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Abstract: As one of the largest agricultural countries in the world, China has always paid close
attention to the sustainable development of agricultural production efficiency. However, with global
climate change, extreme weather has become an exogenous factor that cannot be ignored, as it affects
agricultural production. Most of the existing studies only consider the domestic natural resources
and economic factors, without fully considering the external climate factors. This paper uses the
super undesirable dynamic Slacks-Based Measures (SBM) under an exogenous variable model to
simulate the external environmental factors by adding extreme weather days. The Dagum Gini
coefficient and kernel density estimation are used to explore the regional differences in agricultural
production in China. The results show that the agricultural production efficiency is higher in the
eastern region, and the difference in agricultural production efficiency among the provinces in the
middle and western regions is large, showing a trend of polarization. The difference in the Gini
coefficient between the middle and western regions is more significant. The main contribution factor
of the Dagum Gini coefficient is the inter-regional difference. The regional concentration degree of
agriculture in China is decreasing, the regional distribution of agricultural water resources is more
balanced, and the national regional difference gradually decreases. Finally, some suggestions are put
forward, such as extreme weather control, agricultural water supply, and water-saving measures.

Keywords: super undesirable dynamic SBM; agricultural production efficiency; spatial effect; Dagum
Gini coefficient; kernel density

1. Introduction

The efficiency of agricultural production is related to the total output value of agriculture and the
foundation of national economic development. However, there is a complex standard to measure the
efficiency of agricultural production. Therefore, the efficiency of agricultural production cannot be
judged simply on the basis of the output value, nor only on the basis of how much production input
can be measured. For this reason, the academic community has launched many significant explorations
and produced highly effective research results. Based on the different boundary conditions from
the perspective of research, scholars consider the efficiency of agricultural production in different
regions from the perspective of time and spatial differences, climate disasters on crop production
intervention, and other aspects. In this process, scholars have also explored many evaluation
methods for agricultural production efficiency, including the Data Envelopment Analysis (DEA) model;
the Slacks-Based Measures (SBM) model under undesirable output, derived from the DEA model;
and the production function model. Some scholars also discussed the spatial differences in agricultural
production, and have explored the balanced and high-quality development of agriculture by analyzing
the differences in agricultural efficiency between different regions.
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Among them, the lack of water resources has always been one of the important limiting factors
for the sustainable development of agriculture in China. China is a large agricultural country,
with agricultural water consumption accounting for more than 60% of the total water consumption,
and irrigation water consumption accounting for 90% of the total agricultural water consumption.
However, there is an uneven space–time distribution of water resources in our country and an
unbalanced supply and demand between regions. The sdudy of water resources management
also existed in agricultural irrigation, but there is still an unreasonable lack of water conservancy
facilities and management mechanisms, which is a serious obstacle to the improvement of agricultural
production efficiency. Therefore, this paper focuses on the agricultural production efficiency and put
forward relevant solutions.

In the next part, we summarize the relevant literature published on the spatial differences in
agricultural production efficiency and the impact of climate conditions on agricultural production
efficiency, and describe the issue of agricultural production efficiency in China.

1.1. Literature Review

Based on the review of the previous literature, this paper summarizes the current literature in
different aspects, as follows:

1.1.1. Research on the Effect of Climate on Agricultural Production

Elias et al. [1] studied the changes in agricultural production caused by extreme temperature in
the southwest of the United States, and described the agricultural pressure and adaptive response
of the United States by analyzing the changes in variable elements. The results showed that the
water shortage in the semi-arid areas of the southwest of the United States was becoming more and
more serious, resulting in the reduction of crop production. Olen et al. [2] assessed the impact of
water scarcity and climate on agricultural crop producers’ irrigation decisions in the United States.
The results showed that the lack of water and extreme weather have a significant impact on the
irrigation decision-making of producers. The use of sprinkler irrigation technology or extra water by
producers should be used to reduce the risk of damage to crops caused by extreme weather, and then
increase water consumption. Markovic et al. [3] studied the efficiency of irrigation scheduling for
maize production in Croatia and found that the main factors affecting the irrigation efficiency under
extreme weather conditions were determining the optimum water level for the soil water sensor and
the relationship between the water table and root depth. Eggen et al. [4] studied the development of
sorghum crop models under El Niño. The results showed that the incidence of sub seasonal failures in
precipitation increased in the early rainy season, which had a side effect on sorghum yield. Olesen and
Bindi [5] studied the impact of global warming on agricultural production in Europe, and the results
showed that in the south, adverse factors will dominate, including water shortages and the possibility
of increasing extreme weather events, which will lead to reduced harvests and a reduction in suitable
agricultural planting area. Mishra et al. [6] studied the climate sensitivity of agricultural production in
the state of Odisha, on the east coast of India. By studying the temperature and rainfall in the process
of agricultural production, the Ricardo method was used to evaluate the impact of climate change on
the net income of the agricultural production of Odisha. Wang et al. [7] selected the trend yield of
each crop, and then constructed and calculated the probability density function curve and distribution
function of the relative meteorological yield.

The probabilities of different production decline intervals have been estimated. Alboghdady and
El-Hendawy [8] used panel data from 20 countries in the Middle East and North Africa from 1961 to
2009 to assess the impact of climate change and variability on agricultural production. The results
showed that the increase in temperature in winter is 1%, which leads to the decrease of agricultural
production by 1.12%. Olayide et al. [9] investigated the different effects of rainfall and irrigation on
agricultural production in Nigeria, which provided reference for climate-smart agriculture (CSA)
in Nigeria. Alboghdady and El-Hendawy [8] used a production function model and fixed effect
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regression analysis to evaluate and analyze the impact of climate change on variable agricultural
production. The results showed that the increase in temperature in the winter was 1%, which led to a
1.12% reduction in agricultural production.

Barrios et al. [10] discussed the impact of climate change on total agricultural production in
sub-Saharan Africa (SSA) and non-sub-Saharan Africa (NSSA). The results showed that climate change,
measured by rainfall and temperature changes in the country, had become a major determinant of
agricultural production in South Sudan. On the basis of the original Cobb–Douglas (C-D) production
function, Kaimakamis et al. [11] built a new economic climate model by adding climate factors,
and made an empirical analysis of the impact of climate change on food production, explaining the
regional differences. Mardero et al. [12] utilized climate trend analysis and generalized additive models
(gams) to analyze precipitation and temperature data from 1980 to 2010, proving the relationship
between yield and climate variability. In order to clarify the temporal and spatial distribution of climate
disasters and the response of wheat yield to disasters in the past 30 years, Shi and Tao [13] defined
and calculated disaster indexes, such as the impact of climate disasters, the sensitivity of climate
disasters, and the response index of wheat yield loss to the climate disasters. Based on the statistical
data of agricultural disasters in the Heilongjiang Province from 1983 to 2013, Xing et al. [14] analyzed
the occurrence area and change characteristics of different types of disasters. Finally, the degree
of agricultural loss caused by these disasters was analyzed by a fuzzy comprehensive evaluation
method. Xie et al. [15] used information diffusion technology and an information matrix to determine
the distribution of drought risk in China’s main grain producing areas, and quantitatively analyzed
the relationship between the annual drought rate and grain production loss. Xu et al. [16] used
the production function model to demonstrate the quantitative relationship between the disaster
area and the final yield of grain from the input factors of agricultural production and the disaster
resistance ability. Zhang [17] used the methods of crop yield–climate analysis and regression analysis to
analyze and quantify the relationship between corn yield fluctuation and agrometeorological disasters.
Lesk et al. [18] estimated the global loss of grain production caused by extreme weather disasters
reported during the period 1964–2007. The results showed that drought and extreme high temperature
reduced grain yield by 9–10%.

1.1.2. Study on the Spatial Difference of Agricultural Production

Han and Wu [19] explored the impact of changes in China’s agricultural structure on factors
such as energy intensity of agricultural production (EIAP). The results showed that the results of six
vegetable production regions show great regional heterogeneity, which is mainly due to the scale
economy effect and incremental effect of vegetable mechanization. On the basis of analyzing the
heterogeneity of agricultural technology, Fei and Lin [20] used meta-frontier DEA to measure the
agricultural energy efficiency. The results showed that the energy efficiency of the eastern region of
China was significantly higher than that of the western region. Based on the provincial panel data of
1995–2014, Diao et al. [21] analyzed the agricultural productivity and its regional differences in China.
The results showed that TFP growth in the central and western regions was much higher than that in
the eastern regions. In 2014, the most effective decision-making unit was the western region. Ito [22]
measured the regional differences of agricultural productivity in China, and then tested the validity of
the hypothesis related to agricultural technology. Zhang et al. [23] compared the agricultural disasters
in the north and south of China, and the results showed that the losses in the north increased by about
0.6% every ten years, close to twice that in the south of China. In addition, agriculture in northern China
was more sensitive to precipitation change, while agriculture in southern China was more sensitive
to temperature change. Wagan et al. [24] compared the agricultural production efficiency of China
and Pakistan, and the results showed that the overall efficiency of China’s agricultural production
was higher than that of Pakistan. Although Pakistan’s agricultural production had increased, China’s
agricultural production had higher efficiency because of its strong dependence on technology; Pakistan
needed to apply new agricultural technology. Based on the panel data of the Songnen Plain in the
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Heilongjiang Province, Yang et al. [25] used quantitative and spatial analysis methods to explore
the problem of agricultural production efficiency in this area. The results showed that agricultural
production showed a growth trend from “high in the southwest and low in the northeast” to “high in
the middle and low in the surrounding areas”, with obvious regional differences.

According to the agricultural production data of 31 provinces in 2014, Li et al. [26] used the
DEA method to evaluate the comprehensive efficiency of agricultural production investment in
China. The results showed that there was a big gap among the eastern, central, and western regions.
Xue et al. [27] used the econometric model to classify the agricultural water environment efficiency
of China in 2013, and analyzed the spatial effect and influencing factors of the agricultural water
environmental efficiency of China using a spatial econometric model. The results showed that the
spatial distribution of the agricultural water environmental efficiency is uneven, showing a gradual
decrease from east to west. Li et al. [28] studied the theoretical and practical productivity of farmland
in Zhejiang. The results show that the productivity in the north of the middle plain is the highest,
while that in the southwest mountainous area is the lowest. Zhang and Zhu [29] evaluated the efficiency
of agricultural water use in the Heilongjiang province, and guided the scientific water-use strategy of
Heilongjiang Province according to the results. Sun et al. [30] studied the agricultural water footprint
in the Hetao irrigation area, and the results showed that the water footprint of five counties in the
Hetao irrigation area was significantly different. Neumann et al. [31] used econometric methods and
spatial analysis to explore the maximum yield, yield gap, and the efficiency of wheat and other crops.
The results show that the actual grain output in some areas is close to its maximum, while there is still
a large gap in other areas. Crain et al. [32] studied the spatial variability of agricultural crops, and the
results showed that significant differences in winter wheat yield were found in the adjacent 1 m ×
1 m plot.

In order to study the actual agricultural production process more scientifically, this paper creatively
adds extreme weather as exogenous variables to build a super undesirable dynamic SBM model.
Based on the eastern, middle, and western regions of China, this paper also uses the kernel density
estimation method and Dagum Gini coefficient to explore the dynamic evolution law of agricultural
production efficiency, as well as the regional differences.

1.2. Issue of Agricultural Production Efficiency in China

In 2017, the opinions of the CPC Central Committee and the State Council on deepening the
structural reform of agricultural supply side and accelerating the cultivation of new driving forces
for agricultural and rural development were released. The document clearly points out that it is
necessary to further promote the agricultural supply around the change of market demand, improve
the quality and efficiency of the agricultural supply system, and promote the high-quality development
of rural areas through the rational use of agricultural resources. It can be seen that improving
the efficiency of agricultural production has become an important problem to be solved. The key
link for improving agricultural production efficiency is to optimize agricultural water-use efficiency
and improve agricultural productivity through effective input of agricultural water. The national
agricultural water-saving program (2012–2020) issued by the general office of the state council in
2012 clearly emphasizes the use of comprehensive measures, including economic, administrative,
legal, scientific, technological, and engineering measures, to promote the construction of agricultural
water-saving systems with Chinese characteristics. Improving the efficiency of regional agricultural
production is an important measure to save the scarce agricultural water resources, which requires the
promotion and coordination of national policies. With the completion of the middle route and the
eastern route of the south-to-north water diversion project, as well as the commissioning of the Three
Gorges and Gezhou dams and other water conservancy facilities, the uneven distribution of water
resources in China has been alleviated. However, the problem of regional agricultural production
efficiency remains to be solved. Therefore, studying the trend of agricultural production efficiency
over time and exploring the differences in agricultural production efficiency between regions can
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further explore the problems existing in agricultural production in various regions, so as to formulate
relevant policies for regional governments and provide a relevant basis for the healthy development of
agricultural production.

Agricultural production input and agricultural output constitute a relatively complex system.
Extreme weather conditions as external factors have a great impact on agricultural production. China
is one of the countries with the most severe climatic disasters. Due to the wide latitude in the north
and south of China’s territory, all regions are faced with extreme weather, including drought, frost,
flooding, and other disasters. In 2018, 19,260 hectares of crops were affected, posing a serious threat
to China’s agricultural water and production security. Under extremely high temperature weather,
land surface moisture evaporates quickly, reducing soil moisture and thus badly affecting the growth
of the crops. Extreme weather conditions of low temperatures, and especially when co-occurring
with continuous rainfall, may reduce agricultural water; however, the cold frost can lead to winter
crop output, of which the winter wheat in the north is the main representative crop. Thus, the cold
weather there has an important intervention effect on the wheat growth cycle, which will affect the
whole crop production schedule for farming. Therefore, the crop output will be highly affected by
future warmer temperatures. Therefore, as an external influence variable, the number of extreme
weather events has an intervention effect on the water-use efficiency (WUE) of crops. On the premise
of ensuring agricultural production efficiency, China should consider the impact of climate disasters
on agricultural production. Therefore, based on the existing extreme weather disasters in China, it is of
great practical significance to explore the issue of agricultural production efficiency in China.

Through studying the relevant literature on agricultural production efficiency, most scholars
have started their discussion from river basins or grass-roots agricultural water facilities in China,
while few studies have considered the agricultural production efficiency in China under extreme weather
conditions. Unlike industry and some services, the impact of climate on agriculture should be taken into
account in its input–output models. At present, existing research on agricultural production efficiency
mainly include regional agricultural production efficiency or agricultural water-saving measures,
and their research and analysis methods mainly include the DEA model, the empirical analysis method,
and the stochastic frontier production function model. Since Gini [33] put forward the Gini coefficient,
it is widely used to investigate the degree of regional income difference. Therefore, many scholars have
carried out calculations of the Gini coefficient to explore the degree of agricultural regional differences
given various factors.

In this context, this paper uses the SBM model to explore and analyze 30 provinces and regions in
China. Then, the Dagum Gini coefficient calculation and kernel density estimation analysis method
are used to explore the dynamic evolution law of agricultural production efficiency and regional
differences in China. Furthermore, according to the change in regional differences, the paper puts
forward relevant solutions to make a certain contribution to the efficiency of agricultural production
in China. The innovation of this paper is as follows: (1) From a national level, we explore China’s
agricultural production efficiency, through the selection of those input and output variables related to
helping explore the defects and problems of agricultural production in China, from the macro-level
controls of China’s agricultural production; (2) the Dagum Gini coefficient is used to calculate the
differences between the eastern, middle, and western China regions. The evolution of the Dagum Gini
coefficient from 2010 to 2017 is analyzed and the important contribution objects of the Dagum Gini
coefficient is analyzed and explored in connection with the differences in agricultural production in
China; (3) the concentration degree of agricultural production efficiency in different regions of China
and the evolution of their dynamic differences are explored by using the kernel density estimation
method; and (4) based on the SBM model, extreme weather days in various regions are added as
external variables into the model analysis, which makes the model closer to the actual situation of
agricultural production.
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2. Methods

2.1. Super Undesirable Dynamic SBM Under an Exogenous Model

Compared with the traditional ratio method and absolute efficiency analysis method, Data
Envelopment Analysis (DEA) is a non-parametric, technical efficiency analysis method, based on the
relative comparison between evaluation objects. It was first proposed by Charnes et al. [34] in the
United States. DEA has many advantages. Firstly, it can deal with the problem of multi input and multi
output without building a production function to construct the parameters. Secondly, it can evaluate
the efficiency of the comprehensive index of the studied elements and describe the production status of
all elements. Thirdly, it is not affected by human subjective factors. The required weight is generated
by mathematical programming and does not need to be given a weight in advance. Fourthly, the DEA
model is not affected by the dimension of the input–output index. Finally, the DEA model can put
forward an improvement direction for the inefficient decision-making units (DMUs) through the
analysis of slack variables. Therefore, for this study we chose the “super undesirable dynamic SBM
model under an exogenous variable”, one of the latest DEA models, as the research method.

When evaluating the efficiency of each evaluation unit, sometimes the efficiency value of multiple
evaluation units is 1, especially when there are many input and output indicators, meaning the number
of effective DMUs will increase, which leads to the problem of insufficient judgment in the DEA.
Andersen and Petersen [35] first proposed a method to further distinguish the effective degree of the
DMU, which solved the problem that the efficiency value of the evaluation unit was too large. This new
model was called the Super DEA model. In this model, the evaluated decision-making units (DMUs)
are removed from the reference set; that is to say, the efficiency of the evaluated DMU is obtained by
referring to the frontier of other DMUs, and the efficiency value of the effective DMU is generally
greater than 1, so the effective DMU can be distinguished. By evaluating the efficiency value of one
unit in the selected set separately, on the basis of the remaining evaluation unit, the efficiency of the
evaluation unit is recalculated, and the efficiency boundary of the evaluation unit is sorted, so that the
excess of the rejection efficiency value (efficiency value) may be greater than or equal to 1.

In the radial DEA model, the measurement of the degree of inefficiency only includes the proportion
of increase and decrease of all inputs and outputs. For the invalid DMU, the gap between the current
state and the effective target value includes not only the parts of equal proportion improvement,
but also the parts of relaxation improvement. However, the part of relaxation improvement is not
reflected in the calculation of the efficiency value. Therefore, Tone [36] first proposed an efficiency value
estimation model based on margin variables. This model adopts the non-radial estimation method
and considers slacks of input and output at the same time. The estimated efficiency value is between 0
and 1, which is called the SBM model. However, under this model, the same SBM efficiency value of
multiple decision-making units would still be 1, so Tone [37] proposed a slashed-based measure of a
super-efficiency model.

Klopp [38] first proposed window analysis for dynamic analysis, followed by the Malmquist index
of Färe et al. [39], divided into catch up and innovation effects; however, these analyses did not analyze
the influence of “the effect of carry-over activities” in these two periods, while Färe and Grosskopf [40]
first put inter-connecting activities into the dynamic. After Färe et al., Tone and Tsutsui [41] extended
the model to the dynamic analysis of a slacks-based measure. Due to Tone and Tsutsui’s dynamic DEA
model not considering the undesirable, exogenous variables, the entire unit’s efficiency value with ‘1’
was too much in the results. Therefore, the dynamic DEA was combined with Tone’s [37] super SBM,
as well as with that of Tone and Tsutsui [41].

Considering the exogenous variables, the super undesirable dynamic SBM model assesses the
efficiency of agricultural water use, to avoid the efficiency value and improve the undervalued or
overvalued spaces. Considering the exogenous variables, the following proposes the model structure
of the super undesirable dynamic SBM model.
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Suppose the observations make up a J (J = 1 . . . n) dimension DMU set in which the DMU under
evaluation is represented by DMU0 and is subject to DMU0∈J. The input and output used to compute
the efficiency are labeled as m inputs Xijt (I = 1 . . . m) and s outputs Yijt, respectively. Let output Y
be divided into (Yg, Yb), where Yg is a desirable output, Yb is an undesirable output, and Zinput is
carried over from period t to period t + 1. Eajt(a = 1 . . .u) is an exogenous variable that is outside of
a given economic model. It often has an impact on the outcome of the model. The following is the
non-oriented model:

θ∗0 = min

1
T
∑T
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[
1− 1

m+ninput
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Equation (1) is the connection equation between t and t + 1.
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The super-efficient solution is

ρ0t =
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] i = (1, . . . , T) (3)

2.2. Dagum Gini Coefficient

Considering the subgroup sample distribution, Dagum [42] proposed a new method of Gini
coefficient decomposition, which solved the overlapping between sample data and the source of
regional overall difference. This paper uses the Dagum Gini coefficient and its subgroup decomposition
method to study the climate’s impact on the water-use efficiency in agriculture in our country, to study
any regional differences. According to the Gini coefficient and its subgroup decomposition method
proposed by Dagum, China is divided into three regions, namely, k = 3, and j and h are, respectively,
k regions (different regions in the eastern, middle, and western region; j = 1,2..., k; H = 1,2...K, and j , h);
n is the number of provinces (cities) in the country, n = 30; n is the agricultural production efficiency of
province i (r) (city) in region j (h) under the influence of climatic factors; and y is the arithmetic average
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of the national agricultural production efficiency under the influence of climatic factors. The calculation
formula of the Dagum Gini coefficient and its subgroup decomposition method is

G =

k∑
j=1

k∑
h=1

n j∑
i=1

nh∑
r=1

∣∣∣y ji − yhr
∣∣∣

2n2−y
(4)

Dagum decomposed the overall Dagum Gini coefficient G into three parts: intra-regional
difference contribution (Gw), inter-regional net value difference contribution (Gnb), and intensity of
transvariation (Gt), which met G = Gw + Gnb + Gt.

2.3. Kernel Density Analysis

As a non-parametric estimation method, kernel density estimation is mainly used to obtain the
distribution pattern of random variables by smoothing the probability density of the random variables
based on the kernel function, which is widely used in the analysis of regional differences. X1, X2..., Xn
is the sample of a unary continuous population, and Formula (5) is the kernel density estimation of the
density function f(x) at any point x. Where f(x) is defined as the density function, K(·) is the kernel
function, and h is the bandwidth.

fh(x) =
1

nh

n∑
i=1

K(
x−Xi

h
) (5)

In this paper, the commonly used Gaussian kernel function was selected to estimate the kernel
density curve of the distribution pattern of agricultural production efficiency under the influence of
climatic factors in China. Based on the sample data, the dynamic evolution law of the distribution
of agricultural production efficiency under the influence of climatic factors was described from the
time dimension.

3. Results

3.1. Data Description

3.1.1. Explanation of Variables

This paper takes 30 provincial administrative units in China as research objects, and analyzes the
agricultural production efficiency of the research objects based on the one-stage dynamic super-efficiency
SBM model. As the study’s focus is on the provinces of the Chinese mainland, Taiwan, Hong Kong,
and the Macao special administrative regions were not analyzed. In addition, due to limited data of
the Tibet autonomous region, it was also not included.

According to the seventh five-year plan of the fourth session of the sixth National People’s
Congress, the Chinese mainland is divided into eastern, middle, and western regions. Inner Mongolia
and Guangxi are classified as the western region because their per capita gross domestic product (GDP)
is comparable to the average of the 10 provinces in the western region. See Table 1 for details.

Table 1. Regional division of China.

Region Provinces (Autonomous Regions and Municipalities)

East Beijing, Tianjin, Shanghai, Liaoning, Hebei, Shandong, Jiangsu, Zhejiang, Fujian,
Guangdong, Hainan

Middle Heilongjiang, Jilin, Henan, Shanxi, Anhui, Hubei, Hunan, Jiangxi

West Gansu, Guizhou, Ningxia, Qinghai, Shaanxi, Yunnan, Xinjiang, Sichuan, Guangxi,
Chongqing, Inner Mongolia
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Considering the availability of data, this paper analyzed the variables’ efficiency for 30 provinces
in China from 2010 to 2017. In the first stage of the input process, agricultural water consumption,
agricultural employees, cultivated irrigated area, and fixed assets were used as the input indicators,
while gross output value of agriculture was taken as the desired output, and the disaster area for crops
is taken as the undesired output. Extreme weather is taken as the exogenous variable of the model,
and fixed assets is taken as the carry-over variable. See Table 2 for details.

Table 2. The input and output variables.

Stage Variable Unit

Agricultural
production

Input

Agricultural Water Consumption (AWC) million cubic meters
Agricultural Employees (AE) 10,000 people

Cultivated Irrigated Area (CIA) 1000 hectares
Fixed Assets (FA) 100 million CNY

Output Gross Output Value of Agriculture (GOVA) 100 million CNY
Crop Disaster Area (CDA) 1000 hectares

Climate
variables Extreme Weather Days (EWD) day

Details of the specific variables are explained as follows:
1OAgricultural water consumption (AWC). It refers to the sum of the irrigation water for farmland,

forest fruit land, grassland, fish ponds, and livestock.
2O Agricultural employees (AE). It refers to the total number of people who work in a

primary industry and are paid for their labor in the first industry, including on-the-job worker,
re-employment of the retired personnel, the foreign staff working in the various units, Hong Kong,
Macao and Taiwan personnel, part-time staff, personnel from other units on loan, and the second unit
outside professionals, etc., but excluding the employees who leave the primary industry but retain
labor relations.

3O Cultivated irrigated area (CIA). It refers to the cultivated land area with a certain water source:
a relatively flat plot with supporting irrigation projects or equipment, which can be irrigated normally
in normal years. It is an important index reflecting the construction of farmland water conservancy
in China.

4O Gross output value of agriculture (GOVA). It refers to the total value of all agricultural, forestry,
animal husbandry, and fishery products, expressed in monetary terms and various supporting service
activities for agricultural, forestry, animal husbandry, and fishery production activities, which reflects
the total scale and total results of agricultural, forestry, animal husbandry, and fishery production in a
certain period.

5OCrop disaster area (CDA). It refers to the sown areas affected by floods and drought, which results
in a lower crop yield than in normal years. It includes the disaster area and dead area.

6O Extreme weather days (EWD). It refers to the total number of days with temperatures below
5 degrees Celsius and above 32 degrees Celsius in each province.

7O Fixed assets (FA). Is refers to the volume of construction and the acquisition of primary industry
fixed assets in monetary terms. According to the depreciation of China’s fixed assets, the depreciation
rate of physical capital is 0.096. The formula of permanent inventory method is as follows:

Kit = Ki,t−1(1− δ) + Iit (6)

In the formula, kit and ki,t−1 are, respectively, the investment stock of this year and the investment
stock of last year, and δ stands for the depreciation rate.

Figure 1 is the process analysis diagram of the SBM dynamic model, which shows the process
thinking of this paper by using flow chart. See Figure 1 for details.
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Figure 1. The Slacks-Based Measures (SBM) dynamic model.

3.1.2. Data Description

In this paper, the agricultural input–output data of the whole country, the east, the middle,
and the western regions from 2010 to 2017 were selected to measure the mean value, maximum value,
minimum value, and standard deviation of agricultural water consumption, agricultural employees,
cultivated irrigated area, fixed assets, gross output value of agriculture, crop disaster area, and extreme
weather days. The data for agricultural water consumption, cultivated irrigated area, fixed assets,
the gross output value of agriculture, and the crop disaster area were taken from China’s statistical
yearbooks [43] from 2011 to 2018. The data regarding agricultural employees were from the local
statistical yearbooks [44] of the provinces. The data of the extreme weather days were from online
sources [45]. See Table 3 for details.

Table 3. Descriptive statistics of the inputs and outputs.

Region Variables Mean Median Max Min SD

Nation AWC 126.200 98.200 561.700 5.100 107.240
AE 929.200 783.010 2712.000 37.090 653.090
CIA 2133.050 1631.300 6031.000 115.500 1601.800

GOVA 1694.390 1442.400 4929.900 92.100 1179.740
CDA 909.790 734.300 4223.700 3.100 784.790
EWD 153.460 158.000 240.000 42.000 50.350

FA 2454.170 1983.300 10,663.630 93.450 1926.860

East AWC 103.676 91.000 307.600 5.100 88.209
AE 733.044 616.915 2273.100 37.090 642.804
CIA 1834.947 1438.450 5191.100 115.500 1729.697

GOVA 1687.623 1464.600 4929.900 129.800 1403.601
CDA 555.800 405.200 2582.300 3.100 589.529
EWD 148.159 149.000 219.000 74.000 41.016

FA 2099.322 1336.964 8782.641 93.451 2098.056

Middle AWC 152.210 154.950 316.400 37.980 71.885
AE 1251.662 1083.300 2712.000 491.400 659.540
CIA 3148.032 2877.200 6031.000 1274.150 1437.446

GOVA 2153.923 2089.400 4610.700 669.000 1098.482
CDA 1343.639 1174.400 4223.700 225.100 767.538
EWD 164.750 168.500 224.000 87.000 38.431

FA 3426.860 2981.287 10,663.634 1086.916 1934.765

West AWC 129.816 94.900 561.700 19.200 138.005
AE 890.826 790.500 2083.200 114.790 571.502
CIA 1692.973 1297.350 4982.000 182.500 1231.581

GOVA 1366.955 1333.850 4004.200 92.100 846.001
CDA 948.256 753.400 3917.300 70.800 806.888
EWD 150.557 169.500 240.000 42.000 63.897

FA 2101.599 1835.162 6343.983 336.971 1462.148
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3.2. Agricultural Production Efficiency Analysis

The overall efficiency level of the eastern region is the best among the three regions, and the overall
efficiency level of most provinces is greater than 1, including Shanghai, Shandong, Tianjin, Beijing,
Jiangsu, and other provinces. Zhejiang has the lowest efficiency level, with the overall efficiency level
of 0.857. The overall efficiency shows a downward trend, from 1 to 0.804 in the period of 2010–2017,
but still at a high level of efficiency.

Among the middle regions, Henan and Heilongjiang have higher efficiency levels of 1.11 and
1.107, respectively; however, the overall efficiency level is around 0.5 in most provinces, such as Shanxi,
Jilin, Anhui, and Jiangxi. The overall efficiency of Hubei and Hunan is around 0.7, but the overall
efficiency level shows a downward trend, falling to 0.541 and 0.403, respectively, in 2017.

In the western region, its overall efficiency shows a trend of polarization. The efficiency level of
Sichuan, Chongqing, Guizhou, and Shaanxi is above 1, while the efficiency level of Yunnan, Gansu,
Ningxia, and Inner Mongolia is below 0.4. Among them, Ningxia has the lowest efficiency level,
with the overall efficiency value fluctuating around 0.3 from 2010 to 2017.

It can be seen from the above situations that the efficiency levels of the three regions are different,
and the internal differences between the western region and the middle region are also large. Table 4
summarizes the overall efficiency levels of the studied provinces in China from 2010 to 2017.

Table 4. Overall efficiency by provinces from 2010 to 2017 (China).

Region DMU Overall 2010 2011 2012 2013 2014 2015 2016 2017

East Shanghai 1.200 1.291 1.321 1.276 1.087 1.118 1.091 1.622 1.000
Shandong 1.093 1.082 1.096 1.061 1.106 1.229 1.099 1.084 1.011

Tianjin 1.218 1.207 1.781 1.144 1.628 1.201 1.086 1.068 1.000
Beijing 1.249 3.706 1.285 1.209 1.205 1.087 1.199 1.057 1.000
Jiangsu 1.272 1.198 1.214 1.231 1.332 1.291 1.304 1.317 1.307
Hebei 1.012 1.000 1.016 1.041 1.037 1.000 1.000 1.000 1.000

Hainan 1.217 1.190 1.190 1.200 1.163 1.198 1.233 1.214 1.372
Zhejiang 0.857 1.000 1.000 1.000 0.707 0.912 0.731 0.806 0.804

Fujian 1.137 1.069 1.373 1.184 1.093 1.342 1.071 1.072 1.000
Guangdong 0.967 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.745

Liaoning 0.910 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.469

Middle Shanxi 0.448 0.527 0.536 0.507 0.466 0.468 0.407 0.376 0.310
Jilin 0.546 0.579 0.621 0.620 0.681 0.593 0.562 0.466 0.292

Anhui 0.421 0.477 0.447 0.443 0.418 0.458 0.395 0.365 0.366
Jiangxi 0.353 0.338 0.344 0.347 0.312 0.354 0.378 0.380 0.368
Henan 1.110 1.188 1.109 1.107 1.075 1.089 1.288 1.064 1.010
Hubei 0.690 1.000 1.000 0.686 0.649 0.656 0.577 0.583 0.541
Hunan 0.707 1.000 1.000 1.000 0.596 0.632 0.675 0.592 0.403

Heilongjiang 1.007 1.000 1.000 1.000 1.031 1.022 1.000 1.000 1.000

West Yunnan 0.563 0.463 0.420 0.518 1.000 0.651 0.556 0.515 0.503
Sichuan 1.104 1.110 1.052 1.083 1.044 1.091 1.096 1.127 1.248
Gansu 0.397 0.462 0.406 0.411 0.421 0.400 0.384 0.410 0.295

Ningxia 0.321 0.336 0.300 0.327 0.314 0.310 0.321 0.341 0.323
Qinghai 0.893 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.474

Chongqing 1.137 1.108 1.108 1.108 1.117 1.113 1.172 1.127 1.243
Xinjiang 0.776 1.000 1.000 1.000 1.000 1.000 0.478 0.506 0.448

Inner Mongolia 0.392 0.398 0.429 0.405 0.433 0.408 0.388 0.349 0.338
Guangxi 0.741 0.561 0.583 0.731 0.677 0.523 1.000 1.000 1.000
Guizhou 1.181 1.032 1.022 1.123 1.172 1.264 1.339 1.281 1.308
Shaanxi 1.070 1.022 1.119 1.102 1.085 1.083 1.055 1.050 1.047
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In the eastern region of China, Hebei, Beijing, Tianjin, Shandong, and Jiangsu have maintained
high efficiency levels, indicating that the eastern route of China’s south-to-north water diversion project
has played an important role in the eastern part of the country. As the Yellow River flows through
Inner Mongolia, Ningxia, and Gansu, the agricultural production efficiency fluctuates between 0 and
0.4, which means the efficiency level is relatively low. In the middle region, the efficiencies of Hubei,
Hunan, Jiangxi, and other provinces are relatively low. Jiangxi has the lowest agricultural production
efficiency. It can be seen that there are still problems in agricultural production efficiency in the middle
region where the Yangtze River flows.

Figure 2 shows the level of agricultural production efficiency in the different regions of China by
using the bitmap.
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Figure 2. Geographical distribution of the overall agricultural production efficiency (China).

By calculating the efficiency values of the east, middle, west, and the whole nation in 2010–2017,
the average efficiency values of each region show a downward trend. In 2010–2012, the national
average efficiency dropped the most significantly, from 1.34 to 1.12. The rest of the year also showed a
downward trend, falling to 0.97 in 2017. Among them, the average efficiency of the eastern region
is the highest, and the middle region is the lowest. In 2015–2016, the efficiency of the eastern region
shows a temporary upward trend, but in 2017 it dropped to about 1.

In 2010–2011, the average efficiency values in the middle and western regions were similar.
However, in the following years, the efficiency level of the middle and western regions is higher than
that of the middle region, and the gap between the two regions gradually widens to about 0.3 in 2017.

In general, all regions should strengthen the improvement of agricultural production efficiency
and effectively curb the decline in agricultural production efficiency. Figure 3 shows the average
efficiency of agricultural production in eastern, middle, and western China in 2010–2017.
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3.3. Spatial Difference Analysis

In general, the overall Dagum Gini coefficient of China’s agricultural production efficiency
fluctuates between 0.18 and 0.26, and shows a continuous decline from 0.2445 to 0.1810 during
2010–2012. Subsequently, it shows an upward trend, reaching a peak of 0.2604 in 2017. It can be seen
that the overall regional differences in China show a U-shaped fluctuation within the research period,
and the overall regional differences show a growing trend.

From the perspective of intra-regional differences, the differences in the eastern regions are the
lowest, while the difference between the middle and western regions fluctuates around 0.2, showing a
high level of intra-regional differences. In the eastern regions, the level of intra-regional differences
generally shows a downward trend but shows a slight upward trend from 2014 to 2017, rising to 0.1254
in 2017. In the middle regions, the overall trend is that of a rise, from 0.2130 in 2010 to 0.2634 in 2017,
a significant increase of 23.7%. The western regions show the most significant increase, from 0.2136 in
2010 to 0.2919 in 2017, an increase of 36.7%, indicating greater intra-regional differences.

From the perspective of the evolution trend among regions, the level of inter-regional differences in
agricultural production efficiency in China tends to rise within the research scope, but the levels of the
east–west regions tend to decline. In 2010, the level of the east–west and east–middle regions fluctuated
around 0.28, while the level of the east–west regions was relatively low, only 0.217. From 2011 to 2017,
the level of the east–west regions is significantly lower than that of the middle–east regions, while the
level of the east–middle and middle–west regions shows an alternating rise, rising to more than 0.31
in 2017.

From the perspective of the evolution trend of the inter-regional differences’ sources and
contribution rates, the contribution rate of the inter-regional differences was the highest from 2010 to
2017, with an average annual rate of over 46% in 8 years, and the overall fluctuation was relatively
smooth. The contribution rate of intra-regional differences is second only to that of inter-regional
differences, and the evolution is flat from 2010 to 2017, fluctuating at around 26%. The intensity of
transvariation is the one with the lowest contribution rate. From 2010 to 2017, it fluctuated at around
20%. However, it showed an upward trend from 2015 to 2017 and increased to 25.77% in 2017. It can be
seen that China’s inter-regional differences are the main source of China’s overall regional differences.
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Table 5 summarizes the regional differences of China’s agricultural production, including
the Dagum Gini coefficient within and between regions, as well as the contribution rate of the
overall differences.

Table 5. The Dagum Gini coefficient and its decomposition results.

Year Overall
Intra-Regional Difference Inter-Regional Difference Contribution Rates (%)

East Middle West East–Middle East–West Middle–West Gw Gnb Gt

2010 0.2445 0.1952 0.2130 0.2136 0.2847 0.2786 0.2170 28.81% 55.87% 15.32%
2011 0.2040 0.0960 0.2042 0.2240 0.2340 0.2325 0.2181 26.31% 55.11% 18.58%
2012 0.1810 0.0497 0.2113 0.2119 0.2279 0.1816 0.2238 25.32% 56.59% 18.10%
2013 0.1978 0.1004 0.2176 0.1917 0.2765 0.1758 0.2430 26.54% 57.74% 15.72%
2014 0.2001 0.0663 0.2032 0.2290 0.2692 0.1943 0.2450 25.07% 58.26% 16.67%
2015 0.2124 0.0710 0.2417 0.2475 0.2732 0.1992 0.2706 26.29% 49.67% 24.04%
2016 0.2227 0.0917 0.2270 0.2410 0.3055 0.2110 0.2706 25.67% 58.24% 16.09%
2017 0.2604 0.1254 0.2634 0.2919 0.3216 0.2513 0.3195 27.69% 46.53% 25.77%

Notes: Gw refers to intra-regional differences; Gnb refers to inter-regional differences; Gt refers to intensity
of transvariation.

3.4. Kernel Density Estimation

On the whole, there are differences in the kernel density curves of the national, eastern, middle,
and western regions. However, the peak value of each region gradually moves to the left, and the
efficiency level tends to decline. The density distribution in the eastern region fluctuates greatly.

From 2010 to 2017, the peak value of the kernel density estimation curve showed a downward
trend, indicating that the concentration degree of agricultural production efficiency shows a downward
trend. From 2016 to 2017, the estimated curve shape of the national kernel density changes from
a multi-peak shape to a single-peak shape, with the peak value decreasing and kurtosis widening.
It shows that the differentiation degree of the whole country reduces.

The kernel density estimation curve of agricultural production efficiency in the eastern region
moves slightly to the left, and the overall efficiency level shows a downward trend. From 2015 to
2017, the peak in the eastern region gradually increases, especially in 2017. It can be seen that the
differentiation of the eastern region has increased. Moreover, in 2017, the peak in the eastern region
increased significantly, and the concentration in the eastern region also increased.

In the middle region, the right tail of the kernel density estimation curve moves slightly to the left,
and the level of agricultural production efficiency decreases. In addition, the kernel density estimation
curve changed from a single-peak shape to a multi-peak shape, and the regional difference increased as
well. In 2017, the peak density curve showed an obvious upward trend, with increasing concentration
and polarization in the middle region.

From 2010 to 2013, the peak value of the kernel density estimation curve in the western region
gradually decreased, and the regional concentration also decreased. From 2014 to 2017, the kernel
density curve changes from multi-peak shape to single-peak shape, indicating that there is a “spillover
effect” between provinces in the western region and the regional gap was narrowed. However, in 2017,
the kernel density curve in the western region changed to a multi-peak shape again, and the regional
gap further increased.

Figure 4 summarizes the distribution of the kernel density curves in the national, east, middle,
and western regions.
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3.5. Climate to Agricultural Production and Crop Disaster Area

In terms of extreme weather days, most provinces have fewer than 200 days. The province with
the lowest number of extreme weather is Yunnan, with 56.375 days. The province with the most
extreme weather is Qinghai, with 230.375 days, accounting for about 63% of the year’s total. In terms
of gross output value of agricultural, regional differences are also large, with a maximum difference
of 4208.3625 billion CNY. Qinghai has the lowest total output value, which is 132.1875 billion CNY.
The highest is Shandong at 4340.55 billion CNY. This is because extreme weather has a huge impact
on agriculture.

There is a negative correlation between the gross output value of agricultural and extreme weather
days. Qinghai, for example, has the highest number of extreme weather and the lowest gross output
value for agriculture. The same is true of Beijing, which has relatively higher extreme weather days and
a low agricultural output value (154.8625 billion CNY). In contrast, Sichuan has less extreme weather
(95 days), and its gross output value of agricultural is high (3040.1625 billion CNY), which shows that
extreme weather has a significant impact on agricultural economy. In turn, Shandong and Henan
are special. Shandong, in particular, is China’s vegetable base, featuring a large shed for farming;
its modern farming methods are also less vulnerable to extreme weather.
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Crop disaster area is positively correlated with extreme weather days. For example, there are
more extreme weather in Inner Mongolia (198.75 days); its crop disaster area is 2498.675 thousand
hectares, the largest in China. Zhejiang experiences less extreme weather (87.375 days) and its crop
disaster area is smaller (469.4 thousand hectares). See Figure 5 for details.
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In general, there is a negative correlation between extreme weather days and the overall agricultural
production efficiency. As far as the eastern region is concerned, Fujian, Guangdong, Liaoning,
and Shanghai show an obvious negative correlation. The more extreme the weather days, the less
efficient the province’s agricultural production. In the middle region, the negative correlation is weak,
but an inverse relationship can still be seen. In the western region, the negative correlation is obvious,
especially in Inner Mongolia, Ningxia, Qinghai, and Shaanxi, with a large longitudinal wheelbase
distance. It can be seen that extreme weather also has a huge impact on agricultural production.
See Figure 6 for details.
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3.6. Efficiency Analysis of Input-Output Index

In the input–output variables of agricultural production, the improvement value of GOVA is
almost 0, and the improvement range is small. However, in some provinces, especially in the middle
and western regions, the improvement values of AWC, CIA, and CDA are relatively large.

In the central region, the improvement values of Anhui and Jiangxi are higher, among which the CIA
improvement value of Jiangxi is 1113.739, with a larger improvement range. Secondly, the improvement
value of CDA in Hubei, Jilin, Jiangxi, and Shanxi is more than 500, and the highest improvement value
is 968.968 in Hubei. In the western region, the improvement values of AWC, CIA, and CDA are higher
in Inner Mongolia and Ningxia, and the highest CDA value is 2059.016 in Inner Mongolia. In addition,
the average CIA improvement value in Inner Mongolia is 2043.147, with a large improvement range.

To sum up, among the input–output variables in China, the improvement range of GOVA in each
region is relatively small, and each region maintains a high level of output. The improvement value of
the CDA in input–output variables is the largest, which needs to be improved. Table 6 calculates the
improvement values of the input–output variables in the abovementioned provinces over the past
eight years. See Table 6 for details.

Table 6. Improvement value of the input–output variables.

Region DMU AWC
(MCM)

AE
(104 P)

CIA
(103 H)

GOVA
(108 CNY)

CDA
(103 H)

East Beijing 0.000 0.000 0.000 0.000 0.000
Fujian 0.000 0.000 0.000 0.000 0.000

Guangdong 15.365 30.405 0.000 0.000 1.947
Hainan 0.000 0.000 0.000 0.000 0.000
Hebei 0.000 0.000 0.000 0.000 0.000

Jiangsu 0.000 0.000 0.000 0.000 0.000
Liaoning 4.839 9.474 84.451 0.000 100.238

Shandong 0.000 0.000 0.000 0.000 0.000
Shanghai 0.000 0.000 0.000 0.000 0.000

Tianjin 0.000 0.000 0.000 0.000 0.000
Zhejiang 0.179 0.000 119.610 0.000 173.353

Middle Anhui 59.818 488.697 2456.613 0.000 808.082
Henan 0.000 0.000 0.000 0.000 0.000

Heilongjiang 0.000 0.000 0.000 0.000 0.000
Hubei 16.606 171.319 428.170 0.000 968.968
Hunan 34.446 223.382 354.586 0.000 675.631

Jilin 28.329 21.497 770.171 0.000 524.753
Jiangxi 108.350 287.984 1113.739 0.000 598.426
Shanxi 13.498 240.398 687.358 1.160 799.944

West Gansu 40.920 415.942 636.620 0.000 826.647
Guangxi 60.035 335.971 11.894 0.000 297.941
Guizhou 0.000 0.000 0.000 0.000 0.000

Inner Mongolia 91.868 11.348 2043.147 0.000 2059.016
Ningxia 44.304 66.551 250.166 0.616 234.231
Qinghai 0.582 2.986 0.000 12.636 32.681
Shaanxi 0.000 0.000 0.000 0.000 0.000
Sichuan 0.000 0.000 0.000 0.000 0.000
Xinjiang 141.622 0.000 950.458 0.000 108.955
Yunnan 28.447 610.461 252.999 15.049 844.679

Chongqing 0.000 0.000 0.000 0.000 0.000
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4. Conclusions

Based on the super-efficiency SBM model, Dagum Gini coefficient, and kernel density estimation
method, this research analyzed the agricultural production efficiency and spatial differences of 30
provinces in China, obtaining the following conclusions and suggestions.

(1) Agricultural production efficiency is unevenly distributed. Among the three regions in China,
the agricultural production efficiency of the eastern region is the best, and the agricultural production
efficiency of the western region is inferior to other regions. As the eastern region is located in the
coastal areas, its climate conditions and agricultural investment environment are better. With the
eastern route of the south-to-north water diversion project entering a stable operation period, the water
shortage in the north of China (Beijing, Tianjin, and Hebei) has been alleviated, and the agricultural
production efficiency level in the north of China has remained above 1. In 2017, the precipitation
in Liaoning reduced by 22%, and disasters such as drought, heavy rain, and strong wind occurred.
Therefore, due to the impact of natural disasters, the agricultural production efficiency in Liaoning has
declined significantly.

However, the middle region is located in the interior of China, dominated by a temperate,
continental climate; so, its agricultural production efficiency level is low. The agricultural production
efficiency decreases from 0.764 to 0.536. In the process of agricultural input and output, the improvement
values of CIA and CDA in the middle region are high. It can be seen that the efficiency value of
the above two variables should be increased in this region to promote the overall efficiency level.
In the middle region, Henan and Heilongjiang, China’s major traditional agricultural provinces, have
the right terrain and environment for crop production. Henan provides investment for agriculture
through agricultural risk subsidy projects, which improves and optimizes the agricultural production
efficiency of Henan. Heilongjiang, on the other hand, has a wide range of black land resources
and water resources, so it has made great efforts to develop agricultural resources and improve its
agricultural production efficiency by taking advantage of the centralized production of state-owned
farms. In addition, the agricultural labor force population in Anhui has been lost due to the “siphoning
effect” in Shanghai, Jiangsu, and Zhejiang, thus promoting the loss of agricultural production efficiency.
It can be seen that the ladder efficiency gap in the middle region is relatively significant. The climatic
features of the western region are mainly drought and little rain, and the agricultural production
conditions are relatively harsh, but agricultural production efficiency fluctuates around 0.75. In the
western region, Sichuan, Chongqing, Guangxi, and other provinces have abundant agricultural water,
and a higher agricultural production efficiency has been achieved through manual development and
mechanical operation. However, Gansu, Ningxia, and Inner Mongolia, due to their climatic features
and topographical environment, have kept their agricultural production efficiency at a low level and
failed to operate efficiently. Among them, the improvement values of the CDA in these three provinces
are high, so the efficiency level of the variable should be effectively improved.

(2) Regional differentiation of agricultural production efficiency is significant. Based on the study
of the Dagum Gini coefficient, it can be seen that the intra-regional Gini coefficient in the middle
region and the western region is more differentiated, which is consistent with the above exploration of
agricultural production efficiency. Under the intervention of the intra-regional environment, climatic
differences, and economic factors, the intra-regional differences between the middle and western
regions are larger than those between the eastern regions, and there is a ladder efficiency gap within
the regions. As for the inter-regional Gini coefficient, it can be seen that the efficiency between regions
fluctuates around 0.2. Due to the frequent population mobility and agricultural investment resources
in the eastern and middle regions, which mainly flow from the middle region to the eastern region,
the regional gap of the east–middle regions has increased significantly. The analysis of agricultural
production efficiency between regions shows that the difference between the regions is the main source
of regional development inequality. By using the kernel density estimation method, it is found that the
concentration degree of the agricultural areas in the country decreases, the distribution of agricultural
water resources in the regions is more balanced, and the differences between the different regions in
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the country gradually decrease. However, from the perspective of various regions, the integration of
agricultural water resources in the eastern region is accelerating, and the distribution of agricultural
resources tends to be concentrated. In 2017, the nuclear density estimation curve in the eastern region
showed multiple peaks and the peak value increased. In the middle region, the right tail of the kernel
density estimation curve moved slightly to the left, and the agricultural production efficiency showed
a downward trend.

(3) All regions should strengthen the prevention and control of meteorological disasters. In recent
years, as the global climate continues to warm, extreme weather events between regions have become
more frequent, causing increasing losses and impacts. Among them, northeast China is most affected
by low temperatures in winter, while hot weather in summer prevails throughout the country. In the
face of severe high temperatures, local governments should organize the formulation of emergency
plans. Under the premise of ensuring daily cultivation, local governments should reasonably improve
the agricultural structure and layout and reform the farming system. By measuring the range of
temperature changes in local areas, reasonable crops and water consumption can be used to improve
the water-use efficiency. In addition, the relationship between crop growth and development, yield
formation, and climatic conditions should be clarified in the reform of planting systems, so as to
rationally utilize agro-climatic resources, prevent agro-climatic disasters, and improve the ability to
cope with climate change. In the face of the low temperature disaster in some agricultural areas,
each region should promote the improvement of crop insulation measures, by spraying warm water
measures, supplement crop water, inhibit the evaporation of frozen tissue water, and promote tissue
water absorption. Under the guarantee of early warning measures, farmers can build greenhouses and
control light, temperature, and humidity in the sheds.

(4) All regions should ensure the supply of water for agriculture. As most of China’s agricultural
areas are located in rural and suburban areas, their investment in facilities and the penetration rate
of agricultural application technology are worse than those in urban areas. In the eastern region,
the eastern route of the south-to-north water diversion project alleviates the disadvantages caused
by the uneven distribution of water resources in the region, but it does not solve the “last kilometer”
problem of agricultural irrigation. According to the distribution of local farmland and surrounding
waters, the local township government and the county government should strengthen the construction
of the last-stage water transmission channel, so as to make the south-to-north water diversion project
truly benefit the majority of farmers to get rid of the vicious circle of agricultural water caused by
long-term over-extraction of groundwater. However, the middle and western regions that the Yellow
River flows through, such as Shaanxi, Ningxia, and Gansu, despite its rich resources for irrigation,
produced “the river” problem because of the sediment deposition in the Yellow River, a faltering
tributary, and the downstream riverbed elevation in the lower provinces. Furthermore, during the
summer rainstorm, there is the danger of bursting the dike. Based on this situation, the provinces and
regions in the Yellow River basin should set up unified and efficient regional remediation departments,
with the support and guidance of the middle government. Based on the overall situation of the Yellow
River basin, the governance problem of the Yellow River basin is planned. The safe supply of irrigation
water and the smooth development of agricultural production in the agricultural areas of the river
basin can be guaranteed by carrying out comprehensive control of soil and water conservation, “curve
cut-off”, and other measures. In addition, according to the unified planning and arrangement of
the Yellow River basin, the differences between regions and provinces should be weakened, and the
differences in inter-region agricultural water use should be reduced through coordinated development.
Through the above measures, China would be able to promote development within the region and
reduce the differences between regions and within regions.

(5) All regions should promote the spread of water-saving measures in agriculture.
In China, the main target of agricultural water-saving technology popularization is the farmers.
However, the popularization of water-saving technology in China has been hindered to some extent
due to the low educational level of agricultural employees, the deep-rooted thinking of traditional
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farming methods, and the poor operation and acceptance ability of agricultural water technology.
In this context, village committees in different regions of China should make full use of agricultural
assistance funds, guide local government departments to provide capital assistance for asset investment,
and promote the popularization of water-saving agricultural facilities in rural areas and other remote
areas. Moreover, advanced farmers should take the lead to improve the thinking of agricultural
workers and reduce the obstacles to the popularization of water-saving technologies in agriculture.
The coordinated planning and development of certain measures, such as the improvement of crop
varieties, the overall arrangement of irrigation management modes, the change in thoughts about
agricultural employees, and the use of the “spillover effect” to promote the spillover of agricultural
water-saving technologies, would be conducive to the improvement of regional and inter-regional
differences and thus promote a balanced development of agricultural water-use areas in China.
These measures can effectively reduce the regional agricultural water concentration and promote the
balanced development of the three regions in China.
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