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Abstract: High air pollutant emissions in China have become serious environmental issues threatening
public health. While spatial heterogeneity plays an important role in environmental regulation
in China, it is necessary to analyze the spatial heterogeneity influences of air pollution control
policies and informal environmental regulation on air pollutant emissions in China. Based on the
quantification of air pollution control policies, this paper incorporates the central government’s policy
formulation and local government’s policy implementation into the intensity of air pollution control
policy. This paper uses the panel data of China’s 30 provinces to examine the spatial impact of air
pollution control policy and informal environmental regulation on air pollutant emissions. The results
show that (a) air pollutant emissions represented by soot and dust emission intensity has a significant
positive spatial spillover effect; (b) air pollution control policy and informal environmental regulation
play significant inhibitory roles in air pollutant emissions; (c) informal environmental regulation has
a negative moderating effect on the negative relationship between air pollution control policy and air
pollutant emissions. Other implications for environmental management have also been discussed.

Keywords: air pollution control policy; informal environmental regulation; spatial econometric
model; policy quantification; China

1. Introduction

Since the reform and opening-up in 1978, China has experienced significant economic growth,
rapid industrialization, and urbanization. Significant achievements in economic development have
made China the single largest contributor to global sulfur dioxide (SO2) emissions and have generated
significant amounts of soot and dust (SD) emissions. China’s air pollutant emissions are the worst in
the world if it is measured by the environmental concentration of SO2 and particulate matter (PM) [1].
High SO2 emission levels have led to the formation of acid rain, which has caused considerable damage
to the ecosystem. High SD emissions are associated with a significant increase in PM2.5 and increase
the risk of cardiovascular and cerebrovascular disease [2]. In the face of air pollutant emissions and its
hazards, a real problem that needs to be solved is as follows: how can China’s various environmental
regulations effectively control air pollutant emissions?

With the implementation of the sustainable development strategy, China has gradually
strengthened pollution control and environmental protection. To date, China has established a
multi-participatory air pollution governance system, including air pollution control policy and
informal environmental regulation. Air pollution control policies are primarily designed by the central
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government but are implemented by local governments [3]. In addition, as Chinese citizens’ awareness
of environmental protection has increased, public actors such as ordinary citizens and news media
have also participated in the process of environmental governance, forming informal environmental
regulation [4].

Spatial heterogeneity plays an important role in environmental regulation in China. It has been
noted that China’s air pollution patterns have obvious spatial characteristics [5]. To date, most empirical
studies have analyzed the impact of air pollution control policy on pollution [6], and the impact of
informal environmental regulation on pollution [7]. However, more empirical evidence is needed to
further support the spatial dependence of China’s air pollutant emissions. Most studies have focused
on the implementation of air pollution control policy, ignoring the policy formulation factors of air
pollution control policy in China [3]. Few studies investigate the possible moderating effect of informal
environmental regulation on the relationship between air pollution control policy and air pollutant
emissions [6,7].

The main contributions of this paper include the following: (a) we characterize the formulation
intensity of air pollution control policy based on the content of policy literature. Policy formulation
factors of the central government and the policy implementation factors of local governments are
included in the process of constructing the intensity of air pollution control policy. (b) We reflect the
spatial characteristics of air pollutant emissions in details in various regions of China. Using spatial
econometric models can avoid estimation bias due to ignoring the spatial correlation of provincial
air pollutant emissions. (c) Considering the spatial dependence of provincial air pollutant emissions,
we study the impact of air pollution control policy on air pollutant emissions in China’s context and
investigate the moderating effect of informal environmental regulation on the relationship between air
pollution control policy and air pollutant emissions systematically. The results provide new insights
into the control of atmospheric pollutant emissions in various provinces in China.

The rest of this paper is organized as follows. Section 2 provides a literature review. Section 3
introduces research design. Section 4 analyzes the variables and data. Section 5 gives the estimation
results of the empirical model and gives the results of the robustness test. Section 6 summarizes the
main findings and proposes policy recommendations.

2. Literature Review

Collaborative Governance Regime emphasizes the design and implementation of environmental
regulation by formal decision-makers and informal public actors [8]. According to the existing
literature, air pollution control is contributed by air pollution control policy and informal environmental
regulation [4,6,7,9,10]. This section reviews the studies analyzing the impacts of air pollution control
policy, and informal environmental regulation on air pollutant emissions.

2.1. Air Pollution Control Policy

Air pollution control policy refers to policy instruments such as command-and-control instruments
(such as emission standards) and market-oriented instruments (such as environmental taxes)
implemented by public authorities to control atmospheric pollutant emissions [4]. Due to the
severe health damage caused by air pollution, air pollution control policy was first adopted by
developed countries since the 1950s, such as the UK Clean Air Act of 1956 and the Clean Air Act in
the US, originally passed in 1963 and amended in 1970, 1977, and 1990 [11]. With the acceleration of
industrialization, air pollution control policies have been applied in many developing countries [12]
such as China, India, and Mexico.

Most studies have found a positive correlation between air pollution control policy and
environmental performance. Some studies explored the positive effects of specific policies on reducing
air pollutant emissions from the field of fuel policy, vehicle restriction policy, and corporate emissions
policy. For example, in terms of fuel policy, Auffhammer and Kellogg [9] used a Difference-in-Differences
model based on panel data to conclude that due to clear regulatory objectives, the California gasoline
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content standard significantly decreased ozone concentrations by 7% and 10% in both urban and
suburban areas. In terms of traffic control, Viard and Fu [10] found that Beijing’s vehicle restriction
policy improved air quality to some extent through a piecewise regression model, and air pollution fell
21% during one-day-per-week restrictions. In terms of corporate emissions, using industry-level data
on bilateral trade between China and 14 EU countries, Marconi [6] found that environmental regulation
policies have significantly reduced corporate emissions. Other studies discussed air pollution control
effects from specific policy perspectives such as economic regulation policies [13], automotive smoke
inspection policies [14], and sulfur control regulation [15]. There are also studies raising the opposite
views. For example, by investigating SO2 emissions from the US coal industry, Schlottmann [16]
concluded that there is no link between air pollution control policy and atmospheric pollutant emissions.
Blackman and Kildegaard [17] studied the inspections conducted by an environmental agency at a
Mexican tannery, and showed that pollution reduction has nothing to do with the implementation of
clean technology.

In the literature, some indicators have been used to measure the intensity of air pollution control
policy, such as sewage charges [18] and input cost of pollution reduction [19]. However, these studies
focus on proxy variables of air pollution control policy in different regions, which may lead to different
conclusions in the same country or region using different proxy variable indicators and affect the
accuracy of policy effect evaluation. Moreover, existing research has paid more attention to the factors
of policy implementation, and less attention has been paid to the formulation of air pollution control
policy based on the content of the policy text. Based on the existing policy implementation level,
construction of the formulation intensity of air pollution control policy using quantitative indicators
at the policy formulation level can reflect the efforts of different levels of government to control air
pollutant emissions truly [20].

2.2. Informal Environmental Regulation

Informal environmental regulation refers to actions taken by citizens and relevant citizen groups to
change the behavior of polluting companies [21,22]. Normally, these actions include citizen resistance to
company products, environmental requirements from citizens to the government, and media coverage
of environmental cases. Informal environmental regulation is often seen as a powerful complement to
air pollution control policy. Regarding the impact of informal environmental regulation on pollution
control, the existing literature has two opposing views. Some studies demonstrated the positive
role of informal environmental regulation in reducing pollutant emissions from the perspective of
media environmental supervision in India [7], or environmental Non-Governmental Organizations
(NGOs) in China [4]. Contrary to the above findings, some scholars found no evidence to prove that
there is an important relationship between pollutant emissions and China’s informal environmental
regulation [23]. Therefore, facing these disputes, it is necessary to further study the role of China’s
informal environmental regulation in reducing air pollutant emissions.

Informal environmental regulation may play a moderating role in the relationship between air
pollution control policy and air pollutant emissions. When air pollution control policy is weak or
absent, informal environmental regulation not only complements air pollution control policy, but also
provides feedback to improve the design and implementation of air pollution control policy [24].
As companies may be concerned that their products are resisted, and local governments may be
concerned about media disclosure of environmental issues, they must comply with environmental
standards set by local communities or environmental organizations [21]. Moreover, in areas where
civil society is underdeveloped, the public may also exert pressure on local governments to implement
air pollution control policy [25]. Public participation in environmental monitoring can reduce the
likelihood of non-compliance incidents and increase the efficiency of environmental regulation [26].
Some scholars demonstrated that corporate environmental performance is influenced by both formal
and informal regulation and that formal regulation is largely influenced by informal regulation [22].
Informal environmental regulation may take effect when there is a gap between air pollution control
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policy and local environmental preference, or when informal environmental regulation can impose
politics, society, or economy pressure.

2.3. Comments

The spatial relationship is a known phenomenon in ecological research and refers to the relationship
between certain variables observed in different regions [5]. As environmental pollution has spatial
spillover effects, air pollution in one region is not independent of other regions. In addition, China’s
various regions are closely linked, and the environmental pollution caused by economic development
and industrial layout is also widely connected. The closer the provinces are, the closer these connections
are. If ignoring the effects of the possible spatial dependence, the model estimates would produce
significant biases or false verification. Moreover, these studies considering spatial characteristics ignore
the moderating effect of informal environmental regulation on the relationship between air pollution
control policy and air pollutant emissions, which is not conducive to exploring the heterogeneity of the
spatial impact of air pollution control policy on air pollutant emissions. Therefore, it is of great practical
significance to explore the spatial impact of air pollution control policy and informal environmental
regulation on air pollutant emissions, especially the moderating effect that informal environmental
regulation may play in the relationship between air pollution control policy and air pollutant emissions.

3. Research Design

Collaborative Governance Regime emphasizes the important roles of formal decision-makers and
informal public actors in the process of environmental regulation [8]. The current Chinese air pollution
governance system includes air pollution control policy and informal environmental regulation
implemented on polluting industries or behaviors by various participants [7]. Governments at all
levels, including the central government and local authorities, are primarily responsible for the design
and implementation of air pollution control policy [3]. Public actors such as public citizens and news
media promote air pollution governance through informal environmental regulation [4]. The informal
environmental regulation driven by public actors greatly complements air pollution control policy
driven by governments at all levels in the aspects of controlling air pollutant emissions [7]. Figure 1
shows the main conceptual relationship among air pollution control policy, informal environmental
regulation, and air pollutant emissions according to the existing literature [3,4,7,8].
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3.1. Non-Spatial Econometric Model

The IPAT equation was first proposed by Ehrlich and Holdren [27], which was a classic equation
for assessing the effect of human activities on environmental change. After that, Dietz and Rosa [28]
put forward STIRPAT model by putting IPAT into a stochastic model, which can statistically stimulate
the non-proportionate impacts of different variables on environmental change. The STIRPAT model is
the basic theoretical framework for the study of environmental pollution influencing factors [29]. It is
in the form of Iit = aPb

itA
c
itT

d
iteit, where I, P, A, and T represent environmental impact, population size,

per capita wealth, and science and technology (S&T), respectively. The major advantage of the STIRPAT
model is that it allows coefficients to be estimated as parameters, and appropriate decomposition and
improvement of various impact factors.
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The socioecological theory put forward the requirements that the relationship hypotheses between
anthropogenic factors and environmental impacts should not simply be assumed within the model
structure, which means it should be testable by empirical evidence [30]. Therefore, we use the modified
STIRPAT model considering air pollution control policy and informal environmental regulation as
the explanatory variables to illustrate the conceptual relationship in Figure 1. We explore the impact
of air pollution control policy and informal environmental regulation on air pollutant emissions in
China by applying the modified STIRPAT model, without considering the spatial correlation between
adjacent provinces.

ln Yit = αi + β1 ln PSPEi,t + β2 ln PPTCi,t + β3 ln PSPEi,t × ln PPTCi,t

+β4 ln SEEi,t + β5 ln PSPEi,t × ln SEEi,t +
h∑

k=1
γk ln Cik,t + εit

(1)

where all variables in Equation (1) are natural logarithms. i (i = 1, . . . , N) represents the province and t
(t = 1, . . . , T) represents time; γ indicates the total number of control variables. Yit is the dependent
variable, representing the air pollutant emissions expressed by the pollution intensity of SO2 and SD.
α indicates the constant term. PSPE, PPTC, and SEE indicate the intensity of air pollution control
policies, the public environmental participation, and the media environmental monitoring, respectively.
Cik,t is a collection of the control variables mainly expressed from STIRPAT model, including economic
development [31], industrial structure [5], S&T expenditure [32], energy consumption [33], population
density [31], and the degree of opening-up reflected by foreign direct investment (FDI) [34]. The details
of the variables can be seen from Section 4 below. εit is a random disturbance term, which indicates the
unobserved error.

3.2. Spatial Estimation Method

Pollution in one place may be affected by neighboring areas and lead to spatial autocorrelation of
space and time, resulting in the invalid ordinary least squares (OLS) estimates. Before establishing
a spatial econometric model, we first test the existence and forms of spatial effects. In this paper,
two Lagrange multiplier (LM) tests and other robust LM tests based on residuals obtained from
panel regression are applied to perform non-spatial OLS model regression and diagnose error or lag
space dependence.

We examine the spatial impact of air pollution control policy and informal environmental
regulation on air pollutant emissions in China by considering spatial correlation. According to [35],
three econometric models can be used to test the spatial correlation. The spatial autoregressive (SAR)
model is the first model. The dependent variable’s value of region i is influenced by the adjacent
dependent variable. In other words, air pollutant emissions in the region of i is affected by air pollutant
emissions from neighboring regions. The SAR model is defined as:

ln Yit = ρ
n∑

j=1

Wi j ln Y jt +

f∑
k=1

βk ln Xik,t + µit + λit + εit (2)

where f indicates the total number of independent variables and control variables. Xik,t is a collection
of the independent variables and control variables. ρ is the spatial parameter that reflects the spatial
correlation of the sample observations. Therefore, it assesses the impact of atmospheric pollution

emissions on local air pollutant emissions in adjacent areas.
N∑

j=1
Wi j is a spatial weight matrix based on

geographic distance; Wi j is one element in the (N × N) spatial weight matrix; N represents the number
of provinces. µit indicates the time fixed effect of the spatial unit. λit indicates a spatial fixed effect.



Int. J. Environ. Res. Public Health 2020, 17, 4857 6 of 22

Spatial error model (SEM) is the second model. It assumes that the spatial dependence is due to
the error term from the dependent variable of the adjacent region. SEM is defined as:

ln Yit = α+

f∑
k=1

βk ln Xik,t + µit + λit + ϕit (3)

ϕit = δ
n∑

j=1

Wi jϕ jt + εit (4)

where ϕit is the spatial dependence error term. δ is a spatial autoregressive coefficient that indicates the
effect of residuals in adjacent regions on the residuals of local regions. εit is the residual of independent
and identically distributed (i.i.d).

Spatial Durbin model (SDM) is the third model, which assumes that the dependent variable
in region i is dependent on independent variables and dependent variables spatially in some other
adjacent regions. SDM is defined as:

ln Yit = ρ
n∑

j=1

Wi j ln Y jt +

f∑
k=1

βk ln Xik,t +

f∑
k=1

θk

n∑
j=1

Wi j ln Xi jk,t + µit + λit + εit (5)

whereθk means the spatial autocorrelation coefficient of the independent variables and control variables.
Besides, independent variables’ coefficients from SDM regression results do not express the

marginal effects accurately [36]. Marginal effects, including direct effect and indirect effect, provide
some key information for explaining the model. The direct effect indicates the influence of the local
independent variables on the local dependent variables, while the indirect effect indicates the potential
influence of the local independent variables on all other regional dependent variables through spatial
interaction. We convert SDM into the form as follows [35]:

Yit = (I − ρW)−1(Xitβ+ WXitθ+ µit + λit + εit) (6)

where I means the (N × 1) identity matrix, and N is the number of cross sections (the number of sample
provinces).

The matrix of partial differential equations of the dependent variable Y to the k-th independent
variable X is expressed as:

[
∂y
∂Xik

· · ·
∂y
∂XNk

]
=


∂y1
∂Xik

· · ·
∂y1
∂XNk

...
...

...
∂yN
∂Xik

· · ·
∂yN
∂XNk

 = (I − ρW)−1


βk ω12θk · · · ω1Nθk

ω21θk βk · · · ω2Nθk
...

...
...

...
ωN1θk ωN2θk · · · βk

 (7)

In the right matrix of Equation (7), the elements in the diagonals refer to direct effects. The simple
average for all the diagonal elements means the direct effect on average. Off-diagonal elements indicate
the indirect effects. The simple average for all the off-diagonal elements means the indirect effect on
average. The sum of the direct effect and indirect effect means the total effect on average.

We estimate all the above spatial models by applying the maximum likelihood estimation method
for controlling the simultaneity caused by the introduction of equal space-weighted variables into the
equation proposed by [35]. Spatial testing is performed according to the LM test method. If the LM-lag
or LM-err test results are significant, the model will be estimated using SAR model or SEM spatial
form. If both test results are significant, SDM should be used. We apply the spatial Hausman tests for
testing whether random effects or fixed effects should be used in the estimations. In the condition of
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the fixed effect, we test whether time or spatial fixed effects should be included in the model by using
the likelihood ratio (LR) test.

4. Variables and Data

4.1. Air Pollutant Emissions

There are no uniform indicators for comprehensively and systematically measuring the overall
level of air pollutant emissions. Studies have generally used specific pollutant emission indicators to
characterize air pollution [31,37]. The emission intensity of air pollution, defined as the logarithm of
air pollutant emissions of a province in its unit geographical area, is used to represent the pollution
intensity of a specific province. This study uses two indicators of air pollutant emissions, (a) tons
of SO2 emissions per square kilometer and (b) tons of SD emissions per square kilometer, because
they better reflect the effects of rapid industrialization and urbanization on air pollutant emissions
in China over the past 20 years [38]. SO2 is mainly derived from mining as well as hard coal, lignite,
and petroleum used in smelting activities. In contrast, SD comes from a relatively diverse industry.

4.2. Air Pollution Control Policy

Air pollution control policy involves both policy formulation and policy implementation [39].
At the policy formulation level, air pollution control policy refers to various atmospheric environment
laws and regulations formulated and implemented by the government for environmental protection [40].
Air pollution control policy described in this paper refers specifically to all the policies and measures
promulgated by the central government related to the prevention and control of air pollution.

The intensity of policy content is an indicator that describes the stringency of air pollution
control policy content [20]. Albrizio et al. [39] used a new comprehensive index of Environmental
Policy Stringency (EPS) developed by the Organization for Economic Co-operation and Development
(OECD) in the study. The indicator ranges from 0 to 6, with higher numbers associated with more
stringent environmental policies. The novelty of this indicator is that it simplifies a complex set of
multidimensional strategies into comparable country-specific agents. Similar as the quantitative criteria
used for EPS, we assign the value of 5 to 1 to the contents of air pollution control policies in China to
describe the stringency of policy content, with recommendations of relevant legal experts and scholars
(shown in Table 1). The following steps were used in the scoring: (a) train the scoring personnel
and multi-group scoring by multiple groups of people to quantify the national environmental policy,
(b) divide 20 policy researchers into 10 groups to score the national environmental policy in accordance
with [20] scoring steps and requirements, and (c) use the homogeneity reliability method to test the
quantitative data of the policy content. According to the general requirements of the Cronbach α index,
when Cronbach α > 0.7, the reliability results are better. The homogeneity reliability analysis result is
Cronbach α = 0.914, which indicates that the credibility of the policy content quantitative data is higher.

Table 1. Quantitative standards for the stringency of air pollution control policy contents.

Scores Quantitative Criterion

5

Make sure the legal status or enforced requirements for reducing and preventing
the atmospheric pollutant emissions; formulate mandatory standards for

reducing the atmospheric pollutant emissions; forcibly require strictly
implementing environmental impact assessment, formulating prevention of

pollution program and implementing “three simultaneousness” system; enforce
to implement charging discharge fees system, establish new credit or price

punitive system for pollution projects, require eliminating equipment of high
pollution and high emissions; require formulating relevant policies to promote

air pollution prevention and control from the legislation; formulate enforced
methods to promote preventing air pollution, etc.

Detailed
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Table 1. Cont.

Scores Quantitative Criterion

3

Clearly require reducing atmospheric pollutant emissions, formulate specific
embodiment of air pollution prevention; support pollution prevention and

control from the aspects of administrative licensing, taxation, finance and fees,
and also formulate support program; forcibly require strictly implementing

environmental impact assessment, formulating prevention of pollution program
and implementing “three simultaneousness” system; have formulated pollutant
recycling program and program for eliminating equipment of high pollution and

high emissions; have formulated a clear air pollution prevention and control
goals, but not required to enforce, etc.

General

1 Only mention the above terms without formulated relevant measures and
methods. Mentioned

This paper constructs an indicator describing the stringency of air pollution control policy. psit
measures the stringency of the central government’s policy i to prevent air pollutant emissions in year
t. The stringency of the cumulative policies is given by the sum of all psit:

PSt =
N∑

i=1

psit (8)

Equation (8) reflects the degree to which the central government attaches importance to air
pollutant emissions. The greater the air pollution control policy, the greater the importance the central
government attaches to air pollutant emissions. Since all levels of government in China are governed
by one party, the central government’s air pollution control policy can play an important role in all
provinces across the country.

The above PS indicator is a measure of law and policy and does not reflect differences in policy
implementation across provinces [39]. In fact, in the process of air pollution control, the central
government is responsible for the formulation of air pollution control policy, and the implementation of
air pollution control policy needs to be carried out at the local level [4]. Therefore, we need to include
the implementation intensity of air pollution control policy at the level of provincial government.
Based on the work of [41,42], we choose the proportion of provincial government environmental
workers to the total number of people (PE), which reflects the resources used by provincial governments
to manage air pollutant emissions. This paper draws on this research idea to construct provincial-level
policy implementation data and uses traditional and commonly used total investment in environmental
governance for robustness verification. Finally, we construct air pollution control policy intensity index
by multiplying PS by PE as:

PSPEit = PSt × PEit (9)

4.3. Informal Environmental Regulation

Langpap and Shimshack [43] used citizen litigation records as proxy variables. Kathuria [7]
pointed out that informal regulation can be measured by the number of articles on pollution in
the domestic media. According to the informal approach to environmental regulation in China,
we use two variables to describe informal environmental regulation: (a) the number of letters that
the public complains about pollution and environmental related issues through official channels.
This measures the public environmental participation in informal environmental regulation [3].
(b) Regional emergency environmental event data to measure media environmental monitoring.
In general, areas with more environmental emergencies tend to attract more attention from the news
media [3].
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4.4. Control Variables

According to previous studies, economic development, industrial structure, S&T expenditure,
energy consumption, population density, and degree of opening-up may all affect air pollutant
emissions. Following existing research practices, we control them in the model to eliminate the effects
of other variables.

(1) Economic development. GDP is the representative of economic growth and has a direct impact on
air pollutant emissions [31]. Compared with underdeveloped areas, areas with higher economic
development usually have more resources and capabilities for environmental governance.
To control the impact of per capita economic scale on air pollutant emissions, we control the per
capita GDP (PGDP) in this paper.

(2) Industrial structure. The industrial layout and industrial development scale are closely related to
environmental quality. Different industrial structures correspond to different pollution discharge
structures [5]. We use the industrial structure (IND) variable, calculated as the proportion of the
secondary industry’s GDP to the total GDP, to control the impact of regional industrialization
development on air pollutant emissions.

(3) S&T expenditure. Previous studies have shown that S&T has a positive impact on environmental
protection [32]. Based on this, we construct the technology expenditure ratio (TEC) variable to
control the impact of S&T expenditure on air pollutant emissions by calculating the proportion of
provincial government S&T expenditure to the total fiscal expenditure of the year.

(4) Energy consumption. Energy consumption is a key factor affecting air pollutant emissions.
Al-Mulali and Ozturk [33] found that energy consumption and air pollution showed a positive
long-term two-way relationship. To control the impact of energy consumption on air pollutant
emissions, we use the per capita energy consumption (PEC) for control.

(5) Population density. Population size is one of the biggest drivers of atmospheric pollutant
emissions [31]. Considering the large differences in administrative divisions and population size
between provinces, the direct use of absolute population indicators is not scientifically comparable.
Therefore, we use population density (PPOP), the population per unit area, to characterize the
impact of population agglomeration on air pollutant emissions.

(6) The degree of opening-up. The degree of opening-up reflected by FDI is an essential factor
for China’s environmental pollution research. Existing research shows that the direction of
FDI impact on environmental quality is not certain. For example, Pollution Halo Hypothesis
suggests that FDI can improve environmental quality by introducing environmentally friendly
technologies and products [34], but Pollution Haven Hypothesis argues that FDI can deteriorate
its environmental quality by transferring highly polluting industries to host countries [44]. We use
the proportion of FDI in GDP to measure the degree of opening-up to examine its impact on
China’s air pollutant emissions.

Based on the data availability, this paper used the panel data of 30 provinces in China (excluding
Hong Kong, Macao, Taiwan, and Tibet) to empirically analyze the impact of air pollution control
policy and informal environmental regulation on air pollutant emissions in consideration of its spatial
characteristics. The air pollutant emissions data, provincial air pollution control policy implementation
data, and informal environmental regulation data were derived from China Environment Yearbooks.
Air pollution control policy formulation data was obtained through policy quantification discussed
above. Other variable data comes from China Statistical Yearbooks. The variables and data sources
involved in this paper are shown in Table 2.
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Table 2. Variable definition table.

Type Variable Variable Name Data Source

Air pollutant emissions

PSO2 SO2 emission intensity

PSD SD emission intensity

China Environment Yearbook
Website:

(https://navi.cnki.net/KNavi/
YearbookDetail?pcode=CYFD&

pykm=YHJSD&bh=)

Air pollution control
policy PSPE Air pollution control

policy intensity

Policy quantification [20] and China
Environment Yearbook

Website:
(https://navi.cnki.net/KNavi/

YearbookDetail?pcode=CYFD&
pykm=YHJSD&bh=)

Informal environmental
regulation

PPTC Public environmental
participation

China Environment Yearbook
Website:

(https://navi.cnki.net/KNavi/
YearbookDetail?pcode=CYFD&

pykm=YHJSD&bh=)SEE Media environmental
monitoring

Control variables

PGDP Per capita GDP

China Statistical Yearbook
Website:

(http://www.stats.gov.cn/tjsj/ndsj/)

IND Industrial structure

TEC Technology expenditure
ratio

PEC Per capita energy
consumption

PPOP Population density

FDI Degree of opening-up

4.5. Descriptive Statistics

We first used the Geographic Information System (GIS) to plot the spatial distribution of key
dependent variables in Figures 2 and 3. The spatial distribution of Chinese provinces is shown in
Figure A1. Figure 2 shows the spatial distribution of SO2 emission intensity in China’s 30 provinces
in 2006 and 2017, where the unit of SO2 emission intensity is thousand tons/ten thousand square
kilometers. In 2006, SO2 emission intensity showed the characteristics of uneven spatial distribution.
SO2 high-emission provinces were scattered in the following areas in China: Beijing, Tianjin, Hebei,
Liaoning, Shandong, Jiangsu, Shanghai, Zhejiang, and Guangdong in Eastern China, Henan and
Shanxi in Central China, and Chongqing, Guizhou, and Ningxia in Western China. In 2017, although
such pollutants were still concentrated in the above regions, the difference in SO2 emission intensity
between regions has been reduced and is more dispersed across the country. Figure 3 shows the spatial
distribution of SD emission intensity in China’s 30 provinces in 2006 and 2017, where the unit of SD
emission intensity is thousand tons/ten thousand square kilometers. In 2006, the high SD emission
intensity is concentrated in these contiguous regions of China: Tianjin, Hebei, Liaoning, Shandong,
Jiangsu, and Shanghai in Eastern China, and Henan and Shanxi in Central China. The map in 2017
highlights the concentration trend, making SD emission intensity more visible in these areas.

https://navi.cnki.net/KNavi/YearbookDetail?pcode=CYFD&pykm=YHJSD&bh=
https://navi.cnki.net/KNavi/YearbookDetail?pcode=CYFD&pykm=YHJSD&bh=
https://navi.cnki.net/KNavi/YearbookDetail?pcode=CYFD&pykm=YHJSD&bh=
https://navi.cnki.net/KNavi/YearbookDetail?pcode=CYFD&pykm=YHJSD&bh=
https://navi.cnki.net/KNavi/YearbookDetail?pcode=CYFD&pykm=YHJSD&bh=
https://navi.cnki.net/KNavi/YearbookDetail?pcode=CYFD&pykm=YHJSD&bh=
https://navi.cnki.net/KNavi/YearbookDetail?pcode=CYFD&pykm=YHJSD&bh=
https://navi.cnki.net/KNavi/YearbookDetail?pcode=CYFD&pykm=YHJSD&bh=
https://navi.cnki.net/KNavi/YearbookDetail?pcode=CYFD&pykm=YHJSD&bh=
http://www.stats.gov.cn/tjsj/ndsj/
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Table 3 lists the summary statistics and correlation matrices for all variables in the 30 provinces.
The correlation between the dependent variables and air pollution control policy is negative, while the
correlation between the dependent variables and informal environmental regulation is positive.
We need to carefully interpret these pairwise correlations because they present only contemporaneous
effects, and do not explain the moderating effects and spatial dependence contained in econometric
analysis. Unlike the spatial regression analysis in this paper, the correlation here does not tell the
directionality and time relationship between variables. The multi-collinearity is further examined by
examining the correlation coefficient values between variables and calculating the variance inflation
factor (VIF). All values are within an acceptable range with an average VIF of 2.80.
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Table 3. Descriptive statistics and correlation matrix.

Variables Mean SD 1 2 3 4 5 6 7 8 9 10 11

1.
PSO2# 3.458 1.139 1.000

2.
PSD# 3.074 1.005 0.925

*** 1.000

3.
PSPE# 12.620 0.505 −0.239

***
−0.123

** 1.000

4.
PPTC# 7.037 3.438 0.368

***
0.269

***
−0.579

*** 1.000

5.
SEE# 2.167 1.186 0.373

***
0.317
***

−0.205
***

0.123
** 1.000

6.
PGDP# 5.660 0.562 0.264

***
0.305

***
0.447
***

−0.280
***

0.161
*** 1.000

7. IND 0.464 0.081 0.177
***

0.172
*** −0.060 0.372

*** −0.055 −0.176
*** 1.000

8. TEC 0.019 0.013 0.486
***

0.468
***

−0.135
** 0.006 0.415

***
0.660

***
−0.284

*** 1.000

9.
PEC# 3.519 0.540 0.001 −0.006 0.471

***
−0.284

*** −0.044 0.584
*** 0.042 0.289

*** 1.000

10.
PPOP# 5.441 1.278 0.818

***
0.805

***
−0.147

*** 0.100 * 0.397
***

0.450
***

−0.159
***

0.668
***

−0.127
** 1.000

11.
FDI 0.387 0.520 0.200

***
0.195

***
−0.141

*** −0.024 0.244
***

0.279
***

−0.340
***

0.413
*** 0.033 0.406

*** 1.000

Note: # indicates the natural logarithm for variables. *, **, and *** indicate statistically significant at the levels of
10%, 5%, and 1%, respectively.

5. Results and Discussion

5.1. Spatial Regression Analysis

The regression results are reported from Tables 4–10 based on the panel data for 10 years. To identify
potential spatial effects, it is necessary to examine the existence and form of spatial dependence before
implementing spatial panel regression. We applied two LM tests and two robust LM tests to the
spatial lag dependent variable and the spatial error correlation. Two LM tests and their robust forms
are reported in models of Tables 4 and 5, respectively. In Table 4, two LM tests and their robust
forms are significant at the 5% significance level. This result does not reject the SEM or SAR model,
which confirms that SDM can more appropriately explain the result when SO2 emission intensity is the
dependent variable. In Table 5, the Robust LM Error is significant at the 1% significance level while the
Robust LM Lag does not pass the 10% significance test, so the SEM is more explanatory for samples
with SD emission intensity as the dependent variable. These results indicate that spatial models are
more appropriate than traditional panel data. Therefore, the SDM in Table 4 and the SEM in Table 5
were performed in accordance with [35,36], respectively.

The spatial Hausman test is significant in all models. Therefore, we used spatial fixed effects to
control the characteristics of provinces with unobserved time and space. In addition, all results of the
LR tests are significant at the 1% significance level, indicating the joint significance of the spatial fixed
effects in the model. Based on obtaining similar significance results, we find that the spatial fixed effect
model is more reasonable through further comprehensive analysis of the R2 value and the economic
meaning of the estimated coefficients under different fixed effects.

Due to the existence of spatial autocorrelation, the SDM regression coefficients of the independent
variables cannot be expressed as a direct marginal effect, and the spatial lag coefficients of the
independent variables cannot accurately reflect the space spillover effect. Based on SDM regression
coefficients, we used direct, indirect, and total effects calculations to reflect the impact of air pollution
control policy and informal environmental regulation on air pollutant emissions [35,36], which is
shown in Table 6.
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Table 4. Regression results of spatial fixed effect spatial Durbin model (SDM) for SO2 emission intensity.

DV: PSO2 Model (1) Model (2) Model (3) Model (4) Model (5)

PGDP 0.061 (0.369) 0.088 (0.315) 0.049 (0.300) 0.014 (0.277) 0.015 (0.262)
IND −0.338 (0.300) −0.368 (0.269) −0.293 (0.266) −0.332 (0.218) −0.289 (0.219)
TEC −0.043 ** (0.018) −0.044 ** (0.017) −0.041 ** (0.017) −0.034 ** (0.015) −0.031 ** (0.014)
PEC 0.772 *** (0.127) 0.790 *** (0.129) 0.781 *** (0.125) 0.838 *** (0.144) 0.834 *** (0.141)

PPOP −0.034 (0.539) −0.235 (0.422) −0.079 (0.465) −0.080 (0.407) 0.108 (0.444)
FDI −0.051 *** (0.015) −0.048 *** (0.013) −0.046*** (0.013) −0.041 *** (0.013) −0.039 *** (0.013)

PSPE −0.257 *** (0.088) −0.247 ** (0.097) −0.217 ** (0.089) −0.200 ** (0.096)
PPTC −0.007 (0.007) −0.012 (0.008)

PSPE*PPTC −0.036 (0.029) −0.037 (0.025)
SEE −0.013 * (0.007) −0.014 * (0.007)

PSPE*SEE −0.044 ** (0.02) −0.046 ** (0.020)
W*PGDP −0.884 (0.572) −0.647 (0.58) −0.550 (0.799) −0.899 (0.559) −0.767 (0.800)
W*IND 0.494 (0.566) 0.671 (0.529) 0.831 (0.726) 0.804 * (0.444) 0.698 (0.655)
W*TEC −0.204 *** (0.056) −0.197 *** (0.063) −0.196 *** (0.08) −0.155 ** (0.064) −0.130 (0.091)
W*PEC −0.029 (0.580) −0.124 (0.553) −0.381 (0.999) 0.172 (0.515) 0.125 (0.962)

W*PPOP 2.808 (2.394) 2.620 (2.212) 2.149 (2.265) 1.628 (2.113) 0.786 (2.355)
W*FDI 0.598 *** (0.148) 0.626 *** (0.15) 0.532 *** (0.154) 0.732 *** (0.135) 0.678 *** (0.170)

W*PSPE 0.091 (0.172) 0.209 (0.340) 0.221 (0.191) 0.162 (0.275)
W*PPTC −0.006 (0.023) 0.013 (0.023)

W*PSPE*PPTC 0.015 (0.088) 0.048 (0.085)
W*SEE −0.001 (0.025) 0.002 (0.027)

W*PSPE * SEE −0.135 * (0.078) −0.132 (0.092)
W*PSO2 −0.045 (0.309) −0.056 (0.297) −0.055 (0.275) −0.139 (0.304) −0.063 (0.279)
LM-LAG 3.610 ** 4.672 *** 4.657 ** 3.661 * 2.988 *

Robust LM-LAG 16.852 *** 18.968 *** 16.605 *** 19.271 *** 16.658 ***
LM-ERR 328.001 *** 389.331 *** 356.630 *** 374.515 *** 321.366 ***

Robust LM-ERR 341.243 *** 403.627 *** 368.578 *** 390.125 *** 335.036 ***
LR test spatial

effect 668.250 *** 674.030 *** 709.260 *** 690.380 *** 707.940 ***

Spatial Hausman
tests 19.350 *** 149.260 *** 147.790 *** 14.120 ** 20.090 **

R2 0.600 0.618 0.633 0.648 0.663

Note: The robust standard error clustering at the provincial level is given in the brackets; *, **, and *** indicate
statistically significant at the levels of 10%, 5%, and 1%, respectively.

Table 5. Regression results of spatial fixed effect spatial error model (SEM) for SD emission intensity.

DV: PSD Model (6) Model (7) Model (8) Model (9) Model (10)

PGDP −0.787 ** (0.316) −0.493 ** (0.245) −0.595 ** (0.234) −0.486 ** (0.251) −0.595 ** (0.239)
IND −1.056 *** (0.307) −1.227 *** (0.293) −1.135 *** (0.294) −1.233 *** (0.295) −1.137 *** (0.295)
TEC −0.020 (0.027) −0.019 (0.023) −0.017 (0.022) −0.022 (0.024) −0.019 (0.023)
PEC 0.747 *** (0.151) 0.807 *** (0.163) 0.799 *** (0.148) 0.796 *** (0.163) 0.796 *** (0.149)

PPOP 0.477 (0.888) 0.333 (0.603) 0.324 (0.684) 0.290 (0.609) 0.303 (0.681)
FDI 0.001 (0.022) 0.006 (0.017) 0.011 (0.016) 0.009 (0.018) 0.014 (0.017)

PSPE −0.393 *** (0.132) −0.345 *** (0.131) −0.391 *** (0.143) −0.341 ** (0.14)
PPTC −0.039 *** (0.015) −0.038 ** (0.015)

PSPE*PPTC −0.061 * (0.033) −00.061 * (0.033)
SEE 0.008 (0.01) 0.005 (0.011)

PSPE*SEE −0.002 (0.026) −0.006 (0.023)
Spatial effects W 0.734 *** (0.086) 0.727 *** (0.066) 0.720 *** (0.070) 0.725 *** (0.066) 0.719 *** (0.071)

LM-LAG 78.765 *** 68.331 *** 67.412 *** 59.220 *** 55.780 ***
Robust LM-LAG 0.216 0.868 0.779 1.569 1.844

LM-ERR 389.975 *** 314.106 *** 317.177 *** 256.673 *** 236.446 ***
Robust LM-ERR 311.426 *** 246.642 *** 250.545 *** 199.022 *** 182.51 ***
LR test spatial

effect 475.05 *** 469.51 *** 492.53 *** 463.04 *** 479.58 ***

Spatial Hausman
tests 68.680 *** 18.680 *** 498.730 *** 16.560 ** 110.670 ***

R2 0.321 0.349 0.386 0.353 0.389

Note: The robust standard error clustering at the provincial level is given in the brackets; *, **, and *** indicate
statistically significant at the levels of 10%, 5%, and 1%, respectively.
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Table 6. Direct, indirect, and total effects of SDM in model (5).

DV: PSO2 Direct Impact Indirect Impact Total Impact

PGDP 0.032 (0.270) −0.648 (0.758) −0.616 (0.714)
IND −0.286 (0.231) 0.754 (0.695) 0.468 (0.696)
TEC −0.030 * (0.015) −0.128 (0.094) −0.158 * (0.093)
PEC 0.848 *** (0.143) −0.063 (0.970) 0.786 (0.935)

PPOP 0.120 (0.448) 0.885 (2.511) 1.005 (2.261)
FDI −0.040 *** (0.013) 0.675 ** (0.285) 0.635 ** (0.292)

PSPE −0.198 ** (0.099) 0.160 (0.299) −0.038 (0.31)
PPTC −0.013 (0.008) 0.012 (0.024) 0.000 (0.026)

PSPE*PPTC −0.035 (0.025) 0.049 (0.089) 0.013 (0.079)
SEE −0.014 * (0.007) 0.004 (0.027) −0.011 (0.028)

PSPE*SEE −0.047 ** (0.019) −0.130 (0.12) −0.177 (0.123)

Note: The robust standard error clustering at the provincial level is given in the brackets; *, **, and *** indicate
statistically significant at the levels of 10%, 5%, and 1%, respectively.

In the case where the dependent variable is the SO2 emission intensity, the coefficient of the spatial
weight matrix W*PSO2 based on the geographical distance is not significant, indicating the spatial
spillover effect of SO2 emission intensity between neighboring provinces in China is not significant
although it shows a spatial negative correlation in the entire relevant model. In the case where the
dependent variable is the SD emission intensity, the coefficient of the spatial weight matrix based on
geographical distance is significantly positive, indicating that there is a significant spatial spillover
effect on SD pollution in China’s provinces. The change of SD pollution in one province is affected not
only by the SD pollution in neighboring provinces but also by the error of structural differences between
regions. This structural difference is reflected in the differences among air pollution control policy,
informal environmental regulation, economic development, industrial structure, S&T expenditures,
energy consumption, population density, opening-up, and other spatial factors that are not included in
the basic model.

It can be seen from Tables 4–6 that air pollution control policy has a significant negative effect on
SO2 and SD emission intensity in consideration of the spatial dependence of air pollutant emissions.
However, in the entire model, air pollution control policy has no significant effect on the spatial effects
of SO2 in neighboring provinces, which will be explained in the discussion below.

In this paper, two interaction variables, air pollution control policy and public environmental
participation (PSPE*PPTC) and air pollution control policy and media environmental supervision
(PSPE*SEE), are introduced in model (3) and model (4) or model (6) and model (8), respectively,
and are introduced together in model (5) or model (10). In the complete model (10) of Table 5,
public environmental participation represented by the environmental letter has a significant inhibitory
effect on SD emission intensity. The coefficient of the interaction term PSPE*PPTC is significantly
negative, indicating that public environmental participation has a negative moderating effect on the
negative relationship between air pollution control policy and SD emission intensity.

In Table 6 and the complete model (5) of Table 4, media environmental supervision represented by
sudden environmental events has a significant inhibitory effect on SO2 emission intensity. The coefficient
of the interaction term PSPE*SEE is significantly negative, indicating that the media environmental
supervision has a negative moderating effect on the negative relationship between air pollution control
policy and SO2 emission intensity.

5.2. Discussions

It is worth noting that the negative spatial spillover effect of SO2 emission intensity is not significant
and the positive spatial spillover effect of SD emission intensity is significant, which may be related
to the emission properties of these pollutants. SD is produced from a variety of sources in industrial
processes in various regions, such as coal combustion, metal smelting, and processing, and cement
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and concrete production. Therefore, SD pollution is difficult to reduce across regions. Given the
interlinkages between the cross-regional industrial value chains, increased demand from upstream
or downstream sectors of a province’s value chain can increase supply in neighboring provinces,
and vice versa [45,46]. As a result, industry growth and associated pollution emissions in one province
can drive production and pollution levels in upstream or downstream industries in adjacent areas
of the industrial supply chain. In contrast, SO2 comes mainly from a few sources, such as burning
sulfur-intensive fuels and mining activities. Technologies that reduce SO2 emissions are relatively easy
to implement, using “pipe end” technology to retain sulfur content or directly replacing low-sulfur
fuels [47]. In addition, reducing SO2 emissions can also be achieved by shutting down mines or
coal-fired power stations, as well as shutting down small glass, cement, and refinery plants [48].
The negative correlation between SO2 emissions in the provinces may reflect the concentration of such
pollutants from one province to the neighboring provinces, and the growing size of such pollutants
in a certain region. On the other hand, as can be seen from Figure 2, SO2 emissions are concentrated
in large numbers between several provinces such as Beijing, Tianjin, and Hebei [31], resulting in a
positive correlation between SO2 emissions in local provinces. This may be the main reason why the
negative correlation between SO2 emissions in the provinces at the national level is not significant.

Air pollution control policy has a significant negative effect on SO2 and SD emission intensity.
On one hand, air pollution control policy can directly increase the pollution costs of polluting
enterprises [41], thereby promoting the reduction of air pollutant emission intensity in various regions.
On the other hand, the authors of [49] show that environmental policies can effectively promote
ecological innovation. Ecological innovation is a broad concept that includes pollution control, green
products, clean process technologies, green energy technologies, and transportation technologies,
as well as innovations in waste reduction and treatment technologies [50]. The inhibition of atmospheric
pollution emissions by ecological innovation is self-evident [51], which can significantly reduce the
emission intensity of SO2 and SD. The conclusions of this paper are consistent with the validity of the
“weak” version of the Porter hypothesis [52].

Public environmental participation has a significant inhibitory effect on SD emission intensity.
This result effectively complements existing research. Studies have shown that citizens can influence
the location of polluting enterprises through direct environmental letters, forcing polluting enterprises
to move out [3]. The relocation of polluting enterprises will obviously help reduce the SD emissions of
industrial enterprises. The public environmental participation has a negative moderating effect on the
negative relationship between air pollution control policy and SD emission intensity. This shows that
with the increase in public environmental participation, the impact of air pollution control policy on
reducing SD emission intensity has gradually increased.

Media environmental supervision has a significant inhibitory effect on SO2 emission intensity.
This is consistent with reality. Unexpected environmental events such as the anti-molybdenum-copper
project in Shifang City in 2012 eventually forced SO2 heavy polluting enterprises to move out of the
city [3]. Moreover, the results are consistent with findings reported in [7] that if the public continues to
be interested in pollution news, the news media can act as an informal regulator to inhibit corporate
emissions in industrial parks. The media environmental supervision has a negative moderating
effect on the negative relationship between air pollution control policy and SO2 emission intensity.
This shows that with the strengthening of media environmental supervision, the impact of air pollution
control policy on reducing SO2 emission intensity has gradually increased. A study by [43] shows
that private law enforcement in the US encroaches on public law enforcement. The moderating effect
results in this paper are inconsistent with the above conclusions, indicating that China’s informal
environmental regulation (PPTC and SEE) have increased the effectiveness of air pollution control
policy through different ways to pay attention to environmental violations.

In terms of control variables, per capita GDP has a significant negative effect on SD emission
intensity, which may be related to the gradual growth of China’s green economy. Pretty [53] found that
unlike the environmental pollution caused by traditional industrial activities, the development of the
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green economy will obviously reduce the concentration of environmental pollution such as particulate
matter concentration. The industrial structure has a significant negative effect on SD emission intensity.
This may be because the industrial restructuring of the secondary industry in China’s provinces is
mainly reflected in the transformation from roughing processing to finishing processing, and from
contaminated products to cleaning products, indicating a new industrialization road of coordinated
development of environment and economy has achieved initial results. It can be predicted that this
effect will become more apparent when the industrial structure adjustment reaches a suitable height.

The increase in the level of S&T expenditure is conducive to the reduction of SO2 emission intensity.
SO2 emissions are mainly from a few heavily polluting industries and increasing the technology
spending in these areas can significantly improve the pollution intensity of heavily polluting industries.
This is consistent with the results of previous studies. Abdouli and Hammami [54] showed that
advanced high-level technologies can reduce the level of environmental pollution. The coefficient of the
impact of per capita energy consumption on SO2 and SD emissions is significantly positive, indicating
that SO2 and SD emission intensity increase with the increase of per capita energy consumption.
The increase in the degree of opening-up is conducive to a significant reduction in SO2 pollution.
The research in this paper shows that the Pollution Haven Hypothesis for SO2 is not established in
China. The degree of opening-up represented by FDI is likely to inhibit SO2 pollution through different
mechanisms such as income effect, pollution halo effect [34], and technology spillover effect [29].
In addition, the spatial spillover effect of FDI on neighboring areas is significantly positive, indicating
that a 10% increase in FDI in one province will result in an increase in SO2 emission intensity of 6.78%
in neighboring provinces.

5.3. Robust Tests

To further assess the robustness of the regression results, two additional robust tests were
performed. First, we used an alternative spatial weight matrix, the contiguity-based binary spatial
weight matrix, instead of the spatial distance-based weight matrix [55] to reflect the spatial dependence
of air pollutant emission intensity. From Tables 7 and 8, we find that basic result remains the same,
but there is still a slight change. The coefficient of the spatial interaction term W*PSPE*SEE has a weak
significance, indicating that SO2 emission intensity decreases in one province due to the high-intensity
air pollution control policy in the adjacent province, which is because they spatially absorb and spread
the spillover effects of media environmental supervision. FDI has a weak positive effect on SD emission
intensity, which provides weak evidence for the existence of the Pollution Haven Hypothesis for SD in
neighboring provinces in China.

Second, there may be endogenous problems in air pollutant emissions and other factors.
For example, reverse causality may create estimation problems in regional pollution studies. The higher
intensity of air pollution control policy and informal environmental regulation may result in a decrease
or increase in pollution intensity, but areas with less pollution or heavy pollution may also lead to the
higher intensity of air pollution control policy and informal environmental regulation [5]. Therefore,
we chose one period lagged for all explanatory variables as the instrumental variables of the original
explanatory variables to cope with the possible causal inversion problem, substituting them into the
spatial econometric models. From Tables 9 and 10, we find that the underlying results remain the same,
but there are still some minor changes. The positive spatial effect of PPTC_1 is significant, indicating
that the increase in direct public participation in a province will significantly contribute to the increase
in SO2 emission intensity in the next time phase of the adjacent province. The coefficient of the spatial
interaction term W*PSPE_1*PPTC_1 is slightly significant, indicating that the increase of SO2 emission
intensity in the next time period of one province is due to the high-intensity air pollution control policy
in the adjacent province. It is likely that they have produced a pollution crowding effect with direct
public participation in time and space. In the section of control variables, the negative effect of IND_1
on SO2 emission intensity becomes slightly significant, indicating that industrial structure adjustment
has a significant time lag effect for SO2 emissions. The negative spatial spillover effect of TEC_1 has a
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weak significance, indicating that the increase of S&T expenditure in one province has a time lag effect
to reduce the intensity of SO2 emissions in neighboring provinces. The negative effect of PGDP_1 on
SD emission intensity is no longer significant, indicating that per capita GDP has no significant time
lag effect for SD emissions.

Table 7. Regression results of the spatial fixed effect SDM for SO2 emission intensity under the
contiguity-based binary spatial weight matrix.

DV: PSO2 Model (A1) Model (A2) Model (A3) Model (A4) Model (A5)

PGDP −0.144 (0.341) −0.127 (0.312) −0.152 (0.288) −0.171 (0.278) −0.201 (0.261)
IND −0.349 (0.284) −0.379 (0.257) −0.231 (0.230) −0.329 (0.228) −0.183 (0.185)
TEC −0.043 ** (0.018) −0.041 ** (0.017) −0.040 ** (0.018) −0.032 * (0.018) −0.032 * (0.018)
PEC 0.695 *** (0.191) 0.741 *** (0.196) 0.701 *** (0.192) 0.803 *** (0.201) 0.766 *** (0.194)

PPOP 0.210 (0.819) −0.014 (0.810) 0.450 (0.852) 0.141 (0.730) 0.624 (0.758)
FDI −0.071 *** (0.022) −0.067 *** (0.021) −0.075 *** (0.021) −0.061 *** (0.023) −0.069 *** (0.022)

PSPE −0.255 *** (0.092) −0.214 ** (0.100) −0.198 ** (0.098) −0.158 * (0.098)
PPTC −0.005 (0.009) −0.008 (0.010)

PSPE*PPTC −0.048 (0.033) −0.049 (0.031)
SEE −0.013 * (0.007) −0.013 * (0.007)

PSPE*SEE −0.042 * (0.023) −0.039 ** (0.019)
LW*PGDP −0.533 (0.400) −0.302 (0.399) −0.181 (0.426) −0.460 (0.392) −0.326 (0.417)
LW*IND 0.383 (0.614) 0.507 (0.586) 0.492 (0.604) 0.497 (0.505) 0.480 (0.516)
LW*TEC −0.029 (0.045) −0.03 (0.048) −0.020 (0.040) −0.024 (0.044) −0.014 (0.039)
LW*PEC −0.028 (0.386) −0.087 (0.397) −0.167 (0.419) 0.028 (0.375) −0.056 (0.392)

LW*PPOP −0.783 (1.466) −0.423 (1.444) −1.022 (1.440) −0.573 (1.296) −1.252 (1.278)
LW*FDI 0.188 ** (0.078) 0.196 *** (0.074) 0.229 *** (0.074) 0.213 *** (0.075) 0.250 *** (0.067)

LW*PSPE −0.008 (0.189) −0.036 (0.199) 0.006 (0.205) −0.017 (0.197)
LW*PPTC −0.007 (0.009) −0.003 (0.010)

LW*PSPE*PPTC 0.047 (0.050) 0.057 (0.042)
LW*SEE −0.001 (0.013) −0.003 (0.014)

LW*PSPE*SEE −0.041 (0.039) −0.054 * (0.029)
LW*PSO2 0.128 (0.163) 0.099 (0.155) 0.164 (0.167) 0.064 (0.150) 0.137 (0.156)

Spatial Hausman
tests 44.960 *** 30.330 *** 15.830 ** 1099.780 *** 19.950 **

R2 0.548 0.570 0.599 0.600 0.631

Note: The robust standard error clustering at the provincial level is given in the brackets; *, **, and *** indicate
statistically significant at the levels of 10%, 5%, and 1%, respectively.

Table 8. Regression results of the spatial fixed effect SEM for SD emission intensity under the
contiguity-based binary spatial weight matrix.

DV: PSD Model (A6) Model (A7) Model (A8) Model (A9) Model (A10)

PGDP −0.798 *** (0.186) −0.492 ** (0.199) −0.596 *** (0.189) −0.469 ** (0.207) −0.574 *** (0.196)
IND −1.074 *** (0.314) −1.253 *** (0.292) −1.120 *** (0.302) −1.273 *** (0.292) −1.134 *** (0.303)
TEC −0.020 (0.026) −0.014 (0.023) −0.016 (0.022) −0.018 (0.023) −0.020 (0.023)
PEC 0.658 *** (0.157) 0.742 *** (0.174) 0.697 *** (0.154) 0.724 *** (0.172) 0.683 *** (0.154)

PPOP 0.262 (0.804) 0.073 (0.565) 0.234 (0.664) 0.015 (0.571) 0.197 (0.665)
FDI 0.007 (0.014) 0.014 (0.012) 0.019 * (0.011) 0.016 (0.012) 0.021 * (0.012)

PSPE −0.388 *** (0.14) −0.325 ** (0.142) −0.396 *** (0.151) −0.333 ** (0.152)
PPTC −0.035 ** (0.014) −0.034 ** (0.014)

PSPE*PPTC −0.069 ** (0.031) −0.068 ** (0.031)
SEE 0.011 (0.011) 0.009 (0.011)

PSPE*SEE 0.011 (0.028) 0.009 (0.024)
Spatial effects LW 0.476 *** (0.085) 0.482 *** (0.077) 0.473 *** (0.079) 0.482 *** (0.079) 0.475 *** (0.083)
Spatial Hausman

tests 13.890 ** 17.520 ** 44.790 *** 157.110 *** 41.310 ***

R2 0.344 0.360 0.403 0.361 0.403

Note: The robust standard error clustering at the provincial level is given in the brackets; *, **, and *** indicate
statistically significant at the levels of 10%, 5%, and 1%, respectively.
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Table 9. Regression results of the spatial fixed effect SDM for SO2 emission intensity based on the
explanatory variables lagged 1-time phase.

DV: PSO2 Model (B1) Model (B2) Model (B3) Model (B4) Model (B5)

PGDP_1 −0.003 (0.353) 0.010 (0.323) 0.075 (0.322) −0.040 (0.295) 0.039 (0.302)
IND_1 −0.360 (0.276) −0.384 (0.253) −0.414 (0.255) −0.361 (0.225) −0.405 * (0.213)
TEC_1 −0.062 *** (0.017) −0.063 *** (0.016) −0.065 *** (0.014) −0.057 *** (0.015) −0.059 *** (0.012)
PEC_1 0.673 *** (0.116) 0.686 *** (0.118) 0.684 *** (0.116) 0.719 *** (0.131) 0.718 *** (0.131)

PPOP_1 −0.249 (0.524) −0.413 (0.460) −0.273 (0.477) −0.320 (0.459) −0.141 (0.465)
FDI_1 −0.066 *** (0.014) −0.064 *** (0.012) −0.056 *** (0.014) −0.059 *** (0.011) −0.045 *** (0.013)

PSPE_1 −0.196 ** (0.085) −0.195 ** (0.089) −0.164 * (0.088) −0.159 * (0.092)
PPTC_1 −0.002 (0.005) −0.005 (0.005)

PSPE_1*PPTC_1 −0.011 (0.022) −0.011 (0.018)
SEE_1 −0.005 * (0.009) −0.006 * (0.009)

PSPE_1*SEE_1 −0.037 * (0.023) −0.041 ** (0.021)
W*PGDP_1 −0.254 (0.438) −0.111 (0.497) −0.046 (0.594) −0.210 (0.485) −0.099 (0.634)
W*IND_1 0.992 ** (0.491) 1.118 ** (0.476) 0.477 (0.615) 1.199 *** (0.401) 0.369 (0.562)
W*TEC_1 −0.200 *** (0.064) −0.201 *** (0.071) −0.191 *** (0.073) −0.163 ** (0.079) −0.131 * (0.074)
W*PEC_1 −0.589 (0.393) −0.661 (0.41) −0.213 (0.856) −0.511 (0.422) 0.119 (0.819)

W*PPOP_1 3.710 (2.437) 3.621 (2.215) 2.770 (2.395) 2.917(2.212) 1.346 (2.572)
W*FDI_1 0.650 *** (0.187) 0.667 *** (0.194) 0.698 *** (0.179) 0.726 *** (0.192) 0.862 *** (0.189)

W*PSPE_1 0.113 (0.252) −0.293 (0.399) 0.181 (0.244) −0.305 (0.315)
W*PPTC_1 0.026 (0.021) 0.042 ** (0.019)

W*PSPE_1*PPTC_1 0.113 (0.075) 0.168 * (0.097)
W*SEE_1 −0.009 (0.028) 0.018 (0.041)

W*PSPE_1*SEE_1 −0.078 (0.086) −0.133 (0.096)
W*PSO2 0.227 (0.192) 0.220 (0.191) 0.108 (0.211) 0.242 (0.195) 0.129 (0.198)

Spatial Hausman
tests 21.270 *** 25.440 *** 19.790 ** 80.970 *** 131.880 ***

R2 0.595 0.606 0.621 0.620 0.646

Note: The robust standard error clustering at the provincial level is given in the brackets; *, **, and *** indicate
statistically significant at the levels of 10%, 5%, and 1%, respectively.

Table 10. Regression results of the spatial fixed effect SEM for SD emission intensity based on the
explanatory variables lagged 1-time phase.

DV: PSD Model (B6) Model (B7) Model (B8) Model (B9) Model (B10)

PGDP_1 −0.403 (0.267) −0.115 (0.216) −0.195 (0.207) −0.131 (0.231) −0.220 (0.223)
IND_1 −0.872 *** (0.313) −1.044 *** (0.315) −1.004 *** (0.299) −1.047 *** (0.311) −1.003 *** (0.299)
TEC_1 −0.004 (0.025) −0.003 (0.024) −0.002 (0.023) −0.006 (0.024) −0.005 (0.023)
PEC_1 0.438 *** (0.131) 0.497 *** (0.14) 0.499 *** (0.131) 0.500 *** (0.147) 0.509 *** (0.138)

PPOP_1 0.298 (0.884) 0.160 (0.647) 0.060 (0.76) 0.116 (0.656) 0.029 (0.747)
FDI_1 −0.033 (0.022) −0.028 (0.017) −0.024 (0.016) −0.021 (0.015) −0.018 (0.015)

PSPE_1 −0.383 *** (0.141) −0.347 ** (0.138) −0.363 ** (0.148) −0.323 ** (0.144)
PPTC_1 −0.033 ** (0.016) −0.033 ** (0.015)

PSPE_1*PPTC_1 −0.035 * (0.034) −0.034 * (0.032)
SEE_1 0.010 (0.012) 0.007 (0.012)

PSPE_1*SEE_1 −0.028 (0.031) −0.032 (0.029)
Spatial effects W 0.731 *** (0.066) 0.710 *** (0.067) 0.693 *** (0.07) 0.703 *** (0.07) 0.688 *** (0.072)
Spatial Hausman

tests 10.900 ** 12.140 ** 16.660 ** 16.060 ** 27.530 ***

R2 0.158 0.228 0.268 0.244 0.281

Note: The robust standard error clustering at the provincial level is given in the brackets; *, **, and *** indicate
statistically significant at the levels of 10%, 5%, and 1%, respectively.

6. Conclusions

With rapid economic growth, China’s provinces are currently facing serious air pollution problems.
Effective control of air pollutant emissions has become one of the priority objectives of all levels of
government in China. On the premise of considering the spatial dependence of air pollutant emissions,
this paper uses the panel data of 30 provinces in China to study the impact of air pollution control
policy and informal environmental regulation on air pollutant emissions, and further analyze the
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moderating effects of informal environmental regulation on the relationship between air pollution
control policy and air pollutant emissions.

The empirical results of this paper are summarized below. First, the spatial dependence of
the air pollutant emissions is not the same. The negative spatial spillover effect of SO2 emission
intensity is not significant, while SD emission intensity has a significant positive spatial spillover
effect. Second, air pollution control policy has a significant negative impact on air pollutant emission
intensity. Air pollution control policy is likely to inhibit air pollutant emissions by directly increasing
the pollution costs of polluting enterprises and effectively promoting ecological innovation. Third,
informal environmental regulation represented by public environmental participation and media
environmental supervision has significant inhibitory effects on emission intensity of air pollutants.
Finally, informal environmental regulation has a negative moderating effect on the negative relationship
between air pollution control policy and emission intensity of air pollutants. In addition, SO2 emission
intensity decreases in one province due to the high-intensity air pollution control policy in the
adjacent province, which is because they spatially absorb and spread the spillover effects of media
environmental supervision.

Based on the findings revealed in this study, the following policy recommendations can
be proposed.

First, spatial heterogeneity plays an important role in environmental regulation in China. Local
governments should fully realize that if they do not cooperate with other neighboring regions, it is
impossible to continuously improve the air pollution control in each province, and fundamentally
solve the problem of air pollutant emissions such as acid rain and haze. Economically developed
provinces cannot reduce air pollutant emissions simply by transferring highly polluting industries to
neighboring provinces. While such interventions may have a temporary impact, they will eventually
increase emissions of air pollutants in neighboring provinces and endanger local air quality.

Second, policy formulation and policy implementation are very important for air pollution
prevention and control. Air pollution control policy described in this paper can reflect the policy
formulation of the central government and the policy implementation of local governments. Chinese
central government should formulate new air pollution control policy for specific air pollution issues
based on adhering to existing air pollution control policies. At the same time, China’s provincial
governments should continue to strengthen policy implementation. In addition, based on the results
of the robustness test, local governments should fully recognize the persistence of the air pollution
governance process and maintain the coherence of specific local environmental protection measures in
the process of implementing air pollution control policy.

Third, science and technology are the most important means for controlling air pollutant emissions.
There is a strong need to properly direct FDI to invest in technologies related to air pollution control.
Governments and businesses need to strengthen S&T spending in the field of cleaner production. Local
governments need to focus on monitoring technology application that is indeed being adopted by
businesses in various regions.

Finally, the important role played by informal environmental regulation in controlling air pollutant
emissions should be strengthened. The public citizen should raise awareness of environmental
protection further and participate in environmental supervision voluntarily. Public environmental
participation should be encouraged and promptly responded by the governments. Moreover, traditional
media and online media should increase the supervision of the process of air environmental governance
and report on illegal sewage companies legally. Governments should give more support to various
media for legal environmental protection supervision.

There are some limitations to this study. First, air pollution control policy includes different policy
instruments such as command-and-control instruments and market-oriented instruments [4]. We did
not address the different policy instruments of air pollution control policy due to the focus of this
study. Second, we measured the overall level of air pollutant emissions as the dependent variables,
without considering the complicated structures of air pollutant emission sources such as the motorized
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traffic, which may have affected the lower moderating effects in this study. The research can be further
explored from these aspects in the future.
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