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Abstract: Prediction of the COVID-19 incidence rate is a matter of global importance, particularly 

in the United States. As of 4 June 2020, more than 1.8 million confirmed cases and over 108 thousand 

deaths have been reported in this country. Few studies have examined nationwide modeling of 

COVID-19 incidence in the United States particularly using machine-learning algorithms. Thus, we 

collected and prepared a database of 57 candidate explanatory variables to examine the performance 

of multilayer perceptron (MLP) neural network in predicting the cumulative COVID-19 incidence 

rates across the continental United States. Our results indicated that a single-hidden-layer MLP 

could explain almost 65% of the correlation with ground truth for the holdout samples. Sensitivity 

analysis conducted on this model showed that the age-adjusted mortality rates of ischemic heart 

disease, pancreatic cancer, and leukemia, together with two socioeconomic and environmental 

factors (median household income and total precipitation), are among the most substantial factors 

for predicting COVID-19 incidence rates. Moreover, results of the logistic regression model 

indicated that these variables could explain the presence/absence of the hotspots of disease 

incidence that were identified by Getis-Ord Gi* (p < 0.05) in a geographic information system 

environment. The findings may provide useful insights for public health decision makers regarding 

the influence of potential risk factors associated with the COVID-19 incidence at the county level. 

Keywords: artificial neural networks; COVID-19 (Coronavirus); GIS; multilayer perceptron; United 

States 

 

1. Introduction 

Novel coronavirus disease (COVID-19) has rapidly spread worldwide, becoming a global health 

threat [1]. The disease was first identified in Wuhan, China, and continued to spread out across the 

world [2]. According to the World Health Organization [3], as of 4 June 2020, there have been more 

than 6.4 million confirmed cases and over 380 thousand deaths worldwide. These statistics have 

surpassed the number of deaths and cases for Middle East respiratory syndrome (MERS) and severe 

acute respiratory disorder (SARS) since their outbreaks [4]. The pandemic has directly impacted the 

economy, society, and healthcare systems. According to the International Monetary Fund [5], global 

economic growth in the year 2020 is estimated to be -3.0%, compared to +2.9% in 2019. The United 

Nations predicts that the pandemic can continue to adversely impact societies with perpetual disease 

spread due to improper policy interventions [6]. 
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Although the United States is ranked number one in the global health security index [7], it is the 

leading country in the number of confirmed cases and deaths globally [8]. As of 4 June 2020, there 

have been over 1.8 million confirmed cases and more than 108,000 deaths in this country [9]. 

Moreover, the case fatality ratio (CFR) continues to fluctuate in this country. As of 4 June 2020, the 

United States ranks in ninth place worldwide, with a CFR of 5.8% [10]. 

Recent studies have demonstrated that preexisting conditions, such as cardiovascular diseases 

[11], respiratory diseases [12], cancer [13], infectious diseases [14], and substance abuse [15], can 

contribute to the elevated morbidity and mortality of COVID-19. In China, Zheng et al. [11] utilized 

the MERS virus as a reference and suggested that SARS-CoV-12 can cause cardiac failure and acute 

myocarditis. Although the findings were preliminary, they indicated that patients could experience 

chronic cardiovascular effects secondary to contracting the disease. Lippi and Henry [12] conducted 

a meta-analysis demonstrating that chronic obstructive pulmonary disease (COPD) patients are five 

times more at risk of contracting the SARS-CoV-2 virus. You et al. [13] alluded to the guidelines 

suggested by French medical oncologists on cancer patient care during the pandemic. In South Africa, 

Cox et al. [14] highlighted changes in tuberculosis (TB) patients’ treatment during the pandemic. In 

the United Kingdom, Marsden et al. [15] indicated how individuals with substance abuse disorders 

might experience addiction augmentation during the pandemic, consequently, increasing the risk for 

COVID-19 contraction. They suggested that substance abuse disorder may not be overlooked when 

addressing preexisting conditions in COVID-19 patients. 

In addition to preexisting conditions, environmental [16], demographic, and socioeconomic [17] 

factors can potentially influence COVID-19 incidence. For instance, Wang et al. [16] indicated that 

COVID-19 transmission is influenced by temperature variability. Their results suggest that reduced 

COVID-19 transmission is associated with higher humidity and temperature. In the United States, 

Mollalo et al. [17] suggested that higher percentages of nurse practitioners and black females and 

higher income inequality at the county level could explain 68.1% of COVID-19 incidence geographic 

variations.  

Artificial neural networks (ANNs) are relatively novel techniques to model complex non-linear 

relationships in spatial epidemiology [18]. The techniques have been applied in a variety of fields, 

including but not limited to environmental science [19,20], agriculture [21], finance [22,23], artificial 

intelligence [24], epidemiology and public health [25–27]. Reddy and Imler [26] demonstrated that 

ANNs could provide reliable predictions for chronic diseases, such as cirrhosis patients with 

hepatocellular carcinoma. They found high sensitivity (80.61–86.67%) and specificity (99.88–99.95%), 

corresponding to demographic and physiological inputs. Badnjević et al. [28] incorporated ANNs to 

classify asthma; they found high levels of sensitivity (97.11%) in asthmatic individuals and specificity 

(98.85%) in healthy individuals. Their findings suggested that ANNs can be appropriate techniques 

for asthma detection. Due to a lack of research on the spatial complexities of COVID-19 at the national 

level, in this study, we leveraged the potential of ANNs in identifying complex spatial patterns and 

the power of geographic information systems (GIS) in spatial analysis [29,30] to predict county-level 

COVID-19 incidence rates in the continental United States. We employed one of the widely used 

topologies of ANNs that is described in Section 2.4. 

2. Materials and Methods 

2.1. Data Collection and Preparation 

COVID-19 is continually monitored by governmental health agencies and institutions of higher 

learning, such as the US Centers for Disease and Control and Johns Hopkins University [31]. In this 

study, we compiled a database of 57 candidate variables that may predict county-level cumulative 

disease incidence as a dependent variable. From January 22 to April 25, 2020, cumulative numbers of 

confirmed cases of COVID-19 across the continental United States were collected at the county level 

from USAFacts (usafacts.org) and normalized by populations. The counties (n = 3109) were 

considered as samples that represent the status of the disease in the US. In this study, socioeconomic 

(such as household income, income inequalities, and unemployment rate), behavioral (such as 
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smoking), environmental (such as temperature, precipitation, and air pollution), topographic (such 

as altitude, and terrain slope), and demographic (such as proportions of age groups, race, gender, 

and access to primary care) factors were prepared at the county level and were used as explanatory 

variables. To avoid reiteration, a complete description of the used variables has been provided in 

Mollalo et al. [17]. 

In addition to the above explanatory variables, which were also used in the study of Mollalo et 

al. [17], age-adjusted mortality rates of several diseases were incorporated, including infectious 

diseases (i.e., TB, HIV/AIDS, hepatitis, and lower respiratory infection), cardiovascular diseases (i.e., 

cerebrovascular disease, hypertensive heart disease, ischemic heart disease, cardiomyopathy and 

myocarditis, atrial fibrillation and peripheral vascular disease), chronic respiratory diseases (i.e., 

COPD, asthma, interstitial lung disease, and pulmonary sarcoidosis), cancer (i.e., pancreatic, 

gallbladder and biliary tract, mesothelioma, Hodgkin lymphoma, leukemia, tracheal, bronchus, and 

lung cancer), and substance use disorders (i.e., drug and alcohol use). The data were retrieved from 

the University of Washington Global Health Data Exchange (http://ghdx.healthdata.org/us-data) and 

joined to the preexisting database. All data were collected and prepared at the county level and are 

publicly available. A list of all variables can be found in the Supplementary Materials. 

2.2. Spatial Analysis 

We examined the geographic distribution of the COVID-19 incidence rate using global and local 

indices. The global Moran's index [32,33] was used to identify the overall pattern (random, clustered, 

or dispersed) of disease incidence rate using the following formula:  
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where �� and �� are the deviations of COVID-19 incidence rates from the mean incidence rate for 

county �  and county �, respectively; ���  is the spatial weight between county �  and county � , 

which is non-zero when the counties are neighbors (i.e., share borders); and � is the total number of 

counties. The value of � ranges between -1 and +1. The values close to 0 indicate random distribution 

(null hypothesis), while values close to +1 and -1, respectively, indicate positive and negative spatial 

autocorrelations [34,35]. 

As the global Moran’s index is unable to identify the location of hotspots [35], Getis–Ord Gi*, 

statistics developed by Getis and Ord [36] were used to identify the hotspots of COVID-19 incidence 

rates (p < 0.05) as follows [37]: 
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The positive and high value of ��
∗  indicates a more intense clustering of high values 

(hotspot(s)). The output of the ��
∗ statistic was mapped in ArcGIS 10.7 (Esri, Redlands, CA, USA) to 

locate the hotspots of COVID-19 incidence rates.  

2.3. Feature Selection 

The presence of a relatively large number (n = 57) of potentially relevant variables can create a 

technical problem and a theoretical discrepancy, which can in turn decrease the generalizability of 

the neural networks [38]. Therefore, we applied the Boruta algorithm [39] to identify feature 

importance, and ultimately chose “all-relevant” important features [40]. This algorithm is a wrapper 

around the Random Forest classification algorithm and is implemented in the “Boruta” package in 

R. To determine important and unimportant features, this algorithm creates random shadow 
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variables and runs a random forest classifier on the set of original and shadow variables. Based on 

the results of a statistical test (using z-scores), the algorithm iteratively removes the variables that 

have lower z-scores compared to the shadow variables [39]. After performing the Boruta feature 

selection algorithm and also Pearson’s correlation analysis on the training dataset, important and less 

correlated (r < 0.7) variables were identified and selected as input variables in the neural networks. 

2.4. Artificial Neural Networks 

Artificial neural networks (ANNs) are computational structures that can learn the relationship 

between a set of input and output variables through an iterative learning process. These networks 

use simple computational operations such as addition and multiplication, yet they are capable of 

solving complex, non-linear problems [41–43]. Once a network is properly trained, it can be used to 

predict a variable of interest based on an independent (holdout) dataset, usually with minimal 

modifications [44]. 

The main components of ANNs are neurons that are organized in layers and are fully connected 

to the next layer by a set of weights (edges). Each ANN consists of one input layer, one output layer, 

and at least one hidden layer. The simplest form of ANN is called a perceptron, first introduced by 

Rosenblatt [45], which is the building block of neural networks. In a perceptron, each input is 

multiplied by a corresponding weight and then aggregated by a mathematical function called 

"activation of the neuron." Another function then computes the output. ANNs are a set of layers that 

are created by stacking perceptrons. For instance, if the inputs to the ith perceptron in a network are 

denoted by ��� , … , ���, assuming that a summation function is used to calculate the outputs (denoted 

by ��), we will have [44]: 

�� =  � ������

�

���

+ ��  (4)

where n is the number of inputs; m is the number of neurons in the current layer; ���  is the weight 

of the �th neuron (�th input to the �th cell), and �� is a bias term. In matrix form, �� can be simplified 

to: 

�� =  ��
��� +  ��  (5)

where 

�� = [���, ���, … , ���]� (6)

�� = [���, ���, … , ���]� (7)

Given a specific loss function, the perceptron can reach better estimates of the output values by 

adjusting the weights and bias terms through an iterative process referred to as error-correction 

learning. This process calculates the “errors” using observed and estimated values and “corrects” 

network parameters based on those errors. Given the estimated value of the network output at 

iteration n, (i.e., ��), and the observed output value ��, a loss term is defined by [46]: 

�(�) =  ����(��, ��) (8)

where Loss is a function of �� and ��, which gives a measure of the difference between observed 

and estimated output values and is defined based on the type of problem. This Loss term can be used 

locally at each neuron to update the weights of the network (in that neuron) using gradient descent 

learning: 

���(� + 1) = ���(�) − � 
� �(�)

����(�)
 (9)

where, at iteration n, ���  is the weight from neuron j to neuron i, � is the step size, and 
� �(�)

����(�)
 is the 

partial derivative (gradient) of Loss with respect to ��� . Step size is one of the (hyper) parameters of 

a network and can be optimized by trial and error. A similar procedure is used to update bias terms. 
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The activation function is a non-linear function applied to each neuron to transfer its values into 

a known range, for instance, [−1, 1] or [0, 1]. The most common activation functions in ANNs are 

rectified linear unit (ReLU), sigmoid, and hyperbolic tangent (tanh) [47]. The summation term in 

Equation 4 acts as an activation function for the perceptron. 

�(�) =
1

1 + ���
  (�������) (10)

���ℎ(�) =
2

1 + ����
− 1 (11)

����(�) = �
�    �� � > 0
0    �� � ≤ 0

 (12)

In this study, the performance of multilayer perceptron (MLP) neural networks in modeling the 

disease incidence is investigated across the continental United States. MLP is a variant of the (single) 

perceptron model explained above and is one of the most popular classes of feedforward ANNs, with 

one or more hidden layers between the input and output layers [48]. MLP is used in supervised 

learning tasks for classification or regression. Figure 1 represents the topology of the MLP neural 

network. In this regression study, we employed MLP with 1 and 2 hidden layers. The “Neuralnet” 

package in R was used to train the MLP. 

 

Figure 1. The topology of MLP neural network. 

2.5. Model Performance  

The entire dataset was randomly divided into three different categories: 1) training samples: 60% 

(nt = 1865) of data used for developing the models; 2) cross-validation samples: 15% (nc = 466) of data 

used to fine-tune network weights and to avoid overfitting; 3) holdout samples: 25% (nh = 777) of data 

used to test the accuracy and generalizability of the models. The same partitioned data were used for 

all models for the purpose of comparison. The process of training models stopped at earlier stages to 

avoid overfitting. The performances of neural networks in predicting COVID-19 cumulative 

incidence rate (output) based on selected variables (inputs) were compared to each other, and to the 

linear regression model as a baseline on holdout samples. We used three different evaluation 

measures for accuracy assessments: root-mean-square error (RMSE), mean absolute error (MAE), and 

the correlation coefficient between observed COVID-19 incidence rate and model predictions (r). In 
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this study, the model with minimum error values and a higher correlation coefficient was considered 

as the optimal model [47]. Below are the formulae to assess the accuracies: 

���� =  �
∑ (�� − ��)��
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 (13)
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where ��  is the observed value of the COVID-19 incidence rate, ��  is the predicted value by the 

model, and � is the number of observations on a holdout dataset.  

Sensitivity analysis was carried out on the optimal model to assess the contributions of variables 

in predicting disease incidence. Finally, vanilla logistic regression was utilized to explain the 

relationship of the most contributing factors obtained from sensitivity analysis and the 

presence/absence of hotspots identified by Getis-Ord Gi*. 

3. Results 

Results of spatial analysis with Global Moran’s I indicated that the distribution of COVID-19 

incidence rate in the continental United States is clustered (Index: 0.36, z-score: 34.75, p < 0.0001), 

rejecting the null hypothesis (random distribution). Moreover, Getis-Ord Gi* could identify the 

location of hotspots of disease incidence rates (Figure 2). In total, 217 counties were identified as 

hotspots (p < 0.05), which were mainly located in the northeastern regions of the continental United 

States, western Georgia, central Ohio, southern Louisiana, and northeast Iowa. 
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Figure 2. Locations of hotspots of COVID-19 incidence identified by Getis-Ord Gi*, continental United 

States. 

The Boruta algorithm and Pearson’s correlation analysis selected 34 variables as less correlated 

and important variables (Supplementary Materials), which were then fed as inputs to ANNs. Overall, 

among the activation functions, “tanh” had slightly better performance (lowest RMSE) and thus was 

used in the MLPs. We systematically increased the number of neurons in the hidden layers from 10 

to 30. The lowest errors were obtained with 15 neurons in the hidden layer. The performances of all 

employed models, in terms of RMSE, MAE, and r between observed COVID-19 incidence rate and 

model predictions on the holdout sample are presented in Table 1. Correlation coefficients of the 

models ranged between 0.30 and 0.65. The linear regression model achieved the least correlations 

with observed COVID-19 incidence rates (r < 0.3). On the contrary, the MLP with one hidden layer 

achieved the highest correlation (r = 0.65), indicating a satisfactory agreement between model 

predictions and observed COVID-19 incidence rates. Moreover, the accuracy assessment of the 

results indicated that the prediction error of the MLP with one hidden layer is less than others (RMSE 

= 0.72, MAE = 0.36). The worst performance was obtained by linear regression (RMSE = 0.99, MAE = 

0.58), while the MLP with one hidden layer yielded better accuracy and generalization capability than 

other models and was thus considered as the proposed model for further analysis. Figure 3 compares 

the z-scores of actual and predicted values of the dependent variable for holdout samples using the 

one-hidden-layer MLP. 
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Figure 3. Comparison of actual and predicted values of the dependent variable (z-scores) for holdout 

samples using the one-hidden-layer MLP. 

Table 1. Comparative performance of the employed models (single run) to predict COVID-19 rates 

across the continental United States. 

Model Accuracy Assessment 
 RMSE r MAE 

Linear Regression 0.992517 0.295885 0.577808 

MLP (1 hidden layer) 0.722409 0.645481 0.355843 

MLP (2 hidden layers) 0.839806 0.466981 0.39755 

We performed a sensitivity analysis to investigate the effect of each variable on the COVID-19 

incidence rate using the MLP with one hidden layer. Figure 4 shows the top 10 contributing variables 

in order of importance. According to Figure 4, age-adjusted mortality rates of ischemic heart disease, 

pancreatic cancer, leukemia, Hodgkin’s disease, mesothelioma, and cardiovascular disease were 

among the top 10 factors with the highest relative importance for COVID-19 incidence rates, showing 

the potential importance of these preexisting conditions to COVID-19 incidence rate. In addition to 

the mortality rates, the proportion of males above 65 years old, higher median household income, 

precipitation, and maximum terrain slope were other important contributing variables. 

 

Figure 4. The relative importance of the top 10 variables to the COVID-19 incidence rate, using 

sensitivity analysis by one hidden layer MLP, continental United States. 
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The logistic regression model was used to explain the association between the presence/absence 

of the identified hotspots (p < 0.05) of COVID-19 incidence rates and the explanatory variables 

obtained from sensitivity analysis. The results indicate that age-adjusted pancreatic cancer mortality 

rates followed by median household income, precipitation, and Hodgkin's disease mortality rates 

could explain the positive association with the presence/absence of hotspots. Meanwhile, age-

adjusted mortality rates for leukemia and cardiovascular disease, and maximum terrain slope, were 

negatively correlated with the occurrence of the hotspots. Table 2 summarizes the results of the 

logistic regression model statistics.  

Table 2. Results of the logistic regression model in explaining the presence/absence of the hotspots (p 

< 0.05) of COVID-19 incidence rate, continental United States. 

 Coefficient 

(B) 

Standard 

Error 

Wald 

Test 

Degree of 

Freedom 
Significance 

Exp 

(B) 

Constant −2.763 0.086 1036.109 1 0.000 0.063 

Median household 

income 
0.403 0.079 26.139 1 0.000 1.497 

Max terrain slope −0.270 0.093 8.432 1 0.004 0.763 

Precipitation 0.337 0.080 17.817 1 0.000 1.400 

Pancreatitis cancer 0.636 0.095 44.672 1 0.000 1.889 

Hodgkin's Disease 0.409 0.100 16.596 1 0.000 1.505 

Leukemia −0.550 0.089 38.241 1 0.000 0.577 

Cardiovascular −0.414 0.118 12.350 1 0.000 0.661 

4. Discussion 

COVID-19 is an RNA virus that has the potential to mutate like the flu and measles, which may 

have contributed to the rapid transmission of the disease [49]. Due to the successful performance of 

ANNs in modeling many complex relationships, we examined the applicability of ANNs in 

predicting COVID-19 incidence in the continental United States. One of the main advantages of 

ANNs over widely applied traditional statistical techniques is their predictive capabilities even when 

working with noisy, complex, and incomplete datasets [18], which may also be useful for modeling 

other viruses with complex epidemiology, such as Zika virus. This motivated us to compile a 

relatively broad range (n = 57) of socioeconomic, behavioral, environmental, topographic, and 

demographic factors together with mortality rates of preexisting conditions. The variables were either 

suggested by previous studies or were based on domain knowledge (rarely investigated at the county 

level). 

Among the different combinations of network topologies and learning parameters that were 

examined, the MLP with one hidden layer performed better and thus was used for predictions. 

Sensitivity analysis of this model indicated that six age-adjusted mortality rates, including ischemic 

heart disease, pancreatic cancer, leukemia, Hodgkin's disease, mesothelioma, and cardiovascular 

disease, had substantial impacts on county-level COVID-19 incidence across the continental United 

States. While there is still much to discover and research, the results suggest that the disease incidence 

may be influenced by the fluctuance in mortality rates' distribution nationwide. Therefore, counties 

with elevated proportions of mortality rates of one or more chronic conditions may be more 

vulnerable to the higher incidence of COVID-19, when compared to other counties. As a result, it may 

potentially impact mortality rates during the pandemic. Lai et al. [50] indicated that comorbidities 

and cancer might be substantial contributors to COVID-19 mortality excess rates. They proposed that 

their findings are applicable to COVID-19 incidence and mortality in the United States. Hanff et al. 

[51] convey that COVID-19 mortality is significantly associated with comorbidities, including 

cardiovascular diseases (i.e., hypertension), suggesting that further studies may focus on detailed 

descriptions of comorbid physiological implications in COVID-19 patients, especially in the use 

pharmacological therapies. Alimadadi et al. [52] proposed that sophisticated analysis, such as 

machine learning and artificial intelligence, may aid in combating the pandemic. They also suggest 
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that these methods may provide a better understanding of COVID-19 diagnosis, medication 

treatment, prevention, and hospital logistics. Although our findings seem consistent with recent 

studies, drawing conclusions at the individual level is not valid due to ecological fallacy, thus the 

findings can only be interpreted at the county level. 

According to our findings, demographic (i.e., % male above 65), socioeconomic (i.e., median 

household income), and environmental factors (i.e., maximum terrain slope and precipitation) are 

influential in predicting COVID-19 incidence, indicating that the disease is not merely affected or 

driven by physiological conditions. The findings support and extend the previous study of Mollalo 

et al. [17], who utilized multiscale geographically weighted regression to explain geographic county-

level variations of COVID-19 incidence in the United States. Their results indicated that counties with 

higher median household income and income inequalities were positively correlated with elevated 

disease incidence, predominantly in the tristate area. Kavanagh et al. [53] proposed that 

socioeconomic and demographic factors are vital to consider when addressing the pandemic as they 

may be associated with income disparities that exist in the United States. This may be the case of 

some employees that may not have the option to work remotely from home, instead, potentially 

resulting in more frequent exposure to the virus, contributing to further spread of the disease. The 

study of Qu et al. [54] emphasize the significance of examining the effects of environmental factors 

pertaining to COVID-19. Their results suggest that COVID-19 may be aggravated by air pollutants 

(i.e., airborne particulate matter), influencing infectivity. Hence, further studies on preexisting 

conditions, socioeconomic, demographic, and environmental impacts on COVID-19 incidence 

preferably at a less coarse granularity level are essential. 

We acknowledge that the obtained consistency between the model and ground truth is not 

notably large. This is likely due to the limited knowledge about the recently emerged disease and 

factors that may be influential but not included in this study. Therefore, future studies should focus 

on improving the prediction accuracy of this initial model. Additionally, even though no significant 

difference is observed between the performance of MLP networks with one and two hidden layers, 

there may still exist complex relationships in the data that are not captured. This leads us to another 

limitation of this study, which is the number of training samples. With a higher amount of training 

data, one could apply deeper networks, i.e., networks with more than two hidden layers, and 

leverage the power of deep learning models. Deeper neural networks can capture potential non-

linearity in the relationship between dependent and independent variables by stacking two or more 

hidden layers. Thus, such networks are, in general, capable of reaching higher accuracies and can 

reveal the nuances of the data. However, the amount of training data that was available in this study 

does not justify utilizing deep networks. A few possible solutions to increase the amount of data are 

to consider a longer temporal interval (which was not possible in this case), to incorporate data from 

other countries and regions, to use finer spatial units data (if available), or to use data augmentation 

techniques to (artificially) generate more training data and features. Moreover, although adjusted 

mortality rates of the diseases used in this study cannot be directly interpreted as preexisting 

conditions, higher mortality rates of a certain disease could allude to a higher incidence rate of it. 

Therefore, this study could be used to further investigate any potential correlation between disease 

prevalence and COVID-19 incidence.  

After more than three months since the first confirmed case of COVID-19 in the US, and due to 

the substantial economic and social impacts of the pandemic itself and the resulting lockdown 

policies, discussions regarding "re-opening the country" are omnipresent. The findings of this paper 

could be used as one of the many guidelines needed by policymakers to decide if and where (at the 

county level) lockdown policies should be relaxed. 

5. Conclusions 

In this study, we examined the applicability of multi-layer perceptron artificial neural networks 

in modeling cumulative incidence of COVID-19 at the county-level across the continental United 

States. Although the employed model indicated a reasonable but not large consistency with ground-

truth on holdout samples, the prediction capability of the model requires a significant improvement 
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possibly by incorporating new related variables or perhaps by employing different machine learning 

algorithms. However, with the obtained accuracy, (age-adjusted) mortality rates of ischemic heart 

disease, pancreatic cancer, leukemia, Hodgkin's disease, mesothelioma, and cardiovascular disease 

together with two socioeconomic and environmental factors (median household income and total 

precipitation) could contribute with the disease incidence. Therefore, further studies of the factors 

and their associations with the disease may reveal useful information for monitoring COVID-19 

outbreak. 
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