebler divergence between the distributions P̄(n)
Y and P̂(n)

Y . Given that D
(

P̄(n)
Y ||P̂

(n)
Y

)
>

0, it follows that

L(y, P̂(n)
X (I)) 6 −nH

(
P̄(n)

Y

)
, (25)

where the equality holds if and only if D
(

P̄(n)
Y ||P̂

(n)
Y

)
= 0. That is, when both P̄(n)

Y and P̂(n)
Y are

identical. This observation leads to the conclusion that the log-likelihood function is maximized when
the assumed prevalence ratio P̂(n)

X (I) is such that P̄(n)
Y in (3) and P̂(n)

Y in (18) are identical, which is
induces the system of equations in (11) and in which the unique solution is formed by the equalities
in (8). This proves that the estimator in Theorem (1) is the unique maximum likelihood estimator.
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5. Final Remarks

This section highlights some of the conclusions drawn from Lemma 1–5 using a numerical analysis
in particular examples. In the following examples, the data is artificially generated. That is, for a given
prevalence ratio PX(I), an n-dimensional vector x =

(
x1, x2, . . ., xn

)
∈ {I, S}n is generated such that

for all t ∈ {1, 2, . . . , n}, xt is a realization of a random variable X ∼ PX and represents the state of
individual t. Given a test PY|X, an n-dimensional vector y =

(
y1, y2, . . ., yn

)
∈ {I, S}n is generated

such that for all t ∈ {1, 2, . . . , n}, yt is the realization of a random variable Yt ∼ PY|X=xt
and represents

the result of the test of individual t. Using the vector y, the fraction of positive tests P̄(n)
Y (I) is calculated

using (3); and the estimation P̂(n)
X (I) of the prevalence ratio PX(I) is calculated using (8a). Figure 2

shows this procedure.

Figure 2. Relation between the input vector x = (x1, x2, . . . , xn) ∈ {I, S}n (state of the individuals);
the output vector y = (y1, y2, . . . , yn) ∈ {I, S}n (result of the tests); the calculation of the fraction of

positive tests P̄(n)
Y (I) in (3); and estimation of the prevalence ratio P̂(n)

X (I) in (8a).

From this perspective, the analysis is based on simulated testing campaigns. Note that the use of
simulated data allows knowing the actual prevalence ratio, which enables analyzing the estimation
error. This is rarely possible with data from actual testing campaigns.

Example 1. Consider a population of n = 10, 000 individuals with prevalence PX(I) = 0.4. Assume that all
individuals are tested with identical tests PY|X .

Example 2. Consider a population of n = 100, 000 individuals with prevalence PX(I) = 0.4. Assume that all
individuals are tested with identical tests PY|X .

Example 3. Consider a population of n = 100, 000, 000 individuals with prevalence PX(I) = 0.4. Assume that
all individuals are tested with identical tests PY|X .

In Figures 3–8, the actual prevalence ratio PX(I) is plotted with a straight black line; the estimation
P̂(n)

X of PX is plotted with red circles; the fraction of positive tests P̄(n)
Y (I) is plotted with blue

diamonds; and the value of PY(I) in (2) is plotted with a dashed red line. In Figures 3, 5 and 7,
these values are plotted as a function of the specificity PY|X(S|S) for a fixed sensitivity. Alternatively,
in Figures 4, 6 and 8, these values are plotted as a function of the sensitivity PY|X(I|I) for a fixed
specificity. For each of the examples, one vector x ∈ {I, S}n is generated. In all figures, Figures 3–8,
each plotted point of P̄(n)

Y (I) (blue diamonds) and P̂(n)
X (I) (red circles) is calculated using a single

vector y generated by the same vector x, according to the corresponding values of sensitivity PY|X(I|I)
and specificity PY|X(S|S), as described above. In the following sections, some remarks based on these
examples are presented.

5.1. Relevance of the Sensitivity and Specificity

One of the main observations to be highlighted from this numerical analysis is that there exists an
important difference between the fraction of positive tests P̄(n)

Y (I) and the actual prevalence ratio PX(I)
due to the sensitivity and specificity of the tests. This difference is clearly depicted in Figures 3–8,
which together with the mathematical analysis presented before, highlights the conclusion that the
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fraction of positive tests should not be used as an estimation of the prevalence ratio in public health
policy-making.

The following lemma determines the influence of the sensitivity and specificity on P̄(n)
Y (I).

For doing so, note that from Lemma (2), it holds that the fraction of individuals reporting positive tests
P̄(n)

Y (I) satisfies:

P̄(n)
Y (I) = 1− PY|X(S|S)

(
1− P̂(n)

X (I)
)
−
(

1− P̂Y|X(I|I)
)

P̂(n)
X (I). (26)

Lemma 6. Consider a test PY|X that satisfies at least one of the conditions in (12). Then, given the empirical

output distribution P̄(n)
Y in (3) and assuming that it satisfies (7), the following statements hold:

• The fraction P̄(n)
Y (I) of positive tests linearly decreases with the specificity of the test PY|X(S|S);

• The fraction P̄(n)
Y (I) of positive tests linearly increases with the probability of a false positive of the test

PY|X(I|S);

• The fraction P̄(n)
Y (I) of positive tests linearly increases with the sensitivity of the test PY|X(I|I); and

• The fraction P̄(n)
Y (I) of positive tests linearly decreases with the probability of a false negative of the test

PY|X(S|I).

Proof. The proof of Lemma 6 consists in verifying that the derivative of P̄(n)
Y in (26) with respect

to PY|X(S|S) is negative; with respect to PY|X(I|S) is positive; with respect to PY|X(I|I) is positive;
and with respect to PY|X(S|I) is negative.

The statements in Lemma 6 become evident in Figures 3, 5 and 7. In these figures, it is shown that
the fraction of positive tests increases with the sensitivity; where as in Figures 4, 6 and 8, it is shown that
the fraction of positive tests decreases with the specificity, c.f., Lemma 6. From this perspective, tests
might lead to countings in which the fraction of individuals reporting positive testing results P̄(n)

Y (I) is

bigger than the actual prevalence ratio PX(I), i.e., P̄(n)
Y (I) > PX(I). Alternatively, tests might also lead

to estimations in which the fraction of individuals reporting positive testing results P̄(n)
Y (I) is smaller

than the actual prevalence ratio PX(I), i.e., P̄(n)
Y (I) < PX(I). These observations highlight the relevance

of using the estimation P̂(n)
X of PX for decision and policy making instead of P̄(n)

Y , which includes false
positives and false negatives.

5.2. Tests whose Results are Useless

In Figures 3–8, the value of the sensitivity PY|X(I|I) and specificity PY|X(S|S) that satisfy
PY|X(I|I) + PY|X(S|S) = 1 are plotted with a blue dash-dot vertical line. Note that for these specific

values of sensitivity and specificity, the estimation P̂(n)
X (I) of PX(I) is not plotted. The following

lemmas shed some light into this singularity.

Lemma 7. Consider the empirical output distribution P̄(n)
Y in (3) obtained by a test described by the conditional

probability distribtuion PY|X . Then, the following five statements are equivalent:

• The system of equations in (11) has infinitely many solutions;
• The sensitivity PY|X(I|I) and specificity PY|X(S|S) satisfy

PY|X(I|I) + PY|X(S|S) = 1; (27a)

• The sensitivity PY|X(I|I) and the probability of a false positive PY|X(I|S) satisfy

PY|X(I|I) = PY|X(I|S); (27b)
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• The probability of a false negative PY|X(S|I) and the specificity PY|X(S|S) satisfy

PY|X(S|S) = PY|X(S|I); and (27c)

• The probability of a false positive PY|X(I|S) and the probability of a false negative PY|X(S|I) satisfy

PY|X(I|S) + PY|X(S|I) = 1. (27d)

Proof. The proof of Lemma 7 follows from the theorem of Rouché and Fontené [33] that states that
when the system in (11) is consistent, it has infinitely many solutions if the determinant of the matrix(

PY|X(I|I) PY|X(I|S)
PY|X(S|I) PY|X(S|S)

)

is not full rank. When such a matrix is not full rank, its determinant is zero. That is,

PY|X(I|I)PY|X(S|S)− PY|X(S|I)PY|X(I|S) = 0. (28)

The proof is completed by verifying that the expression in (28) is equivalent to those in (27).

When at least one of the equalities in (27) is satisfied, nothing meaningful can be said about PX

based on the data. This is essentially because any probability distribution P̂(n)
X satisfies the equality

in (11). The following lemma reinforces this statement in terms of information measures.

Lemma 8. Consider a test PY|X that satisfies at least one of the conditions in (27). Hence, the following
statements are equivalent:

• Given the output empirical distribution P̄(n)
Y obtained from the data y as in (3), any probability distribution

P̂(n)
X on {I, S} satisfies the equality in (11);

• Two random variables X and Y, in which the joint probability distribution PXY satisfies (1), have zero
mutual information; and

• Two random variables X and Y, in which the joint probability distribution PXY satisfies (1), are independent.

Proof. The first statement is a consequence of Lemma 7; the second statement follows from the fact
that under any of the assumptions in (27), the mutual information satisfies

I(X; Y) , ∑
x∈{I,S}

∑
y∈{I,S}

PX(x)PY|X(y|x) log2

(
PY|X(y|x)

PY(y)

)
(29)

= 0, (30)

where PX , PY|X , and PY satisfy the equality in (1). The third statement follows from the fact that two
random variables are independent if and only if their mutual information is zero.

Lemma 8 shows that when at least one of the conditions in (27) holds, the output probability
distribution PY does not provide any information about the input probability distribution PX . That is,
nothing can be said about PX based on the data y.

Despite the singularity, the values of specificity and sensitivity in which the sum is close to
one, i.e., around the singularity, are also worthy of discussion. Note that for some 1 > ε >

0, the absolute difference
∣∣∣PX(I)− P̂(n)

X (I)
∣∣∣ is bigger when the sensibility and specificity satisfy∣∣∣1− PY|X(S|S)− PY|X(I|I)

∣∣∣ < ε than when these parameters satisfy
∣∣∣1− PY|X(S|S)− PY|X(I|I)

∣∣∣ >
ε. These observations are justified by the fact that the total variation

∥∥∥PX − P̂(n)
X

∥∥∥
TV

is equal
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to
∥∥∥PY − P̄(n)

Y

∥∥∥
TV

up to a constant factor, as shown in Lemma 3. Such a factor is indeed
1

|1−PY|X(I|I)−PY|X(S|S)|
, and thus, larger errors are expected around the singularity for the same finite

numbers of tests n. This is evident in the numerical analysis. In Example 1, i.e., Figures 3 and 4, around
the singularity, the estimations P̂(n)

X of PX appear more disperse than the estimations in Example 3,
i.e., Figures 7 and 8.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Specificity is 39.6 %
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(b) Specificity is 70.8 %
Figure 3. Population in which the fraction of individuals infected with SARS-CoV-2 is PX = 0.4 and
n = 10, 000 individuals are tested (Example 1).
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(b) Sensitivity is 70.8 %

Figure 4. Population in which the fraction of individuals infected with SARS-CoV-2 is PX = 0.4 and
n = 10, 000 individuals are tested (Example 1).
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(b) Specificity is 70.8 %

Figure 5. Population in which the fraction of individuals infected with SARS-CoV-2 is PX = 0.4 and
n = 100, 000 individuals are tested (Example 2).
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(b) Sensitivity is 70.8 %

Figure 6. Population in which the fraction of individuals infected with SARS-CoV-2 is PX = 0.4 and
n = 100, 000 individuals are tested (Example 2).
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(b) Specificity is 70.8 %

Figure 7. Population in which the fraction of individuals infected with SARS-CoV-2 is PX = 0.4 and
n = 100, 000, 000 individuals are tested (Example 3).
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(a) Sensitivity is 29.2 %
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(b) Sensitivity is 70.8 %

Figure 8. Population in which the fraction of individuals infected with SARS-CoV-2 is PX = 0.4 and
n = 100, 000, 000 individuals are tested (Example 3).

5.3. Impact of the Number of Tests.

Figures 3–8 show that when the parameters of the test satisfy at least one of the conditions in (12)
and there exist a sufficiently large number of test results, it is always possible to obtain an estimation
P̂(n)

X (I) of the prevalence ratio PX(I). This is independent of the exact values of the specificity and
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sensitivity as long as (12) holds. More importantly, the reliability of such estimation increases with the
number of test results. For instance, compare the estimations in Examples 1 and 3. The implications
of this observation are very important in practical terms. This shows that if the objective of a testing
campaign against SARS-CoV-2 is to determine the prevalence ratio, the quality of the tests is not
important. This is essentially because testing with low quality tests (low sensitivity and low specificity)
or high quality tests (high sensitivity and high specificity) leads to identical results in terms of the
estimation error, when a large number of tests is performed. Nonetheless, when a low number of
tests is available, it is worth noting that when the sensitivity PY|X(I|I) and specificity PY|X(S|S) satisfy∣∣∣1− PY|X(S|S)− PY|X(I|I)

∣∣∣ > 1− ε, for some 0 < ε < 1, the smaller ε, the smaller the estimation error
of the prevalence ratio, c.f., Lemma 3. This observation is of paramount importance as it implies that
smaller estimation errors are observed when the sum of the sensitivity and specificity is bounded away
from one. This said, the key parameter for reducing the estimation error is the number of tests.

6. Conclusions

In this work, it has been shown that estimating the prevalence ratio of a condition, for example,
a SARS-Cov-2 infection, by the ratio between the number of positive test results and the total number
of tests leads to excessive estimation errors when tests are unreliable. This is simply due to the fact
that unreliable tests, i.e., tests in which probabilities of false positives and false negatives are nonzero,
lead to some individuals exhibiting the condition to observe negative test results (false negatives),
and some individuals who do not exhibit the condition to observe positive results (false positives).
From this perspective, an estimation of the prevalence ratio using data obtained from tests must take
into account both the sensitivity and the specificity of the tests. Theorem 1 provides an estimation of
the prevalence ratio with an estimation error that decreases with the number of tests.

Another important conclusion of this work is that testing campaigns using tests for which the
sum of the sensitivity and specificity is different than one, always allow a reliable estimation of the
prevalence ratio (Lemma 1 in Section 4) subject to a sufficiently large number of individuals being
tested. Alternatively, testing campaigns using tests for which the sum of the sensitivity and the
specificity is equal to one, lead to data from which it is impossible to estimate the prevalence ratio even
with infinitely many tests (Lemma 7 in Section 4).

A final conclusion is that for estimating the prevalence ratio of a given condition, i.e.,
a SARS-CoV-2 infection, the key parameter for reducing the estimation error is the number of tests.
Surprisingly, as long as the sum of the sensitivity and specificity of the tests is different than one,
the exact values of both sensitivity and specificity have very little impact in the estimation when the
number of tests is sufficiently large.
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