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Abstract: Background: Little is known about the overall impact of immunosuppressive drugs on the
prostate. The study aimed to determine the impact of different protocols of immunosuppressive
treatment on the structure of the rat ventral prostate. Methods: For 6 months, 48 male Wistar rats
received immunosuppressive drugs: cyclosporin A, tacrolimus, mycophenolate mofetil, rapamycin,
and prednisone, according to three-drug protocols. Light and transmission electron microscopic studies,
and quantitative evaluation of immunohistochemical expression of selected intermediate filaments,
CD117+ mast cells, and CD138+ plasma cells were performed in the rat ventral prostate. Results: In all
experimental groups, acini focal hyperplasia, changes to the ultrastructure of the glandular epithelium,
changes in the expression of cytokeratins and desmin, and numerous mast and plasma cells in the prostate
stroma were found. In cyclosporine-A-based groups, atrophy and numerous intracellular vacuoles
were observed. In groups where a three-drug treatment was replaced with rapamycin, morphological
alterations were less severe compared to those without conversion. Conclusions: In the rat ventral
prostate, (1) immunosuppressive protocols affect the morphology and immunohistochemical expression
of intermediate filaments, (2) morphological alterations, expression, and localization of selected proteins
are not connected with adenocarcinoma development, and (3) conversion of the treatment to rapamycin
may prevent hyperplastic abnormalities.

Keywords: Immunosuppressants; rat; ventral prostate; intermediate filaments; mast cells; plasma cells;
ultrastructure; rapamycin

1. Introduction

Advancements in immunosuppressive therapy have produced treatment protocols using a
combination of different drugs that are clearly effective in decreasing acute rejection episodes [1].
In transplant recipients, immunosuppressive protocols are usually based on combinations of three
drugs from different classes, which provide different mechanisms of action. The conventional
immunosuppressive protocols include calcineurin inhibitors (e.g., cyclosporin A (CsA), tacrolimus (Tac)),
corticosteroids (e.g., prednisone (Pred)), inhibitors of purine synthesis (e.g., mycophenolate mofetil (MMF)),
and less routinely used mammalian target of rapamycin (mTOR) inhibitors (e.g., rapamycin (Rapa)) [2].
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A combination of immunosuppressive drugs is steadily maintained within the first months after kidney
transplantation. However, in some cases, modification of the immunosuppression protocols is needed
because of drug toxicity. Therefore, an important factor is the choice of an appropriate immunosuppressive
treatment regimen, which maximizes the overall therapeutic effectiveness and minimizes the risk of
adverse effects.

As a result of the use of immunosuppressive drugs, a considerable decrease in the incidence of graft
rejection has been observed; however, this has been correlated with an increased frequency of infections
and cancers, including genitourinary malignancies [3,4]. One of the factors that may be important in
pathomorphological diagnostics is the expression of intermediate filament (IF) proteins such as cytokeratin
and desmin. Altered expression patterns related to IF that are the result of immunosuppressive drug
supply may indicate that adverse changes are associated with inflammation or cancer development.
Different patterns of cytokeratin expression have been observed in prostatic glandular epithelium in cases
of prostate inflammation, benign prostate hyperplasia (BPH), and malignant neoplasia [5,6]. In turn,
desmin is a specific marker for late-stage differentiation in the smooth muscle lineage and might be of
prognostic value in evaluating patients with prostate cancer [7]. Many studies have demonstrated that
administration of calcineurin inhibitors is associated with a higher risk of cancers, including prostate
cancer, in patients after organ transplantation [4,8]. Despite this, little is known about the overall impact of
immunosuppressive drugs on the prostate. There are only a few reports showing the influence of single
immunosuppressants on this gland [9]. Our earlier research used multi-drug protocols and revealed
morphological alterations and changes in the expression of specific proteins (including IF proteins and
proliferating cell nuclear antigen (PCNA)), as well as abnormalities leading to the fragmentation of DNA
within the rat prostate [10,11]. Until now, no other studies have reported a comparison of the long-term
effects of multi-drug immunosuppressive protocols on the rat prostate. The present study is a continuation
and an extension of previous research [10,11] on the rat ventral prostate. It is worth noting that the rat
ventral lobe is widely used as a valuable model for the studies of human prostate diseases, and many
molecular mechanisms controlling carcinogenesis and androgen-dependent processes are similar in both
glands [12,13]. Moreover, the rat ventral male prostate is morphologically homologous to the female
prostate (Skene’s paraurethral gland) in other rodents and humans [14].

The study was designed to determine the impact of different protocols of immunosuppressive
treatment used in clinical practice, particularly on the morphology, expression of IF proteins, and presence
of mast cells and plasma cells in the rat ventral prostate.

2. Materials and Methods

2.1. Animals

The studies were performed on 48 sexually mature 14 week old male Wistar rats. The animals had
genetic and health certificates issued by a veterinarian. Prior to the experiment, all animals survived the
2 week adaptation period. Rats were fed with the specialized laboratory diet LSM (1474 kJ/100 g; 17.6%
protein (Agropol, Motycz, Poland)). The rats were divided into one control group and seven experimental
groups (six rats in each group) and were housed in standard cages (six rats per cage). Rats in the control
group received bread balls without any medication. The animals in the experimental groups received
immunosuppressive drugs (in their pharmaceutical form) orally in a ball of bread every 24 h for 6 months.
Rats were administered Rapa (0.5 mg/kg of body weight/day; Rapamune; Pfizer, Inc., New York, NY, USA),
CsA (5.0 mg/kg of body weight/day; Sandimmum-Neoral; Novartis International AG, Basel, Switzerland),
Tac (4.0 mg/kg of body weight/day; Prograf; Astellas Pharma Inc., Tokyo, Japan), MMF (20.0 mg/kg
of body weight/day; CellCept; Hoffman-La Roche Ltd., Basel, Switzerland), and Pred (4.0 mg/kg of
body weight/day; Encorton; Polfa, Pabianice, Poland), according to the standard three-drug regimens of
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immunosuppressive treatment commonly used in human transplant recipients (Figure 1). The drug doses
were based on reported data [15,16]. In addition, they were adjusted according to body mass and were
calculated to be equivalent to the doses used in human therapy, while accounting for metabolic differences.
The animal welfare procedures, study design, and experimental protocol were approved by the Local
Ethical Committee for Experiments on Animals of the Pomeranian Medical University, Szczecin, Poland
(No. 26/2011, No. 06/08 and No. 24/08).
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mofetil, and prednisone; RTP: rats treated with rapamycin, tacrolimus, and prednisone; Tac: 
tacrolimus; TMP: rats treated with tacrolimus, mycophenolate mofetil, and prednisone; TMP/R – rats 
treated with tacrolimus, mycophenolate mofetil, and prednisone in the first three months and 
rapamycin in the last three months. 
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Forty-six rats completed the study (two rats in the RCP group died in the fourth month of the 
experiment) [11]. After 6 months, all animals were anaesthetized with intraperitoneally administered 
ketamine hydrochloride (50 mg/kg). Ventral lobes of the rat prostates were obtained for sectioning. 
For immunohistochemistry, tissues were routinely fixed in 4% buffered paraformaldehyde and were 
then embedded in paraffin.  

2.3. Drug Concentrations 

To determine the concentrations of individual immunosuppressive drugs, a separate experiment 
was performed on a group of 36 14 week old male rats. The animals were divided into one control 
and five experimental groups (six rats in each group). In experimental groups, rats were administered 
drugs every 24 hours in bread balls according to the three-drug regimens and doses identical to those 
used in the previous experiment (except protocols with conversion to rapamycin). After two weeks, 

Figure 1. The scheme of the experiment. C: control group; CMP: rats treated with cyclosporin A,
mycophenolate mofetil, and prednisone; CMP/R: rats treated with cyclosporin A, mycophenolate mofetil,
and prednisone in the first three months and rapamycin in the last three months; CsA: cyclosporin A;
MMF: mycophenolate mofetil; Pred: prednisone; Rapa: rapamycin; RCP: rats treated with rapamycin,
cyclosporin A, and prednisone; RMP: rats treated with rapamycin, mycophenolate mofetil, and prednisone;
RTP: rats treated with rapamycin, tacrolimus, and prednisone; Tac: tacrolimus; TMP: rats treated with
tacrolimus, mycophenolate mofetil, and prednisone; TMP/R – rats treated with tacrolimus, mycophenolate
mofetil, and prednisone in the first three months and rapamycin in the last three months.

2.2. Collection of Material for the Study

Forty-six rats completed the study (two rats in the RCP group died in the fourth month of the
experiment) [11]. After 6 months, all animals were anaesthetized with intraperitoneally administered
ketamine hydrochloride (50 mg/kg). Ventral lobes of the rat prostates were obtained for sectioning.
For immunohistochemistry, tissues were routinely fixed in 4% buffered paraformaldehyde and were then
embedded in paraffin.
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2.3. Drug Concentrations

To determine the concentrations of individual immunosuppressive drugs, a separate experiment
was performed on a group of 36 14 week old male rats. The animals were divided into one control and
five experimental groups (six rats in each group). In experimental groups, rats were administered drugs
every 24 h in bread balls according to the three-drug regimens and doses identical to those used in the
previous experiment (except protocols with conversion to rapamycin). After two weeks, the experiment
was completed. The animals were anaesthetized with ketamine hydrochloride given intraperitoneally
(50 mg/kg of body mass). The immunosuppressive drugs’ concentrations were measured after 4 h of enteral
administration [16]. The Rapa concentration was measured in whole blood samples collected in tubes
with a 10% (w/v) sodium ethylenediamine-tetraacetic acid (EDTA) in distilled water. After centrifugation,
the Rapa concentration was measured using high-performance liquid chromatography (HPLC) with the
UV-absorbance method, following extraction by 1-chlorobutane. Desmethoxysirolimus constituted an
internal standard. HPLC-UV analysis was performed using a Hewlett-Packard series 1050 instrument
(Agilent, Palo Alto, CA, USA) with a UV variable wavelength detector. Reversed-phase chromatography
was performed on an Alltech Alltima column packed with C18 (150 mm × 2.1 mm, particle size 5 µm)
at 50 ◦C. The mobile phase was composed of acetonitrile (60%) and water (40%) (v/v), and the flow
rate was 0.5 mL/min. The detection wavelength was 278 nm, and the limit of detection was 1 ng/mL.
The concentrations of CsA and Tac were also measured in the whole blood of the rats, collected in tubes with
a 10% (w/v) solution of EDTA in distilled water. The determination of Tac concentration was performed
using an IMx test, which is based on a microparticle enzyme immunoassay (MEIA). The measurements
were performed using an Abbott apparatus (Abbott Laboratories, Park, USA). The concentration of CsA
was determined with an AxSYM test (Abbott Laboratories, Park, USA), which is based on a fluorescence
polarization immunoassay (FPIA).

2.4. Transmission Electron Microscopy

The ventral lobes of the rat prostates were washed with phosphate-buffered saline (PBS) and cut into
pieces of ∼1 mm3. Next, they were fixed with a 2.5% (v/v) glutaraldehyde solution (Sigma-Aldrich Co.,
St Louis, MO, USA) in 0.1 mol/L sodium cacodylate buffer (Sigma-Aldrich Co., St Louis, MO, USA) at
pH 7.4 for 2 h at 4 ◦C. The tissue was then postfixed in 1% (w/v) osmium tetroxide (OsO4; Sigma-Aldrich Co.,
St Louis, MO, USA) in 0.1 mol/L cacodylate buffer for 2 h at 4 ◦C. The tissue was dehydrated in ethyl alcohol
(30–96%) (v/v) and 100% acetone and embedded in Spurr epoxy resin (Polysciences, Inc., Warrington,
PA, USA). Semi-thin sections (1 µm) and ultra-thin sections (70 nm) were cut using a Reichert OmU3
ultramicrotome (Reichert, Vienna, Austria). Before proceeding to electron-microscopic evaluation, semi-thin
sections were stained with 0.4% (w/v) aqueous toluidine blue solution (Sigma-Aldrich, St. Louis, MO,
USA) and examined using a light microscope (Olympus BX 41, Hamburg, Germany) to identify the area of
interest for TEM. The histopathological analysis was performed in intermediate segment of rat ventral
prostate according to Bosland et al. [17] guidelines. The stained sections were independently examined by
two experienced pathologists. In turn, ultra-thin sections were collected on copper grids (Sigma–Aldrich,
Co., St Louis, MO, USA) and double-stained with 9% alcoholic uranyl acetate (Sigma-Aldrich Co., St Louis,
MO, USA) and 2.66% alkaline lead citrate (Sigma-Aldrich Co., St Louis, MO, USA). The samples were
examined using a JEM-100CX TEM (JEOL, Tokyo, Japan).

2.5. Immunohistochemistry

Immunostaining of paraffin-embedded ventral prostate tissue sections from rats was performed
following the manufacturer’s guidelines (Dako, Glostrup, Denmark). Sections (3 µm thick) were
deparaffinized with xylene and rehydrated in a graded ethyl alcohol series (99.8−50%) (v/v).
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Antigen retrieval was carried out by boiling the slides for 30 min in Target Retrieval Solution Citrate
(Dako, Glostrup, Denmark) at pH 6.0 (for desmin) and in Target Retrieval Solution (Dako, Glostrup,
Denmark) at pH 9.0 (for cytokeratin MNF116, pan-cytokeratin (CK PAN), and high-molecular-weight
cytokeratins (CK HMW), CD117 and CD138). The activity of endogenous peroxidase was blocked by
treating slides with peroxidase-blocking solution (Dako, Glostrup, Denmark) for 10 min. Next, the slides
were washed in PBS. To determine the localization and immunoexpression of the specific intermediate
proteins, the following antibodies were used: (1) rabbit monoclonal antibody IgG against CD117/c-KIT
(clone EP10; Roche-Ventana Medical Systems, Tucson, AZ, USA), diluted 1:50; (2) mouse monoclonal
antibody IgG against CD138/syndecan-1 (clone B-A38; Roche-Ventana Medical Systems, Tucson, AZ,
USA), diluted 1:50; (3) mouse monoclonal antibody IgG against cytokeratin MNF116 (clone MNF116;
Dako, Glostrup, Denmark), diluted 1:50; (4) mouse monoclonal antibody IgG cocktail against CK PAN
(clone AE1/AE3/PCK26; Roche-Ventana Medical Systems, Tucson, AZ, USA), diluted 1:50; (5) mouse
monoclonal antibody IgG cocktail against CK HMW (clone 34βE12; Roche-Ventana Medical Systems,
Tucson, AZ, USA), diluted 1:50; and (6) mouse monoclonal antibody IgG against desmin (clone D33; Dako,
Glostrup, Denmark), diluted 1:50. The sections were incubated with the primary antibodies in a humid
chamber for 30 min. Afterward, the sections were incubated with a complex containing a secondary
antibody conjugated with horseradish peroxidase (Dako, Glostrup, Denmark). Next, diaminobenzidine
(Dako, Glostrup, Denmark) was applied. The all slides were counterstained with Mayer’s haematoxylin
(Sigma-Aldrich Co., St Louis, MO, USA), dehydrated in a graded ethyl alcohol series (50−99.8%) (v/v),
and xylene, and coverslipped. The slides were examined under a light microscope (Olympus BX 41,
Hamburg, Germany). The controls for reaction specificity were performed by replacing the primary
antibody with PBS.

2.6. Quantitative Computer Image Analysis of Immunohistochemistry

Quantitative computer image analysis was performed according the manufacturer’s protocol. All slides
were scanned at an absolute magnification of 200× (resolution of 0.25 µm/pixel) using a ScanScope AT2
scanner (Leica Microsystems, Wetzlar, Germany). The obtained digital images of the slides were analyzed
using an ImageScope viewer (Version 11.2.0.780; Aperio Technologies, Inc., Vista, CA, USA). CD117+ mast
cells and CD138+ plasma cells were manually counted in 30 random fields for each group (five random fields
from each rat) with an area of 0.60 mm2 from the digital images of the slides. For the automatic computer
analysis of cytokeratin MNF116 and desmin expression, a cytoplasmic v2 algorithm (version 11.2.0.780;
Aperio Technologies, Inc.) was used. Using the software, individual stains were calibrated by analyzing
sections and recording the average optical density values. The area of analysis was manually determined
(Figure 2A,B). The percentage of cells with weak, medium, and strong positive immunostaining were
determined for cytokeratin MNF116 (Figure 2C) and desmin (Figure 2D). The total number of cytokeratin
MNF116- and desmin-positive cells was counted in 30 random fields for each group (five random fields
from each rat), with an average area of 0.28 mm2 (for cytokeratin) and 0.12 mm2 (for desmin).

2.7. Statistical Analysis

Statistical analysis was conducted using Statistica 8.0 software (StatSoft, Krakow, Poland).
For quantitative values, the Kruskal–Wallis test with Dunn’s multiple comparison test for post hoc
analysis was performed. The cut-off level for statistical significance was p < 0.05.
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Figure 2. The cytoplasmic algorithm developed for the quantitative evaluation of immunohistochemical
expression of cytokeratin MNF116 (A,C) and desmin (B,D) in rat ventral prostate. Determination of analysis
area (A,B); marked up images with bronze, orange, and yellow pixels represent immunopositive cell
cytoplasm (strong, moderate, and weak intensity, respectively), while blue pixels depict immunonegative
nuclei (C,D).

3. Results

3.1. Immunosuppressive Drug Concentrations in the Blood of Rats

The concentrations of immunosuppressive drugs (Table 1) in the blood of rats in the experimental
groups were within the therapeutic range. In the blood of rats, the highest concentration of CsA
(1272 ± 556.7 ng/mL) was found in the RCP group. The highest concentrations of Rapa (6.5 ± 2.4 ng/mL)
and Tac (15.3 ± 9.2 ng/mL) were noted in the RTP group. The concentrations of MMF and Pred were not
measured because these measurements are not used in clinical practice.
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Table 1. Drug concentrations (ng/mL) in the blood of rats in the experimental groups.

Group
Cyclosporin A Tacrolimus Rapamycin

Median (Range) X ± SD Median (Range) X ± SD Median (Range) X ± SD

RTP − − 12.4 (6.8−28.2) 15.3 ± 9.2 5.6 (4.6−10.5) 6.5 ± 2.4

RCP 952.5
(887.0−2149.0) 1272.0 ± 556.7 − − 5.2 (3.0−15.0) 6.3 ± 4.4

RMP − − − − 1.2 (1.0−7.3) 2.3 ± 2.1

CMP 818.0
(647.9−865.2) 785.2 ± 83.3 − − − −

TMP − − 7.7 (1.5−30.5) 14.1 ± 13.1 − −

CMP: rats treated with cyclosporin A, mycophenolate mofetil, and prednisone; RCP: rats treated with rapamycin,
cyclosporin A, and prednisone; RMP: rats treated with rapamycin, mycophenolate mofetil, and prednisone; RTP:
rats treated with rapamycin, tacrolimus, and prednisone; TMP: rats treated with tacrolimus, mycophenolate mofetil,
and prednisone; X ± SD: arithmetical mean ± standard deviation.

3.2. Light-Microscopic Studies

Before proceeding electron-microscopic evaluation, semi-thin sections stained with toluidine blue
solution were examined (Figure 3). The rat ventral prostate has a tubulo-acinar structure. In the control
and experimental groups, rats’ acini were lined with cylindrical or cubical glandular epithelium, in which
both luminal and basal cells were observed (Figure 3A–H). Fibrous connective tissue, blood vessels,
smooth muscle fibers, and nerve tissue were observed in the stroma. The epithelium of rat ventral
prostate in the control group exhibited a relatively normal structure (Figure 3A). In all experimental
groups (RTP, RCP, RMP, CMP, CMP/R, TMP, and TMP/R), adverse morphological alterations in glandular
epithelium were found; however, the smallest changes were observed in the RTP group (Figure 3B).
Atrophy was mainly observed in the epithelium of the RCP group (Figure 3C), and in only a few areas in
the CMP group. Focal atypical hyperplasia was mainly found in the CMP (Figure 3D) and TMP groups,
but there were a few similar observations in the RMP (Figure 3E), CMP/R, and TMP/R groups. In the RMP
group, reactive hyperplasia in association with inflammatory cell infiltrate was also noted. Focal atypical
hyperplasia was manifested by the proliferation of luminal epithelial cells forming papillary infoldings
protruding into the lumen of acini, which do not obliterate the lumen of acini. Atypical cells often had
increased cytoplasmic/nuclear ratios and slightly hyperchromatic nuclei. In some areas, the glandular
epithelium was multilayered, and stratification of cell nuclei was noted. Moreover, in the CMP and TMP
groups, cytological alterations in the form of thick nuclear envelope, prominent nucleolus in the nucleus,
and increased variability in nuclear size were regularly observed (Figure 3D,F). These alterations constitute
part of the criteria for low-grade prostatic intraepithelial neoplasia (PIN). Interestingly, in the CMP/R and
TMP/R groups, focal atypical hyperplasia was less severe (Figure 3G,H) compared to those in the CMP
and TMP groups. Additionally, in the CMP and TMP groups, the average number of CD117+ mast cells
(10.5 and 11.2 respectively; Figure 3I,J) and CD138+ plasma cells (12.1 and 8.5 respectively) was higher than
that in control (Figure 3K) and all other experimental groups (Figure 3L–P and Figure 4). In the CMP/R
and TMP/R groups, the average number of CD117+ and CD138+ cells was lower (statistically insignificant
vs. CMP group, p = 0.005 vs. TMP group for CD117+ and statistically insignificant for CD138+) compare
to those in the CMP and TMP groups.
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Figure 3. Representative light micrographs of toluidine-blue-stained glandular epithelium (A–H),
immunolocalization of CD117+ cells in the stroma (I–P), and electron micrographs of epithelial luminal
cells (Q–X) of rat ventral prostate. Normal glandular epithelium in the control group (A); slight changes of
the epithelium in the RTP group (B); epithelial atrophy (green arrowhead) in the RCP group (C); prominent
nucleolus in the nucleus (black arrowheads) and focal atypical hyperplasia (violet arrowhead) of the CMP
group (D), the RMP group (E), and the TMP group (F); focal atypical hyperplasia without features of
prostatic intraepithelial neoplasia (white arrowhead) in CMP/R group (G); mast cells (orange arrows) in the
TMP/R group (H); CD117+ cells in the stroma (red arrowheads) of the CMP group (I), the TMP group (J),
the control group (K), the RTP group (L), the RCP group (M), the RMP group (N), the CMP/R group (O),
and the TMP/R group (P); normal cisterns of the rough endoplasmic reticulum (yellow arrowhead) in the
control group (Q); slightly distended cisterns of the Golgi apparatus (blue arrowheads) in the RMP group
(R); distended cisterns of the rough endoplasmic reticulum (yellow arrowheads) in the CMP group (S),
the TMP group (T), the CMP/R group (U), and the TMP/R group (V); condensed (light green arrowhead),
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flocculent (brown arrowhead), and star-shaped (light blue arrowhead) secretions in the RTP group (W);
epithelial atrophy and intracellular vacuoles in the RCP group (X). CMP: rats treated with cyclosporin A,
mycophenolate mofetil, and prednisone; CMP/R: rats treated with cyclosporin A, mycophenolate mofetil,
and prednisone in the first three months and rapamycin in the last three months; GA: Golgi apparatus;
N: nucleus; RCP: rats treated with rapamycin, cyclosporin A, and prednisone; RER: rough endoplasmic
reticulum; RMP: rats treated with rapamycin, mycophenolate mofetil, and prednisone; RTP: rats treated
with rapamycin, tacrolimus, and prednisone; TMP: rats treated with tacrolimus, mycophenolate mofetil,
and prednisone; TMP/R: rats treated with tacrolimus, mycophenolate mofetil, and prednisone in the first
three months and rapamycin in the last three months; v: vesicle.
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Figure 4. The average number of CD117+ and CD138+ cells in the stroma of rat ventral prostates in the
control and experimental groups. C: control group; CMP: rats treated with cyclosporin A, mycophenolate
mofetil, and prednisone; CMP/R: rats treated with cyclosporin A, mycophenolate mofetil, and prednisone in
the first three months and rapamycin in the last three months; RCP: rats treated with rapamycin, cyclosporin
A, and prednisone; RMP: rats treated with rapamycin, mycophenolate mofetil, and prednisone; RTP:
rats treated with rapamycin, tacrolimus, and prednisone; TMP: rats treated with tacrolimus, mycophenolate
mofetil, and prednisone; TMP/R: rats treated with tacrolimus, mycophenolate mofetil, and prednisone in
the first three months and rapamycin in the last three months; a, b: p < 0.001 vs. control; c: p < 0.05 vs. TMP
(Kruskal-Wallis test, n = 30 for each group); error bars represent standard deviations.

3.3. Transmission-Electron-Microscopic Studies

The luminal cells were the most abundant cells in the glandular epithelium of the ventral prostate in
control rats. These cells were mostly tall columnar cells with basal euchromatic nuclei. Numerous microvilli
as well as minute cytoplasmic projections on the apical surface of these cells were observed. The chromatin
substructure was not changed. Normal numbers and structure of mitochondria were observed.
Proper cisterns of the rough endoplasmic reticulum (RER) in the perinuclear region (Figure 3Q) and normal
Golgi cisterns in the apical part of the luminal cells were observed. Many secretory vesicles were also
found. In turn, basal cells with large flat nuclei were revealed. In all experimental groups (RTP, RCP, RMP,
CMP, CMP/R, TMP, TMP/R), ultrastructural changes in luminal cells of glandular epithelium of ventral
prostate were noted mainly in the RER and the Golgi apparatus (GA). Cisterns of the RER and the GA
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were distended (Figure 3R–V). In these cells, few mitochondria, cytoplasmic vacuoles, or secretory vesicles
were observed. In some areas, the epithelium showed stratification—most cells were of variable size.
Additionally, in the RMP group, disorders in the organization of organelles and shrunken irregular nuclei
were noticed; however, distended cisterns of the GA in the luminal cells were rarely observed (Figure 3R).
In the CMP and TMP groups, some areas of the epithelium had abnormal ultrastructure, and the cells had
distended cisterns of the RER and the GA as well as clearly defined nuclei, a prominent nucleolus in the
nucleus, and a thickened nuclear envelope (Figure 3S,T). In the CMP/R and TMP/R groups, changes in the
ultrastructure of luminal cells were less severe (Figure 3U,V) than they were in the CMP and TMP groups,
respectively. Interestingly, in only a few regions of the epithelium of the RTP group, luminal cells were
characterized by distended cisterns of the RER and the GA. In this group, many secretory vesicles with
condensed, flocculent, and star-shaped secretions were found (Figure 3W). It is worth noting that in the
CsA-based groups (RCP, CMP), numerous intracellular vacuoles were observed (Figure 3X). In the RCP
group and, to a lesser extent, in selected areas of the CMP group, epithelial atrophy, reduction of secretory
organelles, and lysosomal vesicles were found (Figure 3X).

3.4. Immunolocalization of Cytokeratin and Desmin

Cytokeratin MNF116-positive luminal and basal cells were observed in the glandular epithelium of
the rat ventral prostate in the control and experimental groups. The cells showing immunoexpression
of cytokeratin were characterized by a brown-stained cytoplasm (Figure 5A–H). To exclude cancerous
alterations in rat ventral prostate in all experimental groups, immunolocalization of CK PAN and CK
HMW was determined. In all groups, CK PAN and CK HMW expression was observed in luminal and
basal epithelial cells of the glandular epithelium, respectively. Desmin-positive smooth muscle cells with
brown-stained cytoplasm were found around the acini in the stroma (Figure 5I–P).

3.5. Quantitative Evaluation of Cytokeratin MNF116 and Desmin Immunoexpression

The percentages of cytokeratin MNF116-positive cells with weak, moderate, and strong expression
(Figure 6, Table S1) in the control group differed statistically (p < 0.001) from what was observed in all
of the experimental groups. The highest percentages of cytokeratin MNF116-positive cells with weak
expression were noted in the control group (53.2 ± 5.2%) and in the RTP group (35.4 ± 4.4%), while the
lowest percentage was noted in the TMP group (13.4 ± 5.3%). The highest percentage of cytokeratin
MNF116-positive cells with moderate expression was found in the RMP group (39.4 ± 6.4%), while the
lowest percentages were found in the control group (12.6 ± 4.0%) and in the RTP group (31.6 ± 4.4%).
The highest percentage of cytokeratin MNF116-positive cells with strong expression was found in the
TMP group (38.3 ± 5.5%), while the lowest percentages were found in the control group (3.7 ± 2.6%)
and in the RTP group (12.4 ± 4.1%). In the CMP/R group, the percentages of cells showing moderate
(36.5 ± 5.3%) and strong (18.0 ± 7.3%) expression of cytokeratin MNF116 were lower than they were
in the CMP group (38.6 ± 6.3% and 20.0 ± 6.6%, respectively), but the differences were not statistically
significant. Similarly, in the TMP/R group, the percentages of cells showing moderate (32.1 ± 7.4%)
and strong (26.9 ± 6.8%) expression of cytokeratin MNF116 were lower than those in the TMP group
(35.8 ± 8.1% and 38.3 ± 5.5%, respectively). In these cases, the difference in cells with moderate expression
between the groups was insignificant, but the difference in cells with strong expression between the groups
was significant (p = 0.031).
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Figure 5. Representative light micrographs of immunolocalization of cytokeratin MNF116 (A–H) and
desmin (I–P) in the rat ventral prostate. The different immunoexpression of cytokeratin in the cytoplasm
(brown color) of epithelial cells of acini (black arrows) and desmin in the cytoplasm (brown color) of smooth
myocytes around acini (red arrows) in the control group (A,I), the RTP group (B,J), the RCP group (C,K),
the RMP group (D,L), the CMP group (E,M), the CMP/R group (F,N), the TMP group (G,O), and the TMP/R
group (H,P); The inset shows a negative control (A). CMP: rats treated with cyclosporin A, mycophenolate
mofetil, and prednisone; CMP/R: rats treated with cyclosporin A, mycophenolate mofetil, and prednisone in
the first three months and rapamycin in the last three months; RCP: rats treated with rapamycin, cyclosporin
A, and prednisone; RMP: rats treated with rapamycin, mycophenolate mofetil, and prednisone; RTP:
rats treated with rapamycin, tacrolimus, and prednisone; TMP: rats treated with tacrolimus, mycophenolate
mofetil, and prednisone; TMP/R: rats treated with tacrolimus, mycophenolate mofetil, and prednisone in
the first three months and rapamycin in the last three months.

The percentage of desmin-positive cells (Figure 6, Table S1) with weak expression in the control group
differed statistically (p < 0.001) from that in the RTP, CMP, TMP, and TMP/R groups. The highest percentage
of desmin-positive cells with weak expression was found in the CMP/R group (50.7 ± 6.3%), while the
lowest percentage was found in the RTP group (31.9 ± 7.9%). The percentage of desmin-positive cells with
moderate expression in the control group differed statistically (p < 0.001) from that in the RCP, RMP, TMP,
and TMP/R groups. The highest percentage of desmin-positive cells with moderate expression was found
in the TMP group (48.1 ± 11.2%), while the lowest percentage was found in the RMP group (11.5 ± 4.8%).
The percentage of desmin-positive cells with strong expression in the control group differed statistically
(p < 0.001) from that in the RTP, CMP, and TMP groups. The highest percentage of desmin-positive cells
with strong expression was observed in the RTP group (21.6 ± 9.4%), while the lowest percentage was
observed in the CMP/R group (4.1 ± 3.9%). In the CMP/R group, the percentages of cells showing moderate
(29.7 ± 8.0%) and strong (4.1 ± 3.9%) expression of desmin were lower than those in the CMP group
(36.9 ± 5.6% and 20.0 ± 8.9%, respectively). The differences in the values of cells with moderate and strong
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expression among the groups were significant (p = 0.007 and p < 0.001, respectively). Similarly, in the
TMP/R group, the percentages of cells showing moderate (42.6 ± 5.9%) and strong (8.8 ± 5.9%) desmin
expression were lower than those in the TMP group (48.1 ± 11.2% and 15.8 ± 4.6%, respectively). In these
cases, the difference in the values of cells with moderate expression was insignificant among the groups,
but the difference in the values of cells with strong expression was significant among the groups (p = 0.037).
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Figure 6. The percentage of cytokeratin- and desmin-positive cells in the rat ventral prostate. C: control
group; CK: cytokeratin; CMP: rats treated with cyclosporin A, mycophenolate mofetil, and prednisone;
CMP/R: rats treated with cyclosporin A, mycophenolate mofetil, and prednisone in the first three months
and rapamycin in the last three months; DES: desmin; RCP: rats treated with rapamycin, cyclosporin
A, and prednisone; RMP: rats treated with rapamycin, mycophenolate mofetil, and prednisone; RTP:
rats treated with rapamycin, tacrolimus, and prednisone; TMP: rats treated with tacrolimus, mycophenolate
mofetil, and prednisone; TMP/R: rats treated with tacrolimus, mycophenolate mofetil, and prednisone in
the first three months and rapamycin in the last three months; p < 0.001 vs. control for weak (a), moderate
(b), and strong (c) expression of cytokeratin; p < 0.001 vs. control for weak (d), moderate (e), and strong
(f) expression of desmin; p < 0.05 vs. CMP for weak (g), moderate (h), and strong (i) expression; p < 0.05
vs. TMP for strong (j) expression (Kruskal–Wallis test, n = 30 for each grade of expression in each group);
error bars represent standard deviations.

4. Discussion

Immunosuppressive drugs are crucial for improving the survival of patients after organ transplantation.
However, long-term treatment with immunosuppressive drugs may also contribute to an increased risk of
particular organ damage and the occurrence of inflammation and malignancies within the prostate.

The present study is a continuation and an extension of research concerning the influence of different
immunosuppressive regimens on the rat prostate [10,11]. Our earlier research indicated that long-term
supply of the immunosuppressive agents in three-drug protocols affected the structural components,
proliferation and apoptosis processes in the rat ventral and dorso-lateral prostate [10,11]. The present
study confirmed this and presents in detail alterations in the ventral prostate (Figure 7), and also revealed
the existence of an association between immunosuppressive regimens, ultrastructural alterations, IFs,
number of mast cells and plasma cells, and carcinogenesis processes in a rat ventral lobe. Additionally,
we have summarized knowledge about the effects of immunosuppressive drugs on the rat’s ventral prostate.
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Figure 7. The effects of immunosuppressive regimens on the rat ventral prostate based on current
and previous [10] studies (details in the text). BPH: benign prostate hyperplasia; CsA: cyclosporin A;
GA: Golgi apparatus; LM: light microscopy; MMF: mycophenolate mofetil; PCNA: proliferating cell
nuclear antigen; Pred: prednisone; Rapa: rapamycin; RER: rough endoplasmic reticulum; Tac: tacrolimus;
TEM: transmission electron microscopy; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP
nick-end labeling.

It should be noted that many studies have addressed the effects of single immunosuppressants in
different organs and tissues. However, immunosuppressive agents may interact and affect each other’s
metabolism and action [18]. In addition, the effects of multi-drug immunosuppressive protocols usually
used in humans may differ significantly from those obtained for single-drug regimens. In the present
study, for the first time, ultrastructural changes and shifts in the expression of selected cytoskeleton
proteins in the rat ventral prostate were analyzed to assess multi-drug protocols as well as the conversion
of three-drug treatment to Rapa monotherapy. In order to eliminate the factors interfering with the
picture of the immunosuppressive drugs action, such as the ischaemia-reperfusion periods, comorbid
diseases, or immunological elements associated with the tissue compatibility antigens, the experiment was
conducted in rats in which transplantation was not performed. In our research, we applied a model of
therapy that is comparable to the long-term immunosuppressive treatment used in a clinical practice in
humans following organ transplantation. The duration of immunosuppressive drug administration was
6 months, which is analogous to approximately 15 years of human life [19]. It is worth noting that many
researchers have applied a relatively short duration of immunosuppressive agent administration [9,15].
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In our study, animals received drugs orally, while in other studies, immunosuppressive drugs were
administered intraperitoneally, subcutaneously, or intravenously [20,21].

The applied doses of immunosuppressive drugs allowed us to obtain drug concentrations in the
blood of the animals within the therapeutic range, rather than the toxic levels seen in other studies [22,23].
In the experiment performed by Rovira et al. [22], 12 h after the intraperitoneal administration of Rapa,
the concentration reached 38 ng/ml. In our study, 4 h after oral administration of Rapa, the concentrations
were appreciably lower. We decided to measure drug concentrations in rats 4 h after enteral administration
due to the metabolism of drugs being faster in rats than in humans [16].

Light- and transmission-electron-microscopic evaluation showed that the RTP group had the smallest
alterations in the glandular epithelium of the rat ventral prostate. In our earlier reports, we made similar
observations through histological evaluation [10,11]. In groups in which Rapa, CsA, and Pred as well as
CsA, MMF, and Pred were administered, epithelial atrophy and a reduction in the secretory organelles
in the rat ventral prostate were found. All transmission-electron-microscopic findings were consistent
with the alterations observed in the semi-thin sections. In our previous studies on the rat dorsolateral
prostate [11], we found that in rats that received CsA, MMF, and Pred, the epithelium was also markedly
atrophic, while in the rat ventral prostate [10], morphological evaluation using a light microscope revealed
a distinctly atrophic epithelium in Rapa, CsA, and Pred-treated rats. Other researchers confirmed that
CsA administration may lead to epithelial atrophy. Freitas et al. [9] observed atrophy of the epithelium
following a reduction in RER and GA or their total absence in the ventral prostate of CsA-treated rats.

In the present study, CsA-based protocols contributed to the occurrence of numerous intracellular
vacuoles. Studies from other authors performed on cell cultures of human T lymphocytes, monocytes,
and PtK2 cells revealed that CsA induced intracellular vacuoles and nuclear lobules. These specific
alterations have been attributed to the interactions of CsA with IFs [24,25]. In our study, in groups in
which conversion of the treatment from CsA- and Tac-based protocols to monotherapy with Rapa occurred,
there was less focal atypical hyperplasia and fewer alterations of luminal cell ultrastructure than was
observed in the CMP and TMP groups. These findings may be related to a decrease in PCNA-positive and
TUNEL-positive cells in our previous research on the rat ventral prostate [10]. Other authors [26] have
confirmed that Rapa decreases focal hyperplasia and prevents hypertrophic and hyperplastic alterations in
sulpiride-induced BPH in rats.

In our experiment involving CsA, MMF, and Pred or Tac, MMF, and Pred treatment of rats, numerous
mastocytes and plasma cells were noted. It is known that mast cells participate in the induction and
pathogenesis of selected inflammatory diseases. Previous research revealed that infiltrating inflammatory
cells play a crucial role in BPH development [27]. Therefore, a significant increase in mast cell number
and plasma cell infiltration in selected experimental groups could imply a potential role for these cells in
inflammation progression or enhancing the development of BPH.

In our study, it was shown that selected combinations of immunosuppressive drugs affected
immunohistochemical IF patterns in the epithelium of rat ventral prostates. The highest percentage
of cytokeratin MNF116-positive cells with strong expression was found in the groups in which Tac
(TMP and TMP/R) was administered. In turn, the CsA, MMF, and Pred or the Rapa, Tac, and Pred
treatments of rats produced the highest percentage of desmin-positive cells with strong expression. In our
recent studies on the rat dorsolateral prostate [11], we obtained similar results. Unfortunately, no literature
reports regarding the expression of cytokeratin and desmin in the prostate as a result of the use of
immunosuppressive drugs were found. However, Rezzani et al. [28] demonstrated that CsA induced an
increase in the number of IFs and induced modifications to desmin filaments.

It is known that most epithelial tumors maintain a specific cytokeratin expression that is associated
with the origin of cells. Therefore, cytokeratins are extensively used as immunohistochemical markers in
diagnostic pathomorphology. Cytokeratin PAN can be used as a marker of normal and abnormal epithelial
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cells, and also to determine the lineage of poorly differentiated malignant tumors [5]. In turn, CK HMW
are expressed in various normal and neoplastic epithelial cells. It has been revealed that CK HMW in the
prostate are markers of basal epithelial cells in normal glands. Prostatic adenocarcinoma, which is an
invasive form of cancer, typically lacks a basal cell layer, meaning there is no expression of CK HMW [6].
In our study, both CK PAN and CK HMW positive expression and morphological observations allowed us
to exclude prostate adenocarcinoma.

In our research into some areas of epithelium, the observed changes in selected experimental groups
met some of the criteria of low-grade PIN. Indirectly, this may be related to alterations in cytokeratin
expression. Yang et al. [29] revealed that cytokeratin 19 was expressed in luminal cells at high levels in
PIN lesions. The available data indicate a selective adverse effect of CsA on cytokeratin filaments in other
models [25,30]. Studies performed on the cell line PtK2 show that after 24 h of exposure to CsA [25],
CK filaments were thicker and had decreased attachment to the plasma membrane compared to what
was observed in control cells. Other researchers [30] have noted that CsA affects human keratinocytes in
culture by blocking the formation of cytoskeletal tonofibrils.

It has been suggested that CsA affects the molecular structure of the cytoskeletal elements via
hydrophobic interactions, influence on the cytokeratin regulatory system, or by binding to transmembrane
receptors responsible for rearrangement of intracellular components. In effect, CsA may induce
depolymerization of cytoskeletal proteins and modulate selected cellular processes [28]. The mechanism
of action of CsA is based on its specific binding to cyclophilin A. This complex inhibits the action of
calcineurin (CaN), which is Ca2+/calmodulin-dependent protein phosphatase, involved in the activation of
nuclear factor of activated T cell (NFATc) proteins. In normal conditions, activation of T-cell receptors
leads to increase of Ca2+ and subsequent activation of CaN, which causes dephosphorylation of NFATc,
thereby facilitating its translocation to the nucleus and regulation of gene expression [31]. It is known
that CaN directly controls cytoskeleton organization via NFATc-dependent transcriptional effects and also
assembly of microtubules [32]. Therefore, it may be suspected that Tac, which shows a mechanism of action
analogous to that of CsA by inhibiting CaN, interferes with the control of cytoskeletal filament organization.
Our research revealed that conversion of treatment from a three-drug protocol to monotherapy with Rapa
caused a decrease in the expression of cytokeratin MNF116 and desmin. We suggest that a decrease in
IF expression may be an effect of the antiproliferative properties of Rapa. Published data [33] show that
Rapa inhibits vascular smooth muscle cell migration and proliferation by blocking the progression of the
cell cycle.

It is known that long-term use of immunosuppressive drugs may have a negative effect on male fertility.
Previously, research has revealed that immunosuppressants may cause testicular injury and alterations
to the hypothalamic–pituitary–gonadal axis [34]. However, it should be noted that the prostate plays an
important role in male fertility. In both young and aged men, disorders in prostate structure and function
might affect the functioning of spermatozoa and, consequently, fertility [35]. Our results demonstrated
the adverse impact of selected treatment protocols on the prostate (Figure 4). Previously published data
revealed a relationship between immunosuppressive protocols and the development of prostate cancer [4].
Therefore, determination of the cytokeratin and desmin expression patterns might become the basis for
new pathophysiological diagnostic tools adapted to individual immunosuppressive treatment protocols.
In addition, there is a need for further research in these directions for the prostate.

Our research has limitations. Antibodies against cytokeratin-MNF116-labeled cytokeratins 5, 6, 8,
and 17 were used. According to the literature reports, in adult rat ventral prostate, in luminal epithelial
cells, the expression of cytokeratins 8, 18, and 19 was detected, while in basal epithelial cells, the expression
of cytokeratins 5, 7, 14, and 19 was found [36]. Therefore, it can be stated that in our study in luminal
cells, expression of cytokeratin 8 was observed, and cytokeratin 5 expression was noted in basal cells.
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It is worth mentioning that relating animal data to humans should be undertaken with special care,
because interspecies differences in the anatomical structure of the prostate and in drug metabolism exist.

5. Conclusions

In summary, our research provides new knowledge on the effects of immunosuppressive treatment
on the rat ventral prostate. In conclusion, we demonstrated that long-term supply of immunosuppressive
drugs in multi-drug protocols affects the morphology of luminal cells of the glandular epithelium and
immunohistochemical expression patterns of IFs in epithelial and stromal cells of the rat ventral prostate.
It can be stated that CsA-based protocols might be a cause of the occurrence of numerous intracellular
vacuoles and epithelial atrophy. Moreover, in selected experimental groups, the morphological changes
and the immunohistochemical localization of selected proteins were not connected with the development
of adenocarcinoma; these changes are probably a result of the chronic inflammatory process. It should be
highlighted that conversion of the treatment from CsA- and Tac-based protocols to Rapa may prevent
hyperplastic abnormalities in the rat ventral prostate. The obtained findings justify the clinical use of
mTOR inhibitors in therapy in patients with cancers, including transplant recipients suffering from prostate
cancer. Moreover, Rapa may be used for therapy in men with BPH after transplantation.

Based on the obtained results, it cannot be directly stated which treatment regimen is the best for
patients after transplantation, because the effects of immunosuppressive drugs on other organs should also
be considered. However, when referring only to the prostate, a regimen containing Rapa, Tac, and Pred
seems to be less dangerous. The obtained results might be useful in the explanation the underlying
mechanisms of prostate diseases under immunosuppression. Moreover, detailed analysis, proper linking
of selected processes, and understanding of interspecies differences and the limitations of the rat model
may allow the obtained data to be fitted to humans.
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Kram, A.; Rotter, I.; Rył, A.; Laszczyńska, M. Effects of an immunosuppressive treatment on the rat prostate.
Drug Des. Dev. Ther. 2016, 10, 2899–2915. [CrossRef] [PubMed]

12. Scolnik, M.D.; Servadio, C.; Abramovici, A. Comparative study of experimentally induced benign and atypical
hyperplasia in the ventral prostate of different rat strains. J. Androl. 1994, 15, 287–297.

13. Wang, Z.; Tufts, R.; Haleem, R.; Cai, X. Genes regulated by androgen in the rat ventral prostate. Proc. Natl. Acad.
Sci. USA 1997, 94, 12999–13004. [CrossRef] [PubMed]

14. Biancardi, M.F.; Dos Santos, F.C.A.; De Carvalho, H.F.; Sanches, B.D.A.; Taboga, S.R. Female prostate: Historical,
developmental, and morphological perspectives. Cell Boil. Int. 2017, 41, 1174–1183. [CrossRef] [PubMed]

15. Van Westrhenen, R.; Aten, J.; Hajji, N.; De Boer, O.J.; Kunne, C.; De Waart, D.R.; Krediet, R.T. Cyclosporin A Induces
Peritoneal Fibrosis and Angiogenesis during Chronic Peritoneal Exposure to a Glucose-Based, Lactate-Buffered
Dialysis Solution in the Rat. Blood Purif. 2007, 25, 466–472. [CrossRef] [PubMed]

16. Schmitz, V.; Klawitter, J.; Bendrick-Peart, J.; Schöning, W.; Puhl, G.; Haschke, M.; Klawitter, J.; Consoer, J.;
Rivard, C.J.; Chan, L.; et al. Metabolic Profiles in Urine Reflect Nephrotoxicity of Sirolimus and Cyclosporine
following Rat Kidney Transplantation. Nephron Exp. Nephrol. 2009, 111, e80–e91. [CrossRef]

17. Bosland, M.C.; Tuomari, D.L.; Elwell, M.R.; Shirai, T.; Ward, J.M.; McConnell, R.F. Proliferative lesions of the
prostate and other accessory sex glands in male rats. In Guides for Toxicologic Pathology; Society of Toxicologic
Pathology, American Registry of Pathology of the Armed Forces Institute of Pathology: Washington, DC, USA,
1998; pp. 1–20.

18. Cruzado, J.M.; Bestard, O.; Grinyó, J.M. New Immunosuppressive Protocols With the Advent of Novel Biological
Drugs. Transplantation 2009, 88, S20–S23. [CrossRef]

19. Quinn, R. Comparing rat’s to human’s age: How old is my rat in people years? Nutrion 2005, 21, 775–777.
[CrossRef]

20. Ysebaert, D.K.; De Greef, K.E.; Vercauteren, S.R.; Verhulst, A.; Kockx, M.; Verpooten, G.A.; De Broe, M.E. Effect of
immunosuppression on damage, leukocyte infiltration, and regeneration after severe warm ischemia/reperfusion
renal injury. Kidney Int. 2003, 64, 864–873. [CrossRef]

21. Caneguim, B.H.; Cerri, P.S.; Spolidorio, L.C.; Miraglia, S.M.; Sasso-Cerri, E. Structural alterations in the
seminiferous tubules of rats treated with immunosuppressor tacrolimus. Reprod. Boil. Endocrinol. 2009, 7, 19.
[CrossRef]

22. Rovira, J.; Arellano, E.M.; Burke, J.T.; Brault, Y.; Moya-Rull, D.; Banon-Maneus, E.; Ramirez-Bajo, M.J.;
Gutierrez-Dalmau, A.; Revuelta, I.; Quintana, L.F.; et al. Effect of mTOR inhibitor on body weight: From an
experimental rat model to human transplant patients. Transpl. Int. 2008, 21, 992–998. [CrossRef]

http://dx.doi.org/10.1007/s004280000238
http://www.ncbi.nlm.nih.gov/pubmed/11037348
http://dx.doi.org/10.1093/jnci/80.9.691
http://dx.doi.org/10.1038/17401
http://dx.doi.org/10.1177/0960327112444937
http://dx.doi.org/10.2147/DDDT.S111695
http://www.ncbi.nlm.nih.gov/pubmed/27672312
http://dx.doi.org/10.1073/pnas.94.24.12999
http://www.ncbi.nlm.nih.gov/pubmed/9371789
http://dx.doi.org/10.1002/cbin.10759
http://www.ncbi.nlm.nih.gov/pubmed/28258707
http://dx.doi.org/10.1159/000112475
http://www.ncbi.nlm.nih.gov/pubmed/18087149
http://dx.doi.org/10.1159/000209208
http://dx.doi.org/10.1097/TP.0b013e3181af666c
http://dx.doi.org/10.1016/j.nut.2005.04.002
http://dx.doi.org/10.1046/j.1523-1755.2003.00150.x
http://dx.doi.org/10.1186/1477-7827-7-19
http://dx.doi.org/10.1111/j.1432-2277.2008.00710.x


Int. J. Environ. Res. Public Health 2020, 17, 4614 18 of 18

23. Sanchez-Pozos, K.; Lee-Montiel, F.; Pérez-Villalva, R.; Uribe, N.; Gamba, G.; Bazan-Perkins, B.; Bobadilla, N.A.
Polymerized type I collagen reduces chronic cyclosporine nephrotoxicity. Nephrol. Dial. Transplant. 2010, 25,
2150–2158. [CrossRef]

24. Simons, J.W.; Noga, S.J.; Colombani, P.M.; E Beschorner, W.; Coffey, D.S.; Hess, A.D. Cyclosporine A, an in vitro
calmodulin antagonist, induces nuclear lobulations in human T cell lymphocytes and monocytes. J. Cell Boil.
1986, 102, 145–150. [CrossRef]

25. Vernetti, L.; Gandolfi, A.J.; Nagle, R.B. Selective Alteration of Cytokeratin Intermediate Filament by Cyclosporine
A is a Lethal Toxicity in PTK2 Cell Cultures. Plant Promot. Transcr. Fact. 1991, 283, 847–851. [CrossRef]

26. Lesovaya, E.A.; Kirsanov, K.I.; Antoshina, E.E.; Trukhanova, L.S.; Gorkova, T.G.; Shipaeva, E.V.; Salimov, R.M.;
Belitsky, G.A.; Blagosklonny, M.V.; Yakubovskaya, M.; et al. Rapatar, a nanoformulation of rapamycin, decreases
chemically-induced benign prostate hyperplasia in rats. Oncotarget 2015, 6, 9718–9727. [CrossRef]
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