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Abstract: Malaria infects and kills millions of people in Africa, predominantly in hot regions where
temperatures during the day and night are typically high. In South Africa, Limpopo Province is the
hottest province in the country and therefore prone to malaria incidence. The districts of Vhembe,
Mopani and Sekhukhune are the hottest districts in the province. Malaria cases in these districts are
common and malaria is among the leading causes of illness and deaths in these districts. Factors
contributing to malaria incidence in Limpopo Province have not been deeply investigated, aside from
the general knowledge that the province is the hottest in South Africa. Bayesian and classical methods
of estimation have been applied and compared on the effect of climatic factors on malaria incidence.
Credible and confidence intervals from a negative binomial model estimated via Bayesian estimation
and maximum likelihood estimation, respectively, were utilized in the comparison process. Overall
assumptions underpinning each method were given. The Bayesian method appeared more robust
than the classical method in analysing malaria incidence in Limpopo Province. The classical method
identified rainfall and temperature during the night to be significant predictors of malaria incidence in
Mopani, Vhembe and Waterberg districts. However, the Bayesian method found rainfall, normalised
difference vegetation index, elevation, temperatures during the day and night to be the significant
predictors of malaria incidence in Mopani, Sekhukhune and Vhembe districts of Limpopo Province.
Both methods affirmed that Vhembe district is more susceptible to malaria incidence, followed by
Mopani district. We recommend that the Department of Health and Malaria Control Programme of
South Africa allocate more resources for malaria control, prevention and elimination to Vhembe and
Mopani districts of Limpopo Province.

Keywords: malaria incidence; Bayesian estimation; classical estimation; Poisson regression model;
negative binomial model

1. Introduction

Malaria is a mosquito borne disease caused by five protozoan species, namely: Plasmodium
Falciparum, Plasmodium vivax, Plasmodium malariae and related species of Plasmodium ovale and
Plasmodium knowlesi ([1]). The protozoa are transmitted to humans through the bites of infected
female Anopheles mosquitos (mosquitos carrying protozoa). Plasmodium falciparum is known to account
for many malaria cases globally and is therefore regarded as a threat to public health worldwide ([1,2]).
Malaria incidence refers to the commonness of malaria occurrence. When the incidence rates are high,
transmission and prevalence of malaria are also high. This exposes the vulnerability and danger of the
disease to society.

The symptoms of malaria include fever (>37.5 ◦C), headache, rigors, muscle pains, diarrhea,
nausea, vomiting, loss of appetite, inability to feed babies, dizziness and sore throat. Based on
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history, malaria has infected and taken the lives of millions of individuals. This disease remains a
major cause of human morbidity and mortality in most of the developing countries in Africa. Young
children, pregnant women, and elderly individuals are groups of people at higher risk of malaria
transmission ([3]). Sachs and Malaney [4] outlined the factors that contribute to increased malaria
cases. These encompassed changing agricultural practices, building of more dams, poor irrigation
skills, deforestation, poor public health services and long-term climate change causes such as El Nino
and global warming. Hay et al. [5] found seasonal climatic change to be an important determinant of
malaria incidence since variations in climate conditions could increase mosquito vector dynamics and
parasite development rates ([6,7]). Indeed, malaria incidence has been found to be generally low during
dry-hot season when vector populations are reduced and spatially restricted. As a result, several of
studies on malaria incidence tend to focus on the peak transmission season, which is often the rainy
season, whereas the epidemiological picture during the dry-hot season is often neglected ([7,8]).

According to Blumberg and Frean [9], there has been great progress in malaria control globally.
This progress is attributed to increased funding, improved use of life-saving interventions and more
countries pursuing malaria elimination measures. Although the progress achieved in countries such as
Sri Lanka and some Sub-Saharan African countries has been considerable, South Africa remains among
countries with high risk of malaria transmission, especially the northern part of the country ([7,8,10]).
Raman et al. [10] further outlined that South Africa officially transitioned from controlling malaria
to the goal of eliminating the disease in 2012. However, malaria cases have increased from 6811 in
2013 to 11,711 in 2014, with many cases reported in the Mpumalanga and Limpopo provinces of South
Africa ([7]). It will therefore be expedient to model malaria incidence in Limpopo Province because
it is amongst the provinces that account for most malaria cases in South Africa ([7,8]). The present
study will employ both classical and Bayesian methods of estimation to assess the effect of climatic
factors such as temperature, rainfall, elevation and normalised difference vegetation index on malaria
incidence. The results of the present study may well assist in malaria control programs for inspection,
control, prevention and possible elimination of malaria in Limpopo Province.

This study is crucial because there are still arguments concerning association between climatic
factors and malaria incidences ([11]). Yé et al. [11] highlighted that effects of climatic factors on malaria
transmission are not efficiently assessed, specifically at local levels. Yé et al. [11] further outlines that
data used in many studies are proxy meteorological data obtained through satellites or interpolated
from a different scale. To the best of our knowledge limited or no prior study on malaria prevalence in
the province or the country has employed local scale data. Hence, in this present study, a local scale
data from a malaria control institution in Limpopo province will be used. Indeed, the gap that we
seek to address in this paper does not only lie in the data used in fitting the model but also in the
methodology. For instance, environmental factors vary overtime hence classical methods may not do
“justice” to the data, hence the introduction of the Bayesian methods. This is absent in many of the
previous studies cited earlier.

In several studies that modelled malaria counts, methods such as Poisson, negative binomial,
hurdle, quasi-Poisson and dynamic computable general equilibrium (DCGE) models have been
applied. For instance, Shimaponda-Mataa et al. [12–15] modelled the environmental factors and
assessed their relationships with malaria incidence through the development of Poisson regression
models. Kazembe [16] conducted a research on malaria incidence and found negative binomial
regression model to provide a better fit compared to Poisson regression model. In other separate
studies, Shimaponda-Mataa et al. [12,17,18] found a positive relationship between rainfall and malaria
risk. On the contrary, Zayeri et al. [14] found a negative relationship between rainfall and malaria
incidence. Studies by Shimaponda-Mataa et al. [12,18] further revealed a positive relationship between
minimum temperature and malaria risk. Gerritsen et al. [14,19] provided evidence that adults are
more susceptible to malaria transmission than children. There are also studies that modelled malaria
incidence using other different methods. These methods include the time series data analysis methods
employed in the studies of Adeola et al. [20,21], and the qualitative retrospective descriptive method
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employed in the study of Machimana [22]. The studies by Adeola et al. [20,21] found that malaria cases
have a positive relationship with both temperature and rainfall. These results support the findings of
Machimana [22], which revealed that malaria transmission in South Africa is associated with climate.
Machimana [22] study further revealed that malaria cases are highly seasonal, with higher number of
cases in January to April and October. The findings of the study by Machimana [22] also indicated that
persons between the ages 16 to 40 years and males are more susceptible to malaria transmission.

Abiodun et al. [8] conducted a study on the resurgence of malaria prevalence in South Africa
between 2015 and 2018. Their study concentrated on reviewing several malaria-related research articles
that were published using Arksey and O’Malley framework. Out of a total of 534 malaria related
articles that were reviewed, very few of them made use of Bayesian estimations. The argument in
the present study is that climatic variables in relation to malaria prevalence are dynamic and classical
statistics estimators such as maximum likelihood methods will probably not be efficient compared to
Bayesian estimation, where climatic variables are treated as random variables with some underlying
distribution. In another study, Abiodun et al. [7] conducted a study on malaria incidence in Limpopo
Province using dynamical and zero-inflated negative binomial regression models. Results from their
study revealed the effect of rainfall and average temperature on malaria incidence. The present paper
is different from several previous papers especially in terms modelling and parameter estimation.

Another point of departure is that many of the data sets employed in most of these previous
studies in one way or the other have used environmental factors and other predictors of malaria.
Environmental factors such as elevation, temperature, normalised difference vegetation index (NDVI)
are dynamic and their effect on malaria incidence cannot be fixed, although they are unknown as
claimed by the classical approach. A Bayesian estimation therefore will be adopted in the present study
to model these factors on malaria incidence because it considers these environmental factors as random
variables with some probability distribution. This has made the use of Bayesian estimation methods
very popular. In classical paradigm, parameters of a model are unknown, but fixed constants, while in
Bayesian estimation the parameters are random, with knowledge about the parameters described in
the form of a probability distribution. We seek to explore these two methods and compare them in
the context of malaria incidence in Limpopo Province of South Africa. This is limited in a number of
studies conducted on malaria incidence, especially in Southern Africa.

In this paper, classical and Bayesian estimation methods will be utilised and compared in the
context of modelling malaria incidence. The relation between the two statistical estimations are from
the fact that the posterior distribution in the Bayesian approach is proportional to the likelihood
function times the prior distribution. Whereas maximum likelihood estimation (MLE) uses asymptotic
distributional assumptions in classical statistics, the uncertainty about model parameters in the
Bayesian approach is expressed through the prior distributions. Combining the prior distribution and
likelihood (data), researchers are able to update the knowledge about the model parameters. This is
done through the posterior distribution from which we can infer the estimates of the model parameters
and relevant quantities like credible intervals.

The rest of the paper is outlined as follows: Section 2 describes materials and methods while
Section 3 presents the discourse on the results. Discussion and concluding remarks are presented in
Sections 4 and 5, respectively.

2. Materials and Methods

2.1. Study Frame and Data Collection

This study models malaria incidence in Limpopo Province of South Africa. Limpopo Province
consists of five districts: Capricorn, Mopani, Sekhukhune, Vhembe, and Waterberg. Malaria incidence
or cases data were provided by Malaria Control Center located in Tzaneen. The population data
were provided by Statistics South Africa (StatsSA) [23]. Environmental factors: rainfall, temperature,
elevation, and normalised difference vegetation index data were obtained from Ecoverb. The data
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were collected monthly from January 2014 to June 2015. R software was used in analysing the data
while the bar charts were done in Excel.

2.1.1. Classical Methods

Poisson Regression Model

The Poisson distribution is probably the most used discrete distribution because of its simplicity.
The Poisson probability mass function is given by:

E(Y = y) =
λye−λ

y!
, y = 0, 1, 2, . . . (1)

The mean and variance of the Poisson distribution are equal to λ. Hence, for Poisson regression,
we have:

E(Yi) = λ = µ(xi) = eβ0+β1xi1+β2xi2+...+βk−1xi,k−1 . (2)

Consequently, the Poisson regression model is:

P(X = yi|xi) =
[µ(xi)]

ye−µ(xi)

y!
, y = 0, 1, 2, . . . (3)

From (3), the mean and variance of the Poisson regression model are equal to µ(xi). Thus,
the Poisson regression is apt for count data where the mean and variance are numerically identical.
The values of a count response variable y are non-negative. Therefore, the mean function µ(xi)

safeguards the non-negative nature of the response variable y.

Negative Binomial (NB) Model

The use of negative binomial (NB) model in count data modelling, as it is the case in this study,
often comes up when there is over-dispersion. While the Poisson distribution is often first to be
considered for fitting count data such as malaria incidence, nevertheless, if the mean is very much less
than the variance of the data, then there is over-dispersion in the data. An alternative approach to
correct over-dispersion is to fit a NB regression model to the over-dispersed Poisson regression model.
The probability mass function for the NB distribution is given by:

P(Y = y) =
( 1
α + y− 1

y

)
λy(1− λ)

1
α , y = 0, 1, 2 . . . (4)

The mean and variance of the above model are respectively given byµ = λ
[α(1−λ)] andσ2 =

[
λ

α[1−λ]

]2
.

From the mean and variance, we can envisage that the NB distribution is over-dispersed since the
variance surpasses the mean. Assume the mean of the NB distribution depends on some predictor

variable xi, then we can write the mean µ(xi) =
λ

[α(1−λ)] from which λ is obtained as λ =
αµ(xi)

[1+αµ(xi)]
.

Hence, the NB regression model can be expressed as:

P(Y = yi|xi) =

( 1
α + yi − 1

yi

)(
αµ(xi)

1 + αµ(xi)

)yi
(

1
1 + αµ(xi)

) 1
α

, y = 0, 1, 2, . . . (5)

The mean and variance of the NB regression model are correspondingly given by E(Y) = µ(xi)

and V(Y) = µ(xi)[1 + αµ(xi)]. The NB regression model reduces to the Poisson regression model
when the dispersion parameter α = r goes to zero ([24]).
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Maximum Likelihood Estimation

Assume we observe yi(i = 1, 2, . . . , n), count response variables, each with predictor variables
xi1, xi2, . . . , xi,k−1. The likelihood function for the Poisson regression model is obtained by multiplying
the respective probabilities in (3) to obtain:

L(β0, β1, . . . , βk−1) =
n∏

i=1

[µ(xi)]
yie−µ(xi)

yi!
(6)

Taking the log of (6) gives the log-likelihood function as:

log(L) = L(β0, β1, . . . , βk−1) =
n∑

i=1

{
yi log[µ(xi)] − µ(xi) − log(yi!)

}
(7)

Similarly, the log-likelihood function for NB regression model can also be estimated via maximum
likelihood. Cameron and Trivedi [24] gives the logarithm function as:

log(L) =
n∑

i=1


log[Γ(yi + α−1)] − log[Γ(α−1)] − log[Γ(yi + 1)]
−α−1 log(1 + αµi)−

yi log(1 + αµi) + yi log(α)
+yi log(µi)

 (8)

A common goodness-of-fit statistic for count regression models is the Pearson’s χ2 statistic
defined by:

χ2 =

n∑
i=1

(yi −
∧
µi)

2

v(
∧
µi)

(9)

where
∧

v(µi) is the variance function assessed at the estimated mean. The log-likelihood in (7) and
(8) can be used as goodness-of-fit statistic. However, the log-likelihood and the Pearson’s chi-square
displayed in Equation (9) do not take into account the number of estimated parameters in the model,
hence the use information criteria such as Akaike Information Criterion (AIC) become necessary.
From the NB regression model, the number of estimated parameters is given by p∗ = p + 1. The
extra 1 is from the dispersion parameter in NB regression model. In this study, we use the AIC as a
goodness-of -fit statistic, which take into consideration p∗, the number of parameters. Generally, the
higher the number of parameters, the greater the log-likelihood, while AIC penalizes for the number of
parameters and it is given by:

AIC = −2 log(L) + 2p∗ (10)

2.1.2. Bayesian Approach

Bayesian statistics to a large extent can be attributed to Reverend Thomas Bayes (1701–1761),
who developed Bayes’ theorem. Bayes’ theorem expresses the conditional probability, or posterior
probability, of an event A after B as observed in terms of the prior probability of A, prior probability of
B, and the conditional probability of B given A. The foundation for Bayesian inference is defined from
Bayes theorem and is given as follows:

Pr(A|B) =
Pr(B

∣∣∣A)Pr (A)

Pr (B)
(11)
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By substituting B with observations y, A with parameter set or space Θ and probabilities Pr with
densities p, Equation (11) becomes:

p(Θ| y) =
p(y

∣∣∣Θ)p (Θ)

p(y)
(12)

(i.e.) p(Θ|data) =
p(data

∣∣∣Θ)p(Θ)∫
p(data|Θ)p(Θ)dΘ

where p(y) is the marginal likelihood of y, p(Θ) is the set of prior distributions of parameter set Θ
before y is observed, p(y

∣∣∣Θ) is the likelihood of y under a model, and p(Θ
∣∣∣y) is the joint posterior

distribution of the parameter set or space Θ that expresses the uncertainty about j parameter set Θ after
taking the prior and the data into account. Recall that Θ = θ1, . . . , θ j with denominator expressed as:

p(y) =
∫

p(y|Θ)p(Θ)dΘ, (13)

where defines the marginal likelihood of y or the prior predictive of y, and may be set into an
unidentified constant c resulting in the following:

p(Θ| y) =
p(y

∣∣∣Θ)p(Θ)

c
. (14)

The presence of the marginal distribution likelihood of y normalises the joint posterior distribution
p(Θ| y), ensuring it is a proper distribution and integrates to one. Eliminating the constant c from
Equation (13) will result in some changes in the relationship from the use of the equal sign to the
constant of proportionality, resulting in the following:

p(Θ| y) ∝ p(y
∣∣∣Θ)p(Θ) (15)

2.1.3. Computation of NB Using Bayesian Estimation

Through the Markov chain Monte Carlo (MCMC), we use a Gibbs sampler for the NB regression
model. This model is derived from the Poisson regression model to account for over-dispersion,
which usually happens or occurs in count data. Suppose the response are independent, then:

Yi ∼ Negbin(λi, r)

where Yi is the response variable for i = 1, 2, . . . , n; r is the over-dispersion parameter. The expectation
is modelled as:

log(λi) = XT
i

→

β , (16)

which implies that:

λi = exp(XT
i

→

β ) (17)

where X is the matrix of regressors and
→

β is the parameter vector.
The conditional likelihood of Yi given wi is defined as:

L(Yi|r,
→

β , wi) ∝ exp
{

kiXT
i ,
→

β − (XT
i

→

β )
2
/2

}
∝ exp

−wi
2

(
yi− − r

2wi
−XT

i

→

β

)2
 (18)
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where ki =
yi−r

2 . Now, exploiting property 1 of the poly-Gamma (PG) distribution, Equation (18) can
be written as:

L(Yi|r,
→

β , wi) = ekiηi

∞∫
0

e−ψi
η2

i
2 p(ψi|r, Yi0)dψi (19)

where ηi = XT
i

→

β . Supposeψi is distributed according to poly-Gamma (PG) ~ (Yi + r, ηi), then following

Scott and Pillow (2012), the conditional probability for
→

β is given by:

p(
→

β |
→

Y∗, r,
→
w
→

ψ) ∝ π(
→

β ) exp
[
−1
2

(
zi −X∗

→

β
)T(

z−X∗
→

β
)
Ω

]
(20)

where
→

Y∗ is equal to the n ∗ 1 subvector of
→

Y corresponding to wi; n∗ =
n∑

i=1
wi is the number of

individuals in risk class;
→

ψ is a vector of length n∗with elements zi =
yi−r
2ψi

; Ωdiag(ψ1, . . . ,ψn) = n ∗ n

is the precision matrix and X∗ = N ∗ ×P matrix. From Equation (20), it is clear that
→
z is normally

distributed with mean
→
η = X ∗

→

β and diagonal covariance matrix Ω−1. Therefore, it is reasonable to

assume a conditional Gaussian prior for
→

β denoted by:

Np

→β0,
∑

0


The conjugate prior full conditional distribution for

→

β given
→
z and Ω follows Np

(
→
µ ,

∑)
,

where
∑
=

(
−1∑
0
+X ∗T ΩX∗

)−1

and
→
µ =

∑(
−1∑
0
+X ∗T Ω

→
z
)
. Therefore given the current values for

→

β ,
→
w and r, the Gibbs sampler is given as follows:

• for wi, draw ψi from its PG ~(Yi + r, ηi) distribution

• for wi, define zi =
yi−r
2ψi

,

• update
→

β from N
(
→
µ ,

∑)
distribution,

• update r using a random-walk Metropolis-Hastings algorithm.

3. Results

This section presents and discusses the results for fitting count regression models, namely;
the Poisson regression model and NB model estimated with maximum likelihood, and Bayesian
estimation methods. The variables used in fitting both models are described in Table 1, with descriptive
statistics presented in Table 2. The distribution of malaria incidence in Limpopo province is presented
in Figure 1. The posterior results for the Bayesian method are presented in Appendix A.
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Table 1. Variable description.

Variable Description Data Set
Code

Malaria The number of malaria cases. mal
Population The population size. pop

Districts The five districts of Limpopo province: Capricorn, Mopani,
Sekhukhune, Vhembe and Waterberg. dist

Years The data for which the data were collected: 2014 and 2015. dyear
Elevation The elevation above sea level measured in meters. ele
Rainfall The rainfall measured in millimetres. rain

NDVI
The difference between near-infrared reflected by the

vegetation and red light which is absorbed by the vegetation,
it ranges from −1 to 1.

ndvi

Temperature during the day The maximum temperature in degrees Celsius. td
Temperature during the night Minimum temperature in degrees Celsius. tn

Table 2. Descriptive Statistics.

Statistics Ele Tn Td NDVI Rain Mal

Min 19.690 4.920 20.990 0.210 0.000 0.000
Max 822.241 25.600 40.240 0.660 159.200 4820.00

Mean 325.270 16.250 31.660 0.410 32.591 23.95
Median 242.200 16.710 32.441 0.400 23.910 3.000

Std. Error 216.090 4.450 4.151 0.110 38.420 61.830
1st Quartile 182.431 13.170 28.720 0.320 0.520 1.000
3rd Quartile 491.181 19.550 34.640 0.490 47.021 12.250

The histogram displayed in Figure 1 shows that the distribution of malaria incidence is skewed
to the right. This implies that it takes a lopsided mound shape with its tail going off to the right.
The shape of this histogram is similar to the shape of a Poisson distribution. Hence we model the data
using Poisson regression model.
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According to Figure 2, the transmission rate of malaria was high in 2014 than in 2015. This probably
may be due to various effects of environmental factors as they may differ in each year and it may also
indicate the success of malaria control, prevention and elimination methods that are used currently in
Limpopo Province.
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Figure 2. The distribution of malaria incidence in 2014 and 2015.

As shown in Figure 3, Vhembe district is depicted to have the highest rate of malaria incidence,
followed by Mopani district as compared to all the other districts. Capricorn district has the lowest
rate of malaria incidence. The high rate of malaria incidence in Mopani and Vhembe districts could be
attributed to the high temperatures in the two districts.
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Figure 3. The distribution of malaria incidence across the districts of Limpopo province.

The p-values for all the covariates as displayed in Table 3 are less than the level of significance,
0.05. This suggests evidence against the null hypothesis of no relationship between the covariates
and malaria incidence. Rainfall and elevation estimate values are negative, suggesting that they have
a negative relationship with malaria incidence. Table 3 also depicts a positive relationship between
temperature, NDVI and malaria incidence. When the ratio of the deviance statistic and its degrees
of freedom is significantly larger than 1, then there is evidence of lack of fit in the model developed.
The ratio of the deviance statistic and its degrees of freedom is 12.753, which is significantly larger than
1. Hence there is evidence of lack of fit for the model presented in Table 3.
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Table 3. Parameter estimates for Poisson regression model under classical approach encompassing all
the variables.

Coefficient Estimate Std. Error 95% Confidence Intervals

Intercept −17.850 0.288 [−18.414, −17.288] **
Rainfall −0.008 0.000 [−0.009, −0.007] **
Province (Ref: Capricorn) - - -
Mopane 2.213 0.089 [2.048, 2.385] **
Sekhukhune 0.537 0.122 [0.297, 0.777] **
Vhembe 2.458 0.084 [2.297, 2.627] **
Waterberg 0.489 0.111 [0.272, 0.708] **
Year (Ref: 2014) - - -
2015 −0.170 0.029 [−0.227, −0.114] **
Temperature during the night 0.276 0.007 [0.263, 0.290] **
Temperature during the day 0.064 0.008 [0.049, 0.080] **
Elevation −0.001 0.000 [−0.001, −0.001] **
Normalized Difference
Vegetation Index 0.521 0.228 [0.074, 0.969] **

Deviance DF
Null Deviance 18541.3 - 287
Residual Deviance 3532.6 - 277
Dispersion parameter (α/r) 12.753 - -
AIC 4421.4 - -

NB: ** Indicates the significance of the variable within [95%] confidence interval for the five districts in Limpopo
province where the study was conducted.

Detection of Over-Dispersion

The Pearson’s chi-square is considered to be robust in detecting over-dispersion in Poisson models.
If the ratio of the residual deviance and the degree of freedom is significantly larger than 1, then the
probability that the developed model is over-dispersed is high. Based on the Poisson model, the ratio
of the residual deviance and the degrees of freedom is 12.753. This implies that the probability that the
selected Poisson model is over-dispersed is very high. To validate that the Poisson model selected may
be over-dispersed, we check if the response variable satisfies the Poisson assumption of an equality
between the mean and the variance. Table 2 shows that the mean for the response variable is 23.95
and the variance is found to be 3822.5. Therefore, the condition of equal mean and variance for a
Poisson distribution is violated. We can then conclude that the Poisson model presented by Table 3
is over-dispersed.

Table 4 presents the NB model developed to correct the overdispersed Poisson model presented
by Table 3. According to Table 4, the 95% confidence interval for the covariate rain does not include 0,
which implies that it is significant at 5% level of significance. Hence, there is a relationship between
rainfall and malaria incidence. The coefficient estimate of rain is negative. This implies that the
relationship between rainfall and malaria incidence is negative. That is, malaria transmission rate
increases with a decreasing amount of rainfall. The p-values for Mopani, Vhembe and Waterberg are
very close to 0. These p-values implies that there is a certain pattern of malaria transmission between
these districts and Capricorn district (the reference category). The coefficient estimates for Mopani,
Vhembe and Waterberg are positive. These estimates entail that if malaria incidence increases in each
of these districts, then it also increases in Capricorn district (the reference category). We are using the
odds ratio, eβ to find the precise pattern of malaria incidence amongst the districts. The odds ratio in
this case is the ratio of the odds of the reference category (Capricorn) and each of the districts Mopani,
Vhembe and Waterberg. If there is an increase in malaria incidence, the increase is eβ times more
in Mopani, Vhembe and Waterberg than in Capricorn district. The Greek letter β in the odds ratio
eβ represents the regression coefficient. Table 4 provides evidence that malaria incidence increases
by e2.215

≈ 9 times in Mopani, e2.848
≈ 17 times in Vhembe and e0.8711

≈ 2 times in Waterberg than in
Capricorn district. A unit increase in temperature during the night increases the incidence of malaria
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by e0.2537
≈ 1 unit. There is no evidence of an existing association between malaria incidence and the

covariates, temperature during the day, elevation and NDVI according to Table 4. The ratio of the
deviance statistic and its degrees of freedom is 1.148, which is significantly close to 1 compared to the
ratio of the deviance statistic and its degrees of freedom for the Poisson model presented in Table 3.
Hence there is an evidence of good fit in the model presented in Table 4.

Table 4. Parameter estimates for negative binomial (NB) model under classical approach encompassing
all the variables.

Coefficient Estimate Std. Error 95% Confidence Intervals

Intercept −1.3300 1.0380 [−17.4827, –13.1860] **
Rainfall −0.0051 0.0020 [−0.0095, −0.0006] **
Province (Ref: Capricorn) - - -
Mopani 2.2150 0.2086 [1.7890, 2.6425] **
Sekhukhune 0.4149 0.2577 [−0.0966, 0.9249]
Vhembe 2.8480 0.2113 [2.4123, 3.2851] **
Waterberg 0.8711 0.2291 [0.3950, 1.3484] **
Year (Ref: 2014) - - -
2015 0.2056 0.1251 [−0.0398, 0.4521]
Temperature during the night 0.2537 0.0325 [0.1814, 0.3264] **
Temperature during the day 0.0000 0.0328 [−0.0705, 0.0704]
Elevation −0.0005 0.0005 [−0.0014, 0.0005]
Normalized Vegetation Index 0.4769 1.0140 [−2.5551, 1.6125]
Deviance DF
Null Deviance 1232.31 - 287
Residual Deviance 317.87 - 277
Dispersion parameter (α/r) 1.148 - -
AIC 1680.9 - -

NB: ** Indicates the significance of the variable within [95%] confidence interval for the five districts in Limpopo
Province where the study was conducted.

All the 95% credible intervals presented in Table 5 do not include zero, which indicates that all the
variables are significant, except for Waterberg. However, the variable of NDVI is extremely significant
while other parameters are moderately significant. This implies that malaria incidence is affected
more by NDVI than other environmental factors. Both 95% highest posterior density (HPD) credible
intervals for the regression coefficients of the covariates rainfall and elevation are negative.

Table 5. Parameter estimates for negative binomial (NB) model with Bayesian approach encompassing
all the variables.

Coefficient Estimate Naive Std. Error 95% HPD Credible Intervals

Intercept −8.179 0.005 [−8.830, −7.516] **
Rainfall −0.001 0.000 [−0.003, −0.000] **
Province (Ref: Capricorn) - - -
Mopani 2.169 0.001 [1.994, 2.329] **
Sekhukhune 0.335 0.002 [0.090, 0.562] **
Vhembe 2.817 0.001 [2.664, 2.992] **
Waterberg −0.219 0.002 [−0.454, −0.006]
Year (Ref: 2014) - - -
2015 0.086 0.001 [0.013, 0.157] **
Temperature during the night 0.111 0.000 [0.093, 0.129] **
Temperature during the day 0.165 0.000 [0.146, 0.184] **
Elevation −0.004 0.000 [−0.001, −0.000] **
Normalized Vegetation Index 4.911 0.004 [4.343, 5.457] **

NB: ** Indicates the significance of the variable within [95%] HPD credible interval for the five districts in Limpopo
province where the study was conducted.
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This implies that there is a very high probability that the estimates of these regression coefficients
are negative. Therefore, we can conclude that the relationship between malaria incidence and each
of the covariates rain and elevation is negative. That is, an increase in rainfall leads to a decrease in
malaria incidence and an increase in elevation above sea level leads to a decrease in malaria incidence.

All the 95% HPD credible intervals for temperature during the night, temperature during the day
and NDVI are positive, which indicate that there is a very high probability that the estimates of these
regression coefficients are positive. Therefore, we can conclude that the relationship between each of
these covariates and malaria incidence is positive. That is, an increase in temperature during the night,
temperature during the day and NDVI results in an increase in malaria incidence.

The 95% HPD credible intervals for Mopani, Sekhukhune and Vhembe districts are positive,
which indicate that as malaria incidence increase in each of these districts, it also increases in Capricorn
district (reference variable). However, both the 95% HPD credible intervals for Waterberg are negative.
This implies that if malaria incidence increases in Capricorn district, then it decreases in Waterberg
district. We can then conclude, according to the MCMC estimation methods applied to obtain the
model in Table 5 that there is a relationship between malaria incidence and each of the environmental
factors included in this study.

4. Discussion

Both the Bayesian and classical methods revealed a positive relationship between malaria incidence
and temperature during the night. That is, an increase in temperature during the night results in
an increase in malaria incidence. Therefore, we can conclude that the risk of malaria transmission
is high during warm nights, which are usually the nights of summer seasons. The Bayesian and
classical frameworks produced similar results about the relationship between malaria incidence and
rainfall, which was found to be negative. Therefore, we can conclude that an increase in the amount
of rainfall results in a decrease in malaria incidence. The classical framework does not provide any
evidence of an existing relationship between malaria incidence and either elevation, temperature
during the day or NDVI. However, the Bayesian framework revealed that an increase in NDVI and
temperature during the day lead to increased malaria incidence while an increase in elevation above
sea level leads to decreased malaria incidence. Malaria incidence increases in Mopani and/or Vhembe
districts, then it also increases in Capricorn district. The classical framework revealed no pattern of
malaria incidence between Capricorn and Sekhukhune districts while the Bayesian framework suggests
that if malaria incidence increases in Sekhukhune district, then it also increases in Capricorn district.
The Bayesian framework also suggests that if malaria incidence decreases in Waterberg (though not
significant) district then it increases in Capricorn district while in contrast, the classical framework
suggest that if malaria incidence increases in Waterberg district then it also increases in Capricorn
district. Both methods affirm that Vhembe district is more susceptible to malaria incidence, followed
by Mopani district, confirming the results of Abiodun et al. [7,8]. The classical method did not identify
any particular trend of malaria incidence over the period of study. However, the Bayesian method
identified an upward trend of malaria incidence over the period of the study. Again, the MLE method
generated more errors and wider intervals while the Bayesian estimation method generated fewer
errors and narrower intervals. Therefore, we can conclude that the Bayesian method of estimation
outperforms the classical method of estimation.

5. Conclusions

This study was limited to one South African province, Limpopo. However, there is another
province, Mpumalanga which is also known to account for high malaria cases in South Africa.
This study only made use of non-informative priors. However, future research may consider Bayesian
estimation under dissimilar prior distributions such as improper, conjugate and Jeffrey’s priors in the
model fitting process. The spatial dimension in the context of Bayesian estimation may be considered
in analysing the prevalence of diseases such as malaria in future research.
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Based on the findings from this study, we recommend that the Department of Health and Malaria
Control Programme of South Africa allocate more resources for malaria prevention, control and
elimination to Vhembe and Mopani districts in Limpopo Province. We also recommend that the
government provide educational seminars to educate the South African communities on how to
prevent malaria transmission, especially during the warm summer nights.
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