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Abstract: The increasing use of three-dimensional (3D) imaging techniques in dental medicine has
boosted the development and use of artificial intelligence (AI) systems for various clinical problems.
Cone beam computed tomography (CBCT) and intraoral/facial scans are potential sources of image data
to develop 3D image-based AI systems for automated diagnosis, treatment planning, and prediction
of treatment outcome. This review focuses on current developments and performance of AI for 3D
imaging in dentomaxillofacial radiology (DMFR) as well as intraoral and facial scanning. In DMFR,
machine learning-based algorithms proposed in the literature focus on three main applications,
including automated diagnosis of dental and maxillofacial diseases, localization of anatomical
landmarks for orthodontic and orthognathic treatment planning, and general improvement of image
quality. Automatic recognition of teeth and diagnosis of facial deformations using AI systems based on
intraoral and facial scanning will very likely be a field of increased interest in the future. The review is
aimed at providing dental practitioners and interested colleagues in healthcare with a comprehensive
understanding of the current trend of AI developments in the field of 3D imaging in dental medicine.

Keywords: artificial intelligence; AI; machine learning; ML; cone beam computed tomography
(CBCT); intraoral scanning; facial scanning

1. Introduction

Artificial intelligence (AI) is generally defined as intelligent computer programs capable of learning
and applying knowledge to accomplish complex tasks such as to predict treatment outcomes, recognize
objects, and answer questions [1]. Nowadays, AI technologies are widespread and penetrate many
applications of our daily life, such as Amazon’s online shopping recommendations, Facebook’s image
recognition, Netflix’s streaming videos, and the smartphone’s voice assistant [2]. For such daily life
applications, it is characteristic that the initial use of an AI-driven system will give a more generalized
outcome based on big data, and after repeated use by the individual, it will gradually present a more
adapted and personalized outcome in accordance with the user’s characteristics. The remarkable
success of AI in various fields of our daily life has inspired and is stimulating the development of AI
systems in the field of medicine and, also, more specifically, dental medicine [3,4].

Radiology is deemed to be the front door for AI into medicine as digitally coded diagnostic images
are more easily translated into computer language [5]. Thus, diagnostic images are seen as one of
the primary sources of data used to develop AI systems for the purpose of an automated prediction
of disease risk (such as osteoporotic bone fractures [6]), detection of pathologies (such as coronary
artery calcification as a predictor for atherosclerosis [7]), and diagnosis of disease (such as skin cancers
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in dermatology [8]). Machine learning is a key component of AI, and commonly applied to develop
image-based AI systems. Through a synergism between radiologists and the medical AI system used,
increased work efficiency and more precise outcomes regarding the final diagnosis of various diseases
are expected to be achieved [9,10].

In the field of dental and maxillofacial radiology (DMFR), reports on AI models used for
diagnostic purposes and treatment planning cover a wide range of clinical applications, including
automated localization of craniofacial anatomical structures/pathological changes, classification of
maxillofacial cysts and/or tumors, and diagnosis of caries and periodontal lesions [11]. According to the
literature related to clinical applications of AI in DMFR, most of the proposed machine learning
algorithms were developed using two-dimensional (2D) diagnostic images, such as periapical,
panoramic, and cephalometric radiographs [11]. However, 2D images have several limitations,
including image magnification and distortion, superimposition of anatomical structures, and the lack
of three-dimensional information for relevant landmarks/pathological changes. These may lower
the diagnostic accuracy of the AI models trained using only 2D images [12]. For example, a 2D
image-based AI model built for the detection of periodontal bone defects might not be able to detect
three-walled bony defects, loss of buccal/oral cortical bone plates, or bone defects around overlapping
teeth. Three-dimensional (3D) imaging techniques, including cone beam computed tomography
(CBCT), as well as intraoral and facial scanning systems, are increasingly used in dental practice. CBCT
imaging allows for the visualization and assessment of bony anatomic structures and/or pathological
changes in 3D with high diagnostic accuracy and precision. The use of CBCT is of great help when
conventional 2D imaging techniques do not provide sufficient information for diagnosis and treatment
planning purposes [13]. Intraoral and facial scanning systems are reported to be reproducible and
reliable to capture 3D soft-tissue images that can be used for digital treatment planning systems [14,15].
CBCT and intraoral/facial scans are considered as an ideal data source for developing AI models to
overcome the limitations of 2D image-based algorithms [12,15]. Thus, the aim of this review is to
describe current developments and to assess the performance of AI models for 3D imaging in DMFR,
as well as intraoral and facial scanning.

2. Current Use of AI for 3D Imaging in DMFR

A literature search was conducted using PubMed to identify all existing studies of AI applications
for 3D imaging in DMFR and intraoral/facial scanning. The search was conducted without restriction
on the publication period but was limited to studies in English. The keywords used for the search
were combinations of terms including “artificial intelligence”, “AI”, “machine learning”, “deep
learning”, “convolutional neural networks”, “automatic”, ”automated”, “three-dimensional imaging”,
“3D imaging”, “cone beam computed tomography”, “CBCT”, “three-dimensional scan”, “3D scan”,
“intraoral scan”, “intraoral scanning”, “facial scan”, “facial scanning”, and/or “dentistry”. Reviews,
conference papers, and studies using clinical/nonclinical image data were eligible for the initial screening
process. Initially, titles of the identified studies were manually screened, and subsequently, abstracts of
the relevant studies were read to identify studies for further full-text reading. Furthermore, references
of included articles were examined to identify further relevant articles. As a result, approximately
650 publications were initially screened, and 23 publications were eventually included in the present
review for data extraction (details provided in Tables 1 and 2).

The methodological quality of the included studies was evaluated using the assessment criteria
proposed by Hung et al. [11]. For proposed AI models for diagnosis/classification of a certain condition,
four studies [16–19] were rated as having a “high” or an “unclear” risk of concern in the domain of
subject selection because the testing dataset only consisted of images from subjects with the condition
of interest. With regard to the selection of reference standards, all studies were considered as “low”
risk of concern as expert judgment and clinical or pathological examination was applied as the
reference standard. Concerns regarding the risk of bias were relatively high in the domain of index
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test, as ten [16,17,20–27] of the included studies did not test their AI models on independent images
unused for developing the algorithms.

Table 1 exhibits the included studies regarding the use of AI for 3D imaging in DMFR. These studies
focused on three main applications, including automated diagnosis of dental and maxillofacial
diseases [16–20,28–32], localization of anatomical landmarks for orthodontic and orthognathic treatment
planning [21,22,33–35], and improvement of image quality [23,36].

2.1. Automated Diagnosis of Dental and Maxillofacial Diseases

The basic principle of the learning algorithms for diagnostic purposes is to explore associations
between the input image and output diagnosis. Theoretically, a machine learning algorithm is initially
built using hand-crafted detectors of image features in a predefined framework, subsequently trained
with the training data, iteratively adapted to minimize the error at the output, and eventually tested
with the unseen testing data to verify its validity [37]. Deep learning, a subset of machine learning, is
able to automatically learn to extract relevant image features without the requirement of the manual
design of image feature detectors, which is currently considered as the most suitable method to develop
image-based diagnostic AI models [12].

The workflow of the proposed machine learning algorithms for diagnostic purpose can be mainly
categorized as (see Figure 1).

1. Input image data;
2. Image preprocessing;
3. Selection of the region of interest (ROI);
4. Segmentation of lesions;
5. Extraction of selected texture features in the segmented lesions;
6. Analysis of the extracted features;
7. Output of the diagnosis or classification.
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Table 1. Characteristics of studies describing machine learning-based artificial intelligence (AI) models applied in dentomaxillofacial radiology (DMFR).

Author (Year) Application Imaging
Modality AI Technique Image Data Set Used to

Develop the AI Model

Independent Testing
Image Data Set /

Validation Technique
Performance

Diagnosis of Dental and Maxillofacial Diseases

Okada [16]
(2015)

Diagnosis of periapical
cysts and granuloma CBCT LDA 28 scans from patients with

periapical cysts or granuloma 7-fold CV 94.1% (accuracy)

Abdolali [17]
(2017)

Diagnosis of radicular
cysts, dentigerous cysts,
and keratocysts

CBCT SVM; SDA
96 scans from patients with
radicular cysts, dentigerous
cysts, or keratocysts

3-fold CV 94.29–96.48%
(accuracy)

Yilmaz [18]
(2017)

Diagnosis of periapical
cysts and keratocysts CBCT

k-NN; Naïve Bayes;
Decision tree;
Random forest; NN;
SVM

50 scans from patients with
cysts or tumors 10-fold CV/LOOCV

94–100% (accuracy)
25 scans from patients with
cysts or tumors

25 scans from patients
with cysts or tumors

Lee [19] (2020)
Diagnosis of periapical
cysts, dentigerous cysts,
and keratocysts

Panoramic
radiography
and CBCT

CNN 912 panoramic images and
789 CBCT scans

228 panoramic images
and 197 CBCT scans

Panoramic
radiography
0.847 (AUC);
88.2% (sensitivity);
77.0% (specificity)
CBCT
0.914 (AUC);
96.1% (sensitivity);
77.1% (specificity)

Orhan [28]
(2020)

Diagnosis of periapical
pathology CBCT CNN

3900 scans acquired using
multiple FOVs from 2800
patients with periapical
lesions and 1100 subjects
without periapical lesions

109 scans acquired using
multiple FOVs from 153
patients with periapical
lesions

92.8% (accuracy)

Abdolali [29]
(2019)

Diagnosis of
radiolucent lesion,
maxillary sinus
perforation, unerupted
tooth, and root fracture

CBCT Symmetry-based
analysis model

686 scans acquired using a
large FOV (12 × 15 × 15 cm3),
collected from several dental
imaging centers in Iran

459 scans acquired using
a large FOV (12 × 15 × 15
cm3), collected from
several dental imaging
centers in Iran

0.85–0.92 (DSC)
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Table 1. Cont.

Author (Year) Application Imaging
Modality AI Technique Image Data Set Used to

Develop the AI Model

Independent Testing
Image Data Set /

Validation Technique
Performance

Johari [30]
(2017)

Detection of vertical
root fractures

Periapical
radiography
and CBCT

CNN
180 periapical radiographs
and 180 CBCT scans of the
extracted teeth

60 periapical radiographs
and 60 CBCT scans of the
extracted teeth

Periapical
radiography 70.0%
(accuracy);
97.8% (sensitivity);
67.6% (specificity)
CBCT
96.6% (accuracy);
93.3% (sensitivity);
100% (specificity)

Kise [32]
(2019)

Diagnosis of Sjögren’s
syndrome CT CNN

400 scans (200 from 20 SjS
patients and 200 from 20
control subjects) acquired
using a large FOV

100 scans (50 from 5 SjS
patients and 50 from 5
control subjects) acquired
using a large FOV

96.0% (accuracy);
100% (sensitivity);
92.0% (specificity)

Kann [31]
(2018)

Detection of lymph
node metastasis and
extranodal extension in
patients with head and
neck cancer

Contrast-enhanced
CT CNN

Images of 2875
CT-segmented lymph node
samples with correlating
pathology labels

Images of 131 lymph
nodes (76 negative and 55
positive)

0.91 (AUC)

Ariji [20]
(2019)

Detection of lymph
node metastasis in
patients with oral
cancer

Contrast-enhanced
CT CNN

Images of 441 lymph nodes
(314 negative and 127
positive) from 45 patients

5-fold CV

78.2% (accuracy);
75.4% (sensitivity);
81.0% (specificity),
0.80 (AUC)

Localization of Anatomical Landmarks for Orthodontic and Orthognathic Treatment Planning

Cheng [33]
(2011)

Localization of the
odontoid process of the
second vertebra

CBCT Random forest 50 scans 23 scans 3.15 mm (mean
deviation)

Shahidi [34]
(2014)

Localization of 14
anatomical landmarks CBCT

Feature-based and
voxel similarity-based
algorithms

8 scans acquired using a large
FOV from subjects aged
10–45 years

20 scans acquired using a
large FOV from subjects
aged 10–45 years

3.40 mm (mean
deviation)
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Table 1. Cont.

Author (Year) Application Imaging
Modality AI Technique Image Data Set Used to

Develop the AI Model

Independent Testing
Image Data Set /

Validation Technique
Performance

Montufar [21]
(2018)

Localization of 18
anatomical landmarks CBCT Active shape model 24 scans acquired using a

large FOV LOOCV 3.64 mm (mean
deviation)

Montufar [22]
(2018)

Localization of 18
anatomical landmarks CBCT Active shape model 24 scans acquired using a

large FOV LOOCV 2.51 mm (mean
deviation)

Torosdagli
[35] (2019)

Localization of 9
anatomical landmarks CBCT CNN 50 scans 48 scans

0.9382 (DSC);
93.42% (sensitivity);
99.97% (specificity),

Improvement of Image Quality

Park [36]
(2018)

Improvement of image
resolution CT CNN 52 scans 13 scans

The CNN network
can yield
high-resolution
images based on
low-resolution images

Minnema [23]
(2019)

Segmentation of CBCT
scans affected by metal
artifacts

CBCT CNN 20 scans Leave-2-out CV

The CNN network
can accurately
segment bony
structures in CBCT
scans affected by
metal artifacts

Other

Miki [38]
(2017) Tooth classification CBCT CNN

42 scans with the diameter of
the FOV ranged from 5.1 to
20 cm

10 scans with the
diameter of the FOV
ranged from 5.1 to 20 cm

88.8% (accuracy)

AI, artificial intelligence; AUC, area under the receiver operating characteristic curve; CBCT, cone beam computed tomography; CNN, convolutional neural network; CT, computed
tomography; CV, cross validation; DSC, dice similarity coefficient; FOV, field of view; k-NN, k-nearest neighbors; LDA, linear discriminant analysis; LOOCV, leave-one-out cross-validation;
NN, neural network; SDA, sparse discriminant analysis; SjS, Sjögren’s syndrome; SVM, support vector machine.
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Some of the proposed machine learning algorithms were not fully automated and required
manual operation/adjustment for the ROI selection or lesion segmentation. Okada et al. proposed
a semiautomatic machine learning algorithm, using CBCT images to classify periapical cysts and
granulomas [16]. This algorithm requires users to segment the target lesion before it proceeds to the
next step (feature extraction). Yilmaz et al. proposed a semiautomatic algorithm, using CBCT images to
classify periapical cysts and keratocysts [18]. In this algorithm, detection and segmentation of lesions
are required to be performed manually. The users need to mark the lesion on different cross-sectional
planes to predefine the volume of interest containing the lesion. Manual segmentation of cystic lesions
on multiple CBCT slices is time-consuming, which limits the efficiency of the algorithms and also their
implementation for routine clinical use. Lee et al. proposed deep learning algorithms, respectively,
using panoramic radiographs and CBCT images for the detection and diagnosis of periapical cysts,
dentigerous cysts, and keratocysts [19]. It was reported that automatic edge detection techniques can
segment cystic lesions more efficiently and accurately than manual segmentation. This can shorten the
execution time for the segmentation step and improve the usability of the proposed algorithms for
clinical practice. Moreover, higher diagnostic accuracy was reported for CBCT image-based algorithms
in comparison with panoramic image-based ones. This may result from a higher accuracy in detecting
the lesion boundary in 3D and more quantitative features extracted from the voxel units. Abdolali et al.
proposed an algorithm based on asymmetry analysis using CBCT images to automatically segment
cystic lesions, including dentigerous cysts, radicular cysts, and keratocysts [39]. The algorithm exhibited
promising performance with high true-positives and low false-positives. However, its limitations
include a relatively low detection rate for small cysts, imperfect segmentation of keratocysts without
well-defined boundaries, and the incapability of dealing with symmetric cysts crossing the midsagittal
plane. Based on the proposed segmentation algorithm, Abdolali et al. developed another AI model
using CBCT images to automatically classify dentigerous cysts, radicular cysts, and keratocysts [17].
This model exhibited high classification accuracies ranging from 94.29% to 96.48%. Subsequently,
Abdolali et al. further proposed a fully automated medical-content-based image retrieval system for
the diagnosis of four maxillofacial lesions/conditions, including radiolucent lesions, maxillary sinus
perforation, unerupted teeth, and root fractures [29]. In this novel system, an improved version of a
previously proposed segmentation algorithm [39] was incorporated. The diagnostic accuracy of the
proposed system was 90%, with a significantly reduced segmentation time of three minutes per case. It
was stated that this system is more effective than previous models proposed in the literature, and is
promising for introduction into clinical practice in the near future.

Orhan et al. verified the performance of a deep learning algorithm using CBCT images to detect
and volumetrically measure periapical lesions [28]. A detection rate of 92.8% and a significant positive
correlation between the automated and manual measurements were reported. The differences between
manual and automated measurements are mainly due to inaccurate lesion segmentation. Because of
low soft-tissue contrast in CBCT images, the deep learning algorithm exhibits difficulties in perfectly
distinguishing the lesion area from neighboring soft tissue when buccal/oral cortical perforations
or endo-perio lesions occur. Johari et al. proposed deep learning algorithms using periapical and
CBCT images to detect vertical root fractures [30]. The results showed that the proposed model
resulted in higher diagnostic performance for CBCT images than periapicals. Furthermore, some
studies have reported on the application of deep learning algorithms for the diagnosis of Sjögren’s
syndrome or lymph node metastasis. Kise et al. proposed a deep learning algorithm using CT images
to assist inexperienced radiologists to semiautomatically diagnose Sjögren’s syndrome [32]. The results
exhibited that the diagnostic performance of the deep learning algorithm is comparable to experienced
radiologists and is significantly higher than for inexperienced radiologists. The main limitation of
the proposed algorithm is its semiautomatic nature, requiring manual image segmentation prior to
performing automated diagnosis. For further ease and implementation in daily routine, a completely
automated segmentation of the region of the parotid gland should be developed and incorporated
into a fully automated diagnostic system. Kann et al. and Ariji et al., respectively, proposed deep
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learning algorithms using contrast-enhanced CT images to semiautomatically identify nodal metastasis
in patients with oral/head and neck cancer [20,31]. The user of the respective programs is required
to manually segment the contour of lymph nodes on multiple CT slices. Excellent performance was
reported for both algorithms proposed, which was close to or even surpassed the diagnostic accuracy
of experienced radiologists. Therefore, these deep learning algorithms have the potential to help
guide oral/head and neck cancer patient management. Future investigations should focus on the
development of a fully automated identification system to avoid manual segmentation of lymph nodes.
This can significantly improve the efficiency of the AI system used and could enable wider use of this
system in community clinics.

2.2. Automated Localization of Anatomical Landmarks for Orthodontic and Orthognathic Treatment Planning

The correct analysis of craniofacial anatomy and facial proportions is the basis of successful
orthodontic and orthognathic treatment. Traditional orthodontic analysis is generally conducted on 2D
cephalometric radiographs, which can be less accurate due to image magnification, superimposition of
structures, inappropriate X-ray projection angle, and patient position. Since CBCT was introduced in
dental medicine, 3D diagnosis and virtual treatment planning have been assessed as a more accurate
option for orthodontic and orthognathic treatment [40]. Although 3D orthodontic analysis can be
performed by a computer-aided digital tracing approach, it still requires orthodontists to manually
locate anatomical landmarks on multiple CBCT slices. The manual localization process is tedious
and time-consuming, which may currently discourage orthodontists from switching to a fully digital
workflow. Cheng et al. proposed the first machine learning algorithm to automatically localize one
key landmark on CBCT images and reported promising results [33]. Subsequently, a series of machine
learning algorithms were developed for automated localization of several anatomical landmarks
and analysis of dentofacial deformity. Shahidi et al. proposed a machine-learning algorithm to
automatically locate 14 craniofacial landmarks on CBCT images, whereas the mean deviation (3.40 mm)
for all of the automatically identified landmarks was higher than the mean deviation (1.41 mm)
for the manually detected ones [34]. Montufar et al. proposed two different automatic landmark
localization systems, respectively, based on active shape models and a hybrid approach using active
shape models followed by a 3D knowledge-based searching algorithm [21,22]. The mean deviation
(2.51 mm) for all of the automatically identified landmarks in the hybrid system was lower than
that of the system only using active shape models (3.64 mm). Despite less localization deviation,
the performance of automated localization in the proposed systems is still not accurate enough to meet
clinical requirements. Therefore, the existing AI systems can only be recommended for the use of
preliminary localization of the orthodontic landmarks, but manual correction is still necessary prior to
further orthodontic analyses. This may be the main limitation of these AI systems and this needs to be
improved for future clinical dissemination and use.

Orthodontic and orthognathic treatments in patients with craniofacial deformities are challenging.
The aforementioned AI systems may not be able to effectively deal with such patients. Torosdagli et al.
proposed a novel deep learning algorithm applied for fully automated mandible segmentation and
landmarking in craniofacial anomalies on CBCT images [35]. The proposed algorithm allows for
orthodontic analysis in patients with craniofacial deformities and showed excellent performance with
a sensitivity of 93.42% and specificity of 99.97%. Future studies should consider widening the field of
applications for AI systems, especially for different patient populations.

2.3. Automated Improvement of Image Quality

Radiation dose protection is of paramount importance in medicine and also for DMFR. It is reported
that medical radiation exposure is the largest artificial radiation source and represents approximately
14% of the total annual dose of ionizing radiation for individuals [41]. Computed tomography (CT)
imaging is widely used to assist clinical diagnosis in various fields of medicine. Reducing the scanning
slice thickness is the general option to enhance the resolution of CT images. However, this will increase
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the noise level as well as radiation dose exposure to the patient. High-resolution CT images are
recommended only when low-resolution CT images do not provide sufficient information for diagnosis
and treatment planning purposes in individual cases [42]. The balance between the radiation dose and
CT image resolution is the biggest concern for radiologists. To address this issue, Park et al. proposed a
deep learning algorithm to enhance the thick-slice CT image resolution similar to that of a thin slice [36].
It is reported that the noise level of the enhanced CT images is even lower than the original images.
Therefore, this algorithm has the potential to be a useful tool for enhancing the image resolution for CT
scans as well as reducing the radiation dose and noise level. It is expected that such an algorithm can
further be developed for CBCT scans.

The presence of metal artifacts in CT/CBCT images is another critical issue that can obscure
neighboring anatomical structures and interfere with disease diagnosis. In dental medicine, metal
artifacts are not uncommon in CBCT images due to materials used for dental restorations or orthodontic
purposes. These metal artifacts not only interfere with disease diagnosis but, in some cases, impede the
image segmentation of the teeth and bony structures in the maxilla and mandible for computer-guided
treatment. Minnema et al. proposed a deep learning algorithm based on a mixed-scale dense
convolutional neural network for the segmentation of teeth and bone on CBCT images affected by
metal artifacts [23]. It is reported that the proposed algorithm can accurately classify metal artifacts as
background and segment teeth and bony structures. The promising results prove that a convolutional
neural network is capable of extracting the characteristic features in CBCT voxel units that cannot be
distinguished by human eyes.

2.4. Other Applications

In addition to the above AI applications, automated tooth detection, classification, and numbering
are also fields of great interest, and they have the potential to simplify the process of filling out digital
dental charts [43]. Miki et al. developed a deep learning algorithm based on a convolutional neural
network to automatically classify tooth types based on CBCT images [38]. Although this algorithm
was designed for automated filling of dental charts for forensic identification purposes, it may also be
valuable to incorporate it into the digital treatment planning system, especially for use in implantology
and prosthetics. For example, such an application may contribute to the automated identification of
missing teeth for the diagnosis and planning of implants or other prosthetic treatments.

3. Current Use of AI for Intraoral 3D Imaging and Facial Scanning

In recent years, computer-aided design and manufacturing (CAD/CAM) technology have been
widely used in various fields of dentistry, especially in implantology, prosthetics, orthodontics,
and maxillofacial surgery. For example, CAD/CAM technology can be used for the fabrication of
surgical implant guides, provisional/definitive restorations, orthodontic appliances, and maxillofacial
surgical templates. Most of these applications are based on 3D hard and soft tissue images generated by
CBCT and optical scanning (such as intraoral/facial scanning and scanning of dental casts/impressions).
Intraoral scanning is the most accurate method of digitalizing the 3D contour of teeth and gingiva [44].
As a result, the intraoral scanning technique is now gradually replacing the scanning of dental casts
or impressions and is also frequently used in CAD/CAM systems. Tooth segmentation is a critical
step, which is usually performed manually by trained dental practitioners in a digital workflow to
design and fabricate restorations and orthodontic appliances. However, manual segmentation is
time-consuming, poorly reproducible, and limited due to human error, which may eventually have
a negative influence on treatment outcome. Ghazvinian Zanjani et al. and Kim et al., respectively,
developed deep learning algorithms for automated tooth segmentation on digitalized 3D dental surface
models resulting in high segmentation precision (Table 2) [24,45]. These algorithms can speed up the
digital workflow and reduce human error. Furthermore, Lian et al. proposed an automated tooth
labeling algorithm based on intraoral scanning [25]. This algorithm can simplify the process of tooth
position rearrangements in orthodontic treatment planning.
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Table 2. Characteristics of the machine learning-based AI models based on intraoral and facial scanning.

Author (Year) Application Imaging
Modality AI Technique

Image Data Set Used
to Develop the AI

Model

Independent Testing
Image Data Set/Validation

Technique
Performance

Ghazvinian
Zanjani [24] (2019) Tooth segmentation Intraoral scanning CNN

120 scans, comprising
60 upper jaws and 60

lower jaws.
5-fold CV 0.94 (intersection over

union score)

Kim [45] (2020) Tooth segmentation Intraoral scanning Generative adversarial
network

10,000 cropped
images

Approximate 350 cropped
images

An average
improvement of 0.004

mm in the tooth
segmentation

Lian [25] (2020) Tooth labelling Intraoral scanning CNN 30 scans of upper jaws 5-fold CV 0.894 to 0.970 (DSC)

Liu [27] (2016)
Identification of

Autism Spectrum
Disorder

Facial scanning SVM

87 scans from
children with and
without Autism

Spectrum Disorder

LOOCV 88.51% (accuracy)

Knoops [26]
(2019)

Diagnosis and
planning in plastic
and reconstructive

surgery

Facial scanning Machine-learning-based
3D morphable model

4261 scans from
healthy subjects and
orthognathic patients

LOOCV

Diagnosis 95.5%
(sensitivity);

95.2% (specificity)
Surgical simulation

1.1 ± 0.3 mm
(accuracy)

3D, three-dimensional; AI, artificial intelligence; CV, cross-validation; DSC, dice similarity coefficient; LOOCV, leave-one-out cross-validation; SVM, support vector machine.
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Currently, only a few studies have reported on the use of machine learning techniques based on
facial scanning (Table 2). Knoops et al. proposed an AI 3D-morphable model based on facial scanning
to automatically analyze facial shape features for diagnosis and planning in plastic and reconstructive
surgery [26]. In addition, this model is also able to predict patient-specific postoperative outcomes.
The proposed model may improve the efficiency and accuracy in diagnosis and treatment planning,
and help preoperative communication with the patient. However, this model can only perform an
analysis based on 3D facial scanning alone. As facial scanning is unable to acquire volumetric bone
data, the information about the underlying skeletal structures cannot be analyzed by this model.
An updated model that can perform the analysis simultaneously on facial soft tissue and skeletal
structures will be more realistic and probably more effective for clinical use.

Interestingly, facial scanning techniques in combination with AI can also be used for the diagnosis
of neurodevelopmental disorders, such as autism spectrum disorder (ASD). Liu et al. explored the
possibility of using a machine learning algorithm based on facial scanning to identify ASD and showed
promising results with an accuracy of 88.51% (Table 2) [27]. This algorithm could be a supportive tool
for the screening and diagnosis of ASD in clinical practice.

4. Limitations of the Included Studies

While the AI models proposed in the included studies have shown promising performance,
several limitations are worth noting, which may affect the reliability of the proposed models. First,
most of the proposed AI models were developed using a small number of images collected from
the same institution over one defined time period (see details in Tables 1–3). Additionally, some
classification models were only trained and tested using images from subjects with confirmed diseases
(Table 3). These limitations might result in a risk of overfitting and a too optimistic appraisal of
the proposed models. In addition, the images used to develop the algorithms might very likely
be captured using the same device and imaging protocols, resulting in a lack of data heterogeneity
(Table 3). This might cause a lack of generalizability and reliability of the proposed models and can
result in inferior performance in clinical practice settings due to differences in variables, including
devices, imaging protocols, and patient populations [46]. Thus, these models may still need to be
verified by using adequate heterogeneous data collected from different dental institutions prior to
being transferred and implemented into clinical practice.
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Table 3. Conclusions and limitations of the included studies.

Author (Year) Conclusion Limitations (Risk of Bias *)

Okada [16]
(2015)

The proposed model may assist clinicians to accurately differentiate periapical
lesions.

• A small training dataset *; Lacking data heterogeneity *; Dataset only
consisted of scans from subjects with the condition of interest *; Lacking
independent unseen testing data *; Manual ROI selection; Long
execution time.

Abdolali [17]
(2017)

The proposed model can improve the accuracy of the diagnosis of dentigerous
cysts, radicular cysts, and keratocysts, and may have a significant impact on
future AI diagnostic systems.

• A small training dataset *; Lacking data heterogeneity *; Dataset only
consisted of scans from subjects with the condition of interest *; Lacking
independent unseen testing data *.

Yilmaz [18]
(2017)

Periapical cysts and keratocysts can be classified with high accuracy with the
proposed model. It can also contribute to the field of automated diagnosis of
periapical lesions.

• A small training dataset *; Lacking data heterogeneity *; Dataset only
consisted of scans from subjects with the condition of interest *; Manual
detection and segmentation of lesions.

Lee [19] (2020)

Periapical cysts, dentigerous cysts, and keratocysts can be effectively detected
and diagnosed with the proposed deep CNN algorithm, but the diagnosis of
these lesions using radiological data alone, without histological examination,
is still challenging.

• A relatively small training dataset *; Dataset only consisted of scans from
subjects with the condition of interest *; Manual ROI selection; Potential
overfitting problem in the training procedure *.

Orhan [28]
(2020)

The proposed deep learning systems can be useful for detection and
volumetric measurement of periapical lesions. The diagnostic performance
was comparable to that of an oral and maxillofacial radiologist.

• Relatively inaccurate segmentation of lesions in close contact with
neighboring soft tissue

Abdolali [29]
(2019)

The proposed system is effective and can automatically diagnose various
maxillofacial lesions/conditions. It can facilitate the introduction of
content-based image retrieval in clinical CBCT applications.

• Relatively inaccurate detection of symmetric lesions

Johari [30] (2017)

The proposed deep learning model can be used for the diagnosis of vertical
root fractures on CBCT images of endodontically treated and also vital teeth.
With the aid of the model, the use of CBCT images is more effective than
periapical radiographs.

• A small training dataset *; Ex-vivo data only containing sound extracted
premolars *; Lacking data heterogeneity *; Unknown diagnostic
performance on multirooted teeth and teeth with caries or filling materials
*.
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Table 3. Cont.

Author (Year) Conclusion Limitations (Risk of Bias *)

Kise [32] (2019)

The deep learning model showed high diagnostic accuracy for SjS, which is
comparable to that of experienced radiologists. It is suggested that the model
could be used to assist the diagnosis of SjS, especially for inexperienced
radiologists.

• A small training dataset *; Lacking data heterogeneity *; Lacking subjects
with other pathological changes of the parotid gland in the control subjects
*; Manual ROI segmentation.

Kann [31] (2018) The proposed deep learning model has the potential for use as a clinical
decision-making tool to help guide head and neck cancer patient management.

• The process of individual lymph node CT labeling in correlation with
pathology reports is subject to some degree of uncertainty and subjectivity
*; Only lymph nodes for which a definitive correlation could be made were
included in the labeled dataset, potentially biasing the dataset to those
nodes that could be definitively correlated with pathologic report *.

Ariji [20] (2019)
The proposed deep learning model yielded diagnostic results comparable to
that of radiologists, which suggests that the model may be valuable for
diagnostic support.

• A small training dataset *; Lacking data heterogeneity *; Lacking
independent unseen testing data *; Manual ROI segmentation;

Cheng [33]
(2011)

The proposed model can efficiently assist clinicians in locating the odontoid
process of the second vertebra.

• A small training dataset *; Lacking data heterogeneity *; Inaccurate
localization performance.

Shahidi [34]
(2014)

The localization performance of the proposed model was acceptable with a
mean deviation of 3.40 mm for all automatically identified landmarks.

• A small training dataset *; Lacking data heterogeneity *; Inaccurate
localization performance.

Montufar [21]
(2018)

The proposed algorithm for automatically locating landmarks on CBCT
volumes seems to be useful for 3D cephalometric analysis.

• A small training dataset *; Lacking data heterogeneity *; Lacking
independent unseen testing data *; Inaccurate localization performance.

Montufar [22]
(2018)

The proposed hybrid algorithm for automatic landmarking on CBCT volumes
seems to be potentially useful for 3D cephalometric analysis.

• A small training dataset *; Lacking data heterogeneity *; Lacking
independent unseen testing data *; Relatively inaccurate
localization performance.

Torosdagli [35]
(2019)

The proposed deep learning algorithm allows for orthodontic analysis in
patients with craniofacial deformities exhibiting excellent performance.

• A small training dataset *; Lacking data heterogeneity *; Analysis of
pseudo-3D images instead of fully 3D images *;
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Table 3. Cont.

Author (Year) Conclusion Limitations (Risk of Bias *)

Park [36] (2018) The proposed deep learning algorithm is useful for super-resolution and
de-noising.

• A small training dataset *; Small anatomical structures may be easily
buried and invisible in low-resolution images.

Minnema [23]
(2019)

The proposed deep learning algorithm allows us to accurately classify metal
artifacts as background noise, and to segment teeth and bony structures.

• A small training dataset *; Lacking independent unseen testing data *;
Potential bias in the overall accuracy of the gold standard segmentations *.

Miki [38] (2017)
The proposed deep learning algorithm to classify tooth types on CBCTs
yielded a high performance. This can be effectively used for automated
preparation of dental charts and might be useful in forensic identification.

• A small training dataset *; Unstable classification performance due to the
analyzed levels of the cross-sectional tooth images and metal artifacts;

Ghazvinian
Zanjani [24]

(2019)

The proposed end-to-end deep learning framework for the segmentation of
individual teeth and the gingiva from intraoral scans outperforms
state-of-the-art networks.

• A small training dataset *; Ex-vivo data *; Lacking independent unseen
testing data *;

Kim [45] (2020)
The proposed automated segmentation method for full arch intraoral scan
data is as accurate as a manual segmentation method. This tool could
efficiently facilitate the digital setup process in orthodontic treatment.

• Ex-vivo data *; Unable to automatically detect the occlusion area.

Lian [25] (2020)
The proposed end-to-end deep neural network to automatically label
individual teeth on raw dental surfaces acquired by 3D intraoral scanners
outperforms the state-of-the-art methods for 3D shape segmentation.

• A small training dataset *; Scans only containing the maxillary dental
surfaces with the complete 14 teeth *; Failed to properly handle missing
teeth and additional braces in challenging cases; Lacking independent
unseen testing data *;

Liu [27] (2016) The proposed machine learning algorithm based on face scanning patterns
could support current clinical practice of the screening and diagnosis of ASD

• A small training dataset *; Lacking independent unseen testing data *;
Several influencing factors, such as age-/culture-adapted face scanning
patterns and the characteristics of the ASD patients should be considered
when applying the model to classify children with ASD *.

Knoops [26]
(2019)

The proposed model can automatically analyze facial shape features and
provide patient-specific treatment plans from a 3D facial scan. This may
benefit the clinical decision-making process and improve clinical
understanding of face shape as a marker for plastic and reconstructive surgery.

• Lacking independent unseen testing data *

3D, three-dimensional; AI, artificial intelligence; ASD, autism spectrum disorder; CBCT, cone beam computed tomography; CT, computed tomography; CNN, convolutional neural
network; ROI, region of interest; SjS, Sjögren’s syndrome; * risk of bias.
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5. Conclusions

The AI models described in the included studies exhibited various potential applications for 3D
imaging in dental medicine, such as automated diagnosis of cystic lesions, localization of anatomical
landmarks, and classification/segmentation of teeth (see details in Table 3). The performance of most
of the proposed machine learning algorithms was considered satisfactory for clinical use, but with
room for improvement. Currently, none of the algorithms described are commercially available. It
is expected that the developed AI systems will be available as open-source for others to verify their
findings and this will eventually lead to true impact in different dental settings. By such an approach,
they will also be more easily accessible and potentially user-friendly for dental practitioners.

Up to date, most of the proposed machine learning algorithms were designed to address specific
clinical issues in various fields of dental medicine. In the future, it is expected that various relevant
algorithms would be integrated into one intelligent workflow system specifically designed for dental
clinic use [47]. After input of the patient’s demographic data, medical history, clinical findings,
2D/3D diagnostic images, and/or intraoral/facial scans, the system could automatically conduct an
overall analysis of the patient. The gathered data might contribute to a better understanding of the
health condition of the respective patient and the development of personalized dental medicine, and
subsequently, an individualized diagnosis, recommendations for comprehensive interdisciplinary
treatment plans, and prediction of the treatment outcome and follow-up. This information will be
provided to assist dental practitioners in making evidence-based decisions for each individual based
on a real-time up-to-date big database. Furthermore, the capability of deep learning to analyze the
information in each pixel/voxel unit may help to detect early lesions or unhealthy conditions that
cannot be readily seen by human eyes. The future goals of AI development in dental medicine can be
expected to not only improve patient care and radiologist’s work but also surpass human experts in
achieving more timely diagnoses. Long working hours and uncomfortable work environments may
affect the performance of radiologists, whereas a more consistent performance of AI systems can be
achieved regardless of working hours and conditions.

It is worth noting that although the development of AI in healthcare is vigorously supported by
world-leading medical and technological institutions, the current evidence of AI applications for 3D
imaging in dental medicine is very limited. The lack of adequate studies on this topic has resulted
in the present methodological approach to provide findings from the literature rather than a pure
systematic review. Thus, a selection bias could very likely not be eliminated due to the design of the
study, which is certainly a relevant limitation of the present article. Nevertheless, the results presented
might have a positive and stimulating impact on future studies and research in this field and hopefully
will result in academic debate.
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