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Abstract: Statistical methods such as multiple linear regression (MLR) and classification and 

regression tree (CART) analysis were used to build prediction models for the levels of pollutant 

concentrations in Macao using meteorological and air quality historical data to three periods: (i) 

from 2013 to 2016, (ii) from 2015 to 2018, and (iii) from 2013 to 2018. The variables retained by the 

models were identical for nitrogen dioxide (NO2), particulate matter (PM10), PM2.5, but not for ozone 

(O3) Air pollution data from 2019 was used for validation purposes. The model for the 2013 to 2018 

period was the one that performed best in prediction of the next-day concentrations levels in 2019, 

with high coefficient of determination (R2), between predicted and observed daily average 

concentrations (between 0.78 and 0.89 for all pollutants), and low root mean square error (RMSE), 

mean absolute error (MAE), and biases (BIAS). To understand if the prediction model was robust to 

extreme variations in pollutants concentration, a test was performed under the circumstances of a 

high pollution episode for PM2.5 and O3 during 2019, and the low pollution episode during the 

period of implementation of the preventive measures for COVID-19 pandemic. Regarding the high 

pollution episode, the period of the Chinese National Holiday of 2019 was selected, in which high 

concentration levels were identified for PM2.5 and O3, with peaks of daily concentration exceeding 

55 μg/m3 and 400 μg/m3, respectively. The 2013 to 2018 model successfully predicted this high 

pollution episode with high coefficients of determination (of 0.92 for PM2.5 and 0.82 for O3). The low 

pollution episode for PM2.5 and O3 was identified during the 2020 COVID-19 pandemic period, with 

a low record of daily concentration for PM2.5 levels at 2 μg/m3 and O3 levels at 50 μg/m3, respectively. 

The 2013 to 2018 model successfully predicted the low pollution episode for PM2.5 and O3 with a 

high coefficient of determination (0.86 and 0.84, respectively). Overall, the results demonstrate that 

the statistical forecast model is robust and able to correctly reproduce extreme air pollution events 

of both high and low concentration levels. 

Keywords: air pollution; air quality forecast; modelling; pollution episodes; national holiday; 

COVID-19 

 

1. Introduction 

The development of air quality forecast models is essential for cities with high population 

density, including Macao, one of the most densely populated cities in the world. It is extremely 

important to predict pollution episodes so the authority can provide a warning to the local 

community in advance to avoid the adverse air quality, which may lead to severe health 
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consequences. In order to predict next-day concentrations of nitrogen dioxide (NO2), particulate 

matter (PM10 and PM2.5), and maximum hourly concentration of ozone (O3 MAX) for roadside, ambient, 

and residential stations in Macao, a forecast model was developed based on statistical methods using 

multiple linear regression (MLR) and classification and regression tree (CART) analysis. 

There are three forms of total suspended particles (TSPs), which include coarse, fine, and 

ultrafine particles. Coarse particles, also known as PM10, are derived from suspension of dust, soil, 

sea salts, pollen, mold, and other crustal materials. Fine particles, also known as PM2.5, are derived 

from emissions from combustion process, including vehicles powered by petrol and diesel, wood 

burning, coal burning, and other industrial processes. Ultrafine particles are derived from 

combustion related sources such as vehicle exhausts and atmospheric photochemical reactions [1]. 

O3 is the most important index substance for photochemical smog, one of the major air pollutants 

[2]. The formation of ground-level O3 heavily depends on the concentration levels of volatile organic 

compounds (VOCs) and nitrogen oxides (NOx) and meteorological factors such as wind speed, 

insolation, and temperature. PM2.5 and O3 pollutants are known to cause the most damages to the 

human respiratory and cardiovascular system. A study for Terengganu State, Malaysia, showed that 

high levels of O3 occurring under dry and warm conditions during the southwest monsoon, were 

higher in industrial areas, and were positively correlated with the maximum daily temperature [3]. 

The emission of NOx is primarily emitted from transportation and combustion process, while 

the emission of VOCs is primarily emitted from road traffic and the use of products containing 

organic solvents [4,5]. 

The emission of NOx and VOCs is responsible for the O3 formation, in particular rural areas being 

NOx-sensitive while urban areas being VOC-sensitive. Nevertheless, the greater NOx emission 

reductions have contributed to a widespread shift in the O3 production regime from NOx-saturated 

(high-NOx) to NOx-sensitive (low-NOx) in some urban areas, while O3 production in rural areas is 

even more sensitive to NOx. 

TSPs are primary contributors to premature death worldwide, with over four million premature 

deaths being recorded due to exposure to high levels of ambient PM2.5 [6–8]. PM2.5 can penetrate deep 

into the lungs when being inhaled, which leads to both acute and chronic health issues [1,6]. NO2 and 

TSPs are responsible for 412,000 and 71,000 premature death per year, respectively, in the European 

Union [9,10]. Moreover, previous studies show a strong correlation between short-term exposure to 

NO2 and both the number of hospital outpatients with eye and adnexa diseases (EADs) [11] and the 

number of hospital admission due to cardiovascular diseases (CVD) [12]. The Chinese National 

Ambient Air Quality Standard (NAAQS) has set the threshold of PM10, PM2.5, and O3 MAX concentration 

at 150 μg/m3, 75 μg/m3, and 160 μg/m3, respectively, while the WHO Air Quality Guideline has set 

the same thresholds at 50 μg/m3, 25 μg/m3, and 100 μg/m3, respectively. Compliance with the 

thresholds set by the WHO for PM2.5 could improve life expectancy in China by 0.14 years [13] and 

ambient air pollution has caused at least 3.7 million deaths, with more than 25% of deaths in 

Southeast Asia [14,15]. 

Air pollution forecasting models can provide important information for populations to adopt 

mitigation measures during high pollution days. To be useful, these models should be robust to deal 

with extreme variations in pollution levels, in particular during high-pollution peak days. Factors 

leading to extreme variation in pollution levels are diverse and include both human activities and 

meteorological factors. 

In a study for Beijing, China, the reduction of traffic flow and vehicle emissions in downtown 

areas during the Chinese National Holiday, reduced air pollution, while, in contrast, fireworks 

during the Chinese New Year Holiday had the opposite effect [16]. When highway tolls were being 

waived for passenger vehicles during the Chinese National Holiday across the entire nation of China, 

air pollution increased by 20% and visibility decreased by 1 km, causing economic losses due to 

negative health impacts estimated at RMB 0.95 billion [17]. Nevertheless, the Chinese National 

Holiday is known to be a golden week of tourism, in which the Chinese tourist flock to different 

tourist destinations around the world to celebrate the national holiday. Due to the vibrant casinos 

and entertainment industry and close proximity to mainland China, Macao is also one of the favorite 
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destinations for Chinese tourists, so the influx of tourist during the period of Chinese National 

Holiday may lead to an increase of emissions in Macao. 

Likewise, the recent COVID-19 crisis has had an extreme impact in air pollution levels. The 

Wuhan Health Commission has first reported cases of pneumonia linked to the Wuhan wet market 

in Hubei Province, China, back in December 2019 [18]. Preventive measures were implemented soon 

after that abruptly reduced industrial activities and transportation. Nevertheless, the levels of air 

pollutants, in particular of PM2.5, remained severe in northern China throughout the end of January 

2020 due to adverse meteorological conditions that have overwhelmed the benefits of emission 

reduction in transportation and industrial sectors [19]. 

Previous work showed that there is an increase in the level of O3 concentrations and a decrease 

in the level of NO2, PM10, and PM2.5 concentration during the period of COVID-19 pandemic 

lockdown in several cities of China, due to the significant reduction of transportation and industrial 

activities [4,5,20,21]. 

Several methodologies have been developed and applied to forecast air quality across the world, 

including deterministic, statistical, and machine learning methods [22–26]. Some studies showed that 

statistical models are more accurate and efficient compared to deterministic models, particularly in 

regions with complexed terrain [27–30] Moreover, prediction of NO2, PM10, PM2.5, and O3 MAX 

concentrations based on MLR and CART models have been successfully implemented in Macao, 

Bangkok, Changsha City, Beijing, Bilbao, and Pakistan [26,31–35]. 

In this context, it is relevant to develop a reliable methodology to forecast the concentration of 

air pollutants, which is presented and tested for a high pollution episode (associated with the Chinese 

National Holiday) and a low pollution episode (during COVID-19 preventive measures). 

2. Materials and Methods 

The air quality and meteorological variables that were considered to build all of the air quality 

statistical models were obtained from Macao Meteorological and Geophysical Bureau (SMG). The air 

quality data was gathered from the air quality monitoring network, namely for: Macao Roadside, 

Macao Residential, Taipa Ambient, Taipa Residential, and Coloane Ambient stations, which have a 

suitable historic dataset of surface air quality measurements for the levels of NO2, PM10, PM2.5, and O3 

concentrations. These background stations (residential and ambient) can capture the regional 

contribution of PM10 and PM2.5. There is a higher population and traffic density in Macao Roadside 

and Macao Residential, which are located in the main peninsula, in comparison to Taipa Ambient, 

Taipa Residential, and Coloane Ambient stations, which are located on the outlying islands. 

Meteorological data was obtained from surface observations at SMG’s Taipa Grande 

Meteorological Station, hourly observations from automatic weather stations, such as temperature, 

relative humidity, precipitation, average wind speed, and dew point temperature, as well as upper-

air observations (from Hong Kong King’s Park location) such as geopotential heights, thickness, 

stability, temperature, relative humidity, and dew point temperature at various altitudes. In the 

present work, statistical models such as multiple linear regression (MLR), and classification and 

regression tree (CART), are developed, based on historical measurements of meteorological and air 

quality variables. Table 1 presents all the variables considered as predictors in the MLR and CART 

forecast models, as shown in previous work [22]. The air quality variables considered included the 

levels of NO2, PM10, PM2.5, and O3 MAX concentration from 00:00 to 23:00 of the previous day, two days 

and three days ago, and from 16:00 of the previous day and 15:00 of today. The meteorological 

variables being considered included the upper-air observations from King’s Park location, Hong 

Kong Observatory, surface observations and other variables from the monitoring network of Macao 

Meteorological and Geophysical Bureau (SMG). 

  



Int. J. Environ. Res. Public Health 2020, 17, 5124 4 of 19 

 

Table 1. Variables considered as predictors in the multiple linear regression (MLR) and classification 

and regression tree (CART) models in all of the air quality forecast models. 

Variable Type 
Variable 

Name 
Variable Description (Units)/ Observations 

Air quality 

variables 

NO2, PM10, 

PM2.5 
Average hourly concentration values (μg/m3) 

O3 MAX Maximum hourly concentration values (μg/m3) 

16D#, 23D# 

23D#: 24-h concentration averaging period between 00h and 23h  

16D#: 24-h concentration averaging period between 16h of D1 and 15h 

of D0 

eg: PM10_16D1, O3_MAX_23D1. 

D0, D1, D2, 

D3 

D0: Forecast Day; D1: Previous Day (Forecast Day-1); D2: Forecast 

Day-2; and D3: Forecast Day-3. 

Meteorological 

variables 

Upper-air 

obs.* 

H1000, 

H850, H700, 

H500 

Geopotential Height at 1000 hPa, 850 hPa, 700 hPa, and 

500 hPa (m)/Indicator of synoptic-scale weather 

pattern. 

TAR925, 

TAR850, 

TAR700 

Air Temperature at 925 hPa, 850 hPa, and 700 hPa 

(°C)/Measure of strength and height of the subsidence 

inversion. 

HR925, 

HR850, 

HR700 

Relative Humidity at 925 hPa, 850 hPa, and 700 hPa 

(%). 

TD925, 

TD850, 

TD700 

Dew Point Temperature at 925 hPa, 850 hPa, and 700 

hPa (°C). 

THI850, 

THI700, 

THI500 

Thickness at 850 hPa, 700 hPa, and 500 hPa (m)/Related 

to the mean temperature in the layer. 

STB925, 

STB850, 

STB700 

Stability at 925 hPa, 850 hPa, and 700 hPa 

(°C)/Indicator of atmospheric stability. 

Surface 

observations 

T_AIR_MX, 

T_AIR_MD, 

T_AIR_MN 

Maximum, Average, and Minimum Air Temperature (°C) 

HRMX, 

HRMD, 

HRMN 

Maximum, Average, and Minimum Relative Humidity (%) 

TD_MD Average dew point temperature (ground level) (°C) 

RRTT Precipitation (mm)/Associated with atmospheric washout 

VMED Average wind speed (m/s)/Related to dispersion 

Other variables 
DD Duration of the day: number of hours of sun per day (h) 

FF Week-day indicator (flag): weekday = 0, weekend = 1 

Meteorological variables: *Daily sounding at 12H (GMT+8) at King’s Park Meteorological Station—

Hong Kong Observatory. 

  



Int. J. Environ. Res. Public Health 2020, 17, 5124 5 of 19 

 

In this study, meteorological and air quality variables for 2013 to 2016, 2015 to 2018, and 2013 to 

2018 were used to build three separate forecasting models. The 2013 to 2016 model was constructed 

for the initial evaluation for the application of the statistical model to forecast air quality in Macao, 

while the 2015 to 2018 models and the 2013 to 2018 models are a follow-up, to determine if any 

improvement could be made with two additional years of data. The comparison of extended data 

ranging from 5 to 6 years are considered to be adequate lengths to test if there is any significant 

difference between the time series. Simultaneously, it would not be ideal to trace back too far with 

the time series, because regional emissions are constantly changing, and therefore the level of 

pollutants concentration may also be changing. The dataset from 2019 was the most recent dataset, 

which would be used for the model validation for all the models. This study is an empirical approach 

and also region-specific, which may also be chemical-regime dependent. 

The final selected variables to predict the levels of PM2.5 and O3 concentration are common to 

different locations of Macao air quality monitoring stations. Some variables initially selected were 

rejected from the forecast models due to collinearity. The final objective is to obtain prediction models 

with the lowest number of variables, but with the maximum explained variance as translated by the 

coefficient of determination (R2). 

After selecting the best model, it was applied to forecast pollution levels during an extremely 

high pollution episode, and a low pollution period. The high and low pollution selected episodes 

were, respectively: (i) the period of Chinese National Holiday, a week before the Chinese National 

Holiday from September 23rd to 30th, 2019, and the week during the Chinese National Holiday from 

October 1st to 7th, and (ii) the preventive measures period of COVID-19, from February 5th to 20th, 

2020. 

The statistical model was built using IBM SPSS Statistics version 26 with MLR (stepwise) and 

CART methods [26,36]. SPSS is a statistical software that is applied to solve research problems 

through hypothesis testing and predictive analysis. 

Model performance indicators were calculated, such as, coefficient of determination (R2), root 

mean square error (RMSE), mean absolute error (MAE), and systematic error (BIAS). 

3. Results and Discussion 

3.1. Air Quality Forecast Models 

The model performance indicators obtained for the 2013 to 2016 model and for the 2013 to 2018 

model, validated with 2019 data, are listed in Tables 2 and 3, respectively. The models chosen to 

figure in Tables 2 and 3 are the ones that performed the worst and best 2019 validation results. 

The results showed that the model for the 2013 to 2018 period was the one that performed best 

in predicting next-day concentrations levels in 2019, with high R2 between predicted and observed 

daily average concentrations (between 0.78 and 0.89 for all pollutants) and low RMSE, MAE, and 

BIAS. The additional two years of data helped to improve the air quality forecasting model. 

Nevertheless, with the two other models (2013–2016 and 2015–2018) a significant R2 (between 0.78 

and 0.89 for all pollutants) was also obtained, but it translated into a less reliable air quality forecast. 

Regarding model performance indicators obtained per pollutant and station, the majority of 

models show a good agreement and a similar R2 range values (from 0.81 to 0.89), except for O3 MAX, 

which is more difficult to predict. MLR was used for all pollutants, while CART analysis was used in 

almost all the O3 MAX models (Tables 2 and 3). This CART analysis complement was an approach to 

obtain improved results, mainly regarding a better prediction of high pollutant levels. 
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Table 2. Model performance indicators for the 2013 to 2016 model validation with 2019 data. 

Station Pollutant 

Model Performance 

Indicator 

Model Built Using Only MLR or CART and 

MLR 

R2 RMSE MAE BIAS MLR CART 

Macao 

Roadside 

PM10 0.88 8.6 5.8 1.8   

PM2.5 0.86 5.4 3.7 1.5   

NO2 0.89 8.0 5.9 0.4   

Macao 

Residential 

PM10 0.89 8.8 5.9 −0.3   

PM2.5 0.87 5.2 3.3 0.7   

NO2 0.86 7.7 5.5 −0.4   

O3 MAX 0.85 23.2 14.0 0.0   

Taipa 

Ambient 

PM10 0.88 7.9 5.4 1.7   

PM2.5 0.86 5.1 3.6 1.6   

NO2 0.87 6.1 4.2 0.9   

O3 MAX 0.86 24.4 14.8 −2.1   

Taipa 

Residential 

PM10 0.87 8.0 5.2 0.1   

PM2.5 0.88 5.7 3.5 −0.1   

NO2 0.87 5.6 4.2 0.8   

O3 MAX 0.78 20.9 12.7 1.3   

Coloane 

Ambient 

PM10 0.88 8.7 6.2 2.4   

PM25 0.86 5.4 3.7 1.3   

NO2 0.81 7.8 5.5 −0.2   

O3 MAX 0.79 24.7 15.9 −3.6   

Table 3. Model performance indicators for the 2013 to 2018 model validation with 2019 data. 

Station Pollutant 

Model Performance 

Indicator 

Model Built Using Only MLR or CART and 

MLR 

R2 RMSE MAE BIAS MLR CART 

Macao 

Roadside 

PM10 0.88 8.4 5.6 1.5   

PM2.5 0.87 5.2 3.3 0.2   

NO2 0.89 7.9 5.8 −0.1   

Macao 

Residential 

PM10 0.89 8.8 5.9 −0.1   

PM2.5 0.87 5.2 3.3 0.8   

NO2 0.86 7.7 5.5 0.0   

O3 MAX 0.85 23.2 14.0 0.0   

Taipa 

Ambient 

PM10 0.88 7.8 5.1 0.8   

PM2.5 0.86 4.8 3.1 0.2   

NO2 0.87 6.1 4.2 1.0   

O3 MAX 0.86 23.7 14.7 −1.6   

Taipa 

Residential 

PM10 0.88 7.9 5.1 0.2   

PM2.5 0.88 5.6 3.5 −0.1   

NO2 0.87 5.6 4.1 0.6   

O3 MAX 0.78 20.9 12.7 1.3   

Coloane 

Ambient 

PM10 0.89 8.3 5.7 1.2   

PM25 0.86 5.3 3.6 1.0   

NO2 0.81 7.8 5.5 −0.1   

O3 MAX 0.79 24.3 15.3 –3.0   

Table 4 presents the final model equations obtained for each pollutant, per air quality monitoring 

station, in the 2013 to 2018 model. Additionally, the final equations used to predict the levels of NO2, 

PM10, PM2.5, and O3_MAX concentrations are presented in Table 4. 
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Table 4. Variables and model equations for each pollutant per air quality monitoring station in the 

2013 to 2018 model. 

Station Pollutant Model Equations 

Macao Roadside NO2 NO2 = 0.897 × NO2_16D1 + 0.011 × H850 − 0.151 × HRMN 

PM10 PM10 = 0.913 × PM10_16D1 + 0.015 × H850 − 0.208 × HRMD 

PM2.5 PM2.5 = 0.943 × PM25_16D1 + 0.006 × H850 − 0.091 × HRMD 

Macao 

Residential 

NO2 NO2 = 0.913 × NO2_16D1 + 0.007 × H850 − 0.087 × HRMN 

PM10 PM10 = 0.896 × PM10_16D1 + 0.016 × H850 − 0.224 × HRMD 

PM2.5 PM2.5 = 0.926 × PM25_16D1 + 0.004 × H850 − 0.176 × TD_MD 

O3 MAX O3 MAX = 1.089 × O3_MAX_16D1 − 0.344 × O3_MAX_23D1 − 1.303 × TD_MD + 

1.437 × T_AIR_MX 

Taipa Ambient NO2 NO2 = 0.914 × NO2_16D1 + 0.004 × H850 + 0.734 × STB925 

PM10 PM10 = 0.905 × PM10_16D1 + 0.014 × H850 − 0.205 × HRMD 

PM2.5 PM2.5 = 0.928 × PM25_16D1 + 0.006 × H850 − 0.093 × HRMD 

O3 MAX If [O3 MAX_16D1] ≤ 105.50 

O3 MAX = 1.034 × O3_max_16D1 − 0.214 × O3_max_23D1 + 0.019 × H850 − 0.236 × 

HRMN 

If [O3 MAX_16D1] = ]105.50; 181.87] 

O3 MAX = 0.994 × O3_max_16D1 − 0.433 × O3_max_23D1 + 0.051 × H850 − 0.529 × 

HRMN 

If [O3 MAX_16D1] > 181.87 

O3 MAX = 1.006 × O3_max_16D1 − 0.472 × O3_max_23D1 + 0.12 × H850 − 2.025 × 

HRMN 

Taipa Residential NO2 NO2 = 0.859 × NO2_16D1 + 0.007 × H850 − 0.271 × TD_MD 

PM10 PM10 = 0.902 × PM10_16D1 + 0.015 × H850 − 0.204 × HRMD 

PM2.5 PM2.5 = 0.938 × PM25_16D1 − 0.607 × TD_MD + 0.703 × TAR925 

O3 MAX If [O3 MAX_16D1] ≤ 129.12 

O3 MAX = 1.028 × O3_max_16D1 − 0.238 × O3_max_23D1 + 0.019 × H850 − 0.216 × 

HRMN 

If [O3 MAX_16D1] = ]129.12; 207.10] 

O3 MAX = 0.958 × O3_max_16D1 − 0.381 × O3_max_23D1 + 0.061 × H850 − 0.751 × 

HRMN 

If [O3 MAX_16D1] > 207.10 

O3 MAX = 1.12 × O3_max_16D1 − 0.5 × O3_max_23D1 + 0.14 × H850 − 2.818 × 

HRMN 

Coloane Ambient NO2 NO2 = 0.931 × NO2_16D1 − 0.503 × TD_MD + 0.628 × TAR925 

PM10 PM10 = 0.904 × PM10_16D1 + 0.015 × H850 − 0.214 × HRMD 

PM2.5 PM2.5 = 0.927 × PM25_16D1 + 0.005 × H850 − 0.069 × HRMN 

O3 MAX If [O3 MAX_16D1] ≤ 116.20 

O3 MAX = 1.021 × O3_max_16D1 − 0.233 × O3_max_23D1 + 1.650 × T_AIR_MX − 

1.392 × TD_MD 

If [O3 MAX_16D1] = ]116.20; 186.92] 

O3 MAX = 0.831 × O3_max_16D1 − 0.397 × O3_max_23D1 + 4.929 × T_AIR_MX − 

3.384 × TD_MD 

If [O3 MAX_16D1] > 186.92 

O3 MAX = 0.921 × O3_max_16D1 − 0.482 × O3_max_23D1 + 8.868 × T_AIR_MX − 

8.582 × TD_MD 

3.2. Air Quality During the High Pollution Episode 

Taipa Ambient is the representative background location for Macao, and was chosen to assess 

the background levels of PM2.5 and O3 during the extreme pollution episode. 

The influx of tourists coming to Macao, in light of the Chinese National Holiday, contributed to 

an high pollution episode that occurred during late September and early October 2019, with peak 

daily levels of PM2.5 concentration exceeding 55 μg/m3 and O3 MAX levels exceeding 400 μg/m3, largely 

exceeding the threshold level recommended by the WHO. 
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The levels of PM2.5 and O3 MAX concentrations for Taipa Ambient during the Chinese National 

Holiday in 2019 (from September to November) are presented in Figures 1 and 2. 

Figures 1 and 2 showed the comparison of daily average PM2.5 and O3 MAX concentration during 

2018 and 2019, from a month before in September and a month after in November of the Chinese 

National Holiday. The pollution episode of 2019 occurred just before and going well into the period 

of Chinese National Holiday (1 to 7 October). 

 

Figure 1. PM2.5 concentrations for Taipa Ambient highlighting a pollution episode immediately 

before, and during, the Chinese National Holiday of 2018 and 2019 (September to November). 
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Figure 2. O3 MAX concentrations for Taipa Ambient highlighting a pollution episode immediately 

before, and during, the Chinese National Holiday of 2018 and 2019 (September to November). 

As shown in Figures 1 and 2, the levels of PM2.5 and O3 MAX concentration peaked immediately 

before, and during, the Chinese National Holiday in late September and early October 2019. The 

monthly mean concentration of PM2.5 (from September to November) during the Chinese National 

Holiday in 2019 was 19 μg/m3, 24 μg/m3, and 28 μg/m3, respectively. In addition, the monthly mean 

concentration of O3 MAX (from September to November) during the Chinese National Holiday in 2019 

was 181 μg/m3, 163 μg/m3, and 172 μg/m3, respectively. 

The levels of O3 MAX concentrations reached its peak during the late September and early October 

due to meteorological factors including predominant winds from the north and east, from the 

Guangdong Province and Hong Kong, respectively. Temperatures were high in conjunction with low 

wind speed. The average daily temperature during the ozone peak episode that took place the two-

weeks before the Chinese National Holiday (October 1st) was 28 °C, while the maximum daily 

average was 31 °C. Average wind speed was 2.5 m/s. 

Due to the shutdown of nearby industrial sectors during the period of Chinese National Holiday, 

there were lower emissions of nitrogen oxides associated with the decreased load from the coal power 

plants in the northern region, usually supporting the operation of the factories. Therefore, this caused 

a decrease NOx, the precursor of O3. However, the increase in emissions of VOCs and NOx by 

vehicles, with chemical reactions in the presence of sunlight, may have caused the peak levels of 

ozone concentrations under these high temperature favorable conditions. 

3.3. Air Quality During the Low Pollution Episode 

In contrast, the COVID-19 pandemic has led to the Macao government’s decision to temporarily 

suspend the operation of the casinos and entertainment industry and highly restrict cross border 

movements, as a preventive measure to reduce population mobility within the region of Macao. As 

a result, it has caused a low pollution episode during late January and early February 2020, with daily 

levels of PM2.5 concentration reaching a record low at 2 μg/m3 and O3 MAX levels at 50 μg/m3. The 



Int. J. Environ. Res. Public Health 2020, 17, 5124 10 of 19 

 

reduction of population mobility, and consequently, of traffic emissions in Macao and its nearby 

Guangdong Province, lead to this lowest PM2.5 concentration levels. 

As shown in Figure 3, the levels of PM2.5 concentrations remained low during the initial outbreak 

of COVID-19 pandemic in Macao (from January to February 2020), slowly recovering to pre-COVID-

19 values in March 2020. As shown in Figure 4, the levels of O3 MAX concentration remained high 

during the initial outbreak of COVID-19 pandemic in Macao (from January to February 2020) and the 

high levels continued into March 2020. The higher levels of O3 MAX concentration were associated with 

lower NOX emissions, which led to a weakened O3 titration by NO during the COVID-19 pandemic 

lockdown in the nearby Guangdong Province [4]. 

Despite industrial emission being a major contributor to the PM2.5 pollution in China prior to 

COVID-19 pandemic lockdown period, the residential emission contributed to 39% of total PM2.5 

emissions in China, so the emissions of PM2.5 during the lockdown period may have originated from 

residential areas [5]. 

The comparison of PM2.5 and O3 MAX concentrations for Taipa Ambient during the previous year 

of 2019 and COVID-19 pandemic in 2020 (January to March) is presented in Figures 3 and 4. 

 

Figure 3. Comparison of PM2.5 concentrations for Taipa Ambient during the previous year of 2019 and 

COVID-19 pandemic in 2020 (January to March). 
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Figure 4. Comparison of O3 MAX concentrations for Taipa Ambient during the previous year of 2019 

and COVID-19 pandemic in 2020 (January to March). 

As shown in Figure 5, the difference between monthly mean concentration (from January to 

March) of PM2.5 concentration in 2019 and 2020 was 16 μg/m3, 2 μg/m3, and 1 μg/m3, respectively. As 

shown in Figure 6, the difference between monthly mean concentration (from January to March) of 

O3 MAX concentration in 2019 and 2020 was 12 μg/m3, 21 μg/m3, and 9 μg/m3, respectively. 

The monthly mean concentration of PM2.5 and O3 MAX concentration for Taipa Ambient during the 

previous year of 2019 and COVID-19 pandemic in 2020 (January to March) is presented in Figures 5 

and 6. Overall, the preventive measures of COVID-19 pandemic may not have caused a significant 

difference in the levels of PM2.5 and O3 concentration in Macao, as the levels from February to March 

2020 were similar to that of the previous year, 2019. 

 

Figure 5. Monthly mean PM2.5 concentrations for Taipa Ambient during the previous year of 2019 and 

COVID-19 pandemic in 2020 (January to March). 
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Figure 6. Monthly mean O3 MAX concentrations for Taipa Ambient during the previous year of 2019 

and COVID-19 pandemic in 2020 (January to March). 

3.4. Air Quality Pollution Episodes Discussion 

The air quality of Macao, a territory with only 32.8 km2, is heavily influenced by external factors, 

in particular by human activities that occur in the much larger and neighboring Guangdong province. 

Our study shows the extent to which an increase in mobility associated with Chinese National 

Holiday, or a decrease in the same factors, associated with the COVID-19 preventive measures 

period, impacts air quality in Macao. 

The levels of PM2.5 concentrations significantly reduced after the first confirmed case of COVID-

19 pandemic in Macao on January 22nd, 2020, which caused panic and anxiety in the local population, 

and continued by the announcement of casino closures by the Macao government as part of the 

preventive measures for COVID-19 from February 5th to 20th, 2020. As some of the preventive 

measures, in particular, the 15 days mandatory casino closure have been lifted, the fear and tension 

of the local residents has eased, which has promoted population mobility. Although the levels of 

PM2.5 concentrations in Macao improved significantly during late January and early February 2020, 

the levels of PM2.5 concentrations gradually returned to normal in March 2020 after some of the 

preventive measures began to be lifted in Macao and its nearby Guangdong Province. 

3.5. Air Quality Pollution Episodes Forecast 

Regarding the model behavior in predicting PM2.5 and O3 MAX during the high pollution episode 

(Chinese National Holiday), observed and predicted PM2.5 and O3 MAX concentrations are presented 

in Figures 7 and 8. 

As shown in Figures 7 and 8, the levels of PM2.5 and O3 MAX concentration peaked during late 

September and early October 2019. The PM2.5 predicted levels followed the primary trend of the 

measured concentrations and followed the concentration peak represented in Figure 7. The model 

for O3 MAX also followed the primary trend, but it was more difficult to represent the concentration 

peak. The forecast model for PM2.5 has a higher R2 in comparison to the model of O3 MAX, because the 

maximum hourly concentration of O3 MAX is more challenging to predict in comparison to the 24 h 

average of PM2.5, as there is influence from the regional precursors sources and also its complex 

chemistry with solar radiation for O3 formation, which led to a higher degree of variability. 
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Figure 7. Observed and predicted PM2.5 concentrations for Taipa Ambient during Chinese National 

Holiday (from September to November 2019). 
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Figure 8. Observed and predicted O3 MAX concentrations for Taipa Ambient during Chinese National 

Holiday (from September to November 2019). 

Due to the different nature of PM2.5 and O3 MAX, the forecast model performed better in the 

prediction of PM2.5 in comparison to O3 MAX. This can be demonstrated in the higher R2 values in the 

PM2.5 forecast model. The observed and predicted PM2.5 and O3 MAX concentrations, during the low 

pollution episode (implementation of COVID-19 preventive measures), are presented in Figures 9 

and 10. 
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Figure 9. Observed and predicted PM2.5 concentrations for Taipa Ambient during preventive 

measures of COVID-19 pandemic (from January to March 2020). 
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Figure 10. Observed and predicted O3 MAX concentrations for Taipa Ambient during preventive 

measures of COVID-19 pandemic (from January to March 2020). 

The 2013 to 2018 model successfully predicted both the high and low pollution episodes, for 

PM2.5 and O3 MAX, obtaining a significant R2 of 0.88 and 0.83, respectively, for the high pollution period 

(from September to November 2019), and an R2 of 0.82 and 0.75, respectively, for the low pollution 

period (from January to March 2020). The R2 obtained for the entire year of 2019 was 0.86 for both 

PM2.5 and O3 MAX. The statistical forecast model has been shown to be capable to predict, with a high 

coefficient of determination, the next 24 h. 

4. Conclusions 

As expected, the 2013 to 2018 model performed best with the highest R2 and lowest RMSE, MAE, 

and BIAS as compared with the 2013 to 2016 model and the 2015 to 2018 model. The additional two 

years of data helped to improve the accuracy and stability of the forecast of the 2013–2018 model. 

The 2013–2018 model was able to successfully predict the high pollution episode during the 

Chinese National Holiday in late September and early October 2019 and the low pollution episode 

during the preventive measures period of COVID-19 pandemic in late January and early February 
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2020. This shows that this model can be reliably applied to forecast next-day pollutants 

concentrations across different magnitude levels of air pollution, being a useful tool for mitigation of 

air pollution impacts. 

In addition, this shows that an improvement of global air quality in the territory is possible but 

it is tightly linked to the implementation of air pollution control measures in the industry and 

mobility sectors in Macao, in particular, in Guangdong Province. As previously studied, the air 

pollution problem associated with PM2.5 and O3 MAX is a regional problem that is not only limited to 

Macao, but also in the nearby regions of Hong Kong and Guangdong Province. 
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