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Abstract: Nowadays, an infectious disease outbreak is considered one of the most destructive effects
in the sustainable development process. The outbreak of new coronavirus (COVID-19) as an infectious
disease showed that it has undesirable social, environmental, and economic impacts, and leads
to serious challenges and threats. Additionally, investigating the prioritization parameters is of
vital importance to reducing the negative impacts of this global crisis. Hence, the main aim of this
study is to prioritize and analyze the role of certain environmental parameters. For this purpose,
four cities in Italy were selected as a case study and some notable climate parameters—such as daily
average temperature, relative humidity, wind speed—and an urban parameter, population density,
were considered as input data set, with confirmed cases of COVID-19 being the output dataset.
In this paper, two artificial intelligence techniques, including an artificial neural network (ANN)
based on particle swarm optimization (PSO) algorithm and differential evolution (DE) algorithm,
were used for prioritizing climate and urban parameters. The analysis is based on the feature selection
process and then the obtained results from the proposed models compared to select the best one.
Finally, the difference in cost function was about 0.0001 between the performances of the two models,
hence, the two methods were not different in cost function, however, ANN-PSO was found to be
better, because it reached to the desired precision level in lesser iterations than ANN-DE. In addition,
the priority of two variables, urban parameter, and relative humidity, were the highest to predict the
confirmed cases of COVID-19.

Keywords: sustainable development; COVID-19; artificial intelligence; PSO; DE; feature selection

1. Introduction

Sustainable development is an approach planned to improve human life and considers the
development process while simultaneously analyzing related impacts [1–3]. Its critical role is becoming
more and more important every day. After great efforts, in 2015, United Nations member states
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approved the 2030 Agenda for Sustainable Development, which includes 17 Sustainable Development
Goals (SDGs) [4].

The main aspects of sustainable development are simultaneous consideration of environmental,
social, and economic, and if the policies of governments consider these three factors separately, the effect
on sustainable development can be negative [5,6]. There are many evaluation methods to analyze the
previous efforts on sustainable development [7–9], and the selected techniques depend on the study
goals [10–14].

Although sustainable development is not a new concept, these methods neglect important
elements. Among them, epidemic diseases can have a temporary or permanent negative impact [15,16].
Moreover, urbanization also plays an important role in this regard, since one of its impacts is the
increase of the population density, which can affect the epidemic rate of diseases directly [17–20].
COVID-19 is a recent pandemic disease [21]. There are several studies about coronavirus spread,
the time the virus remains in the environment, the epidemic rate, and the mathematical models for the
prediction of COVID-19 contagions [22–26].

Chen et al. developed a time-dependent mathematical model for the prediction of the total
number of confirmed cases [27]. Pirouz et al. used artificial intelligence (AI) algorithm to study the
correlation between environmental parameters and COVID-19. They found a significant correlation
between urban and climate parameters and the number of confirmed cases of COVID-19 [28]. Hu et al.
developed a predictive model for the transmission period of the COVID-19 using AI techniques.
Their results showed a high-performance of AI in predicting the outbreak of coronavirus [29].

Kampf et al. investigated the time the coronaviruses survive on different surfaces. Their results
show that COVID-19 can survive up to nine days, depending on the environment temperature
and materials of the surface [30]. Grant and Giovannucci carried out a study about the impact of
temperature on COVID-19 and showed that most patients had been exposed to temperatures between
3 and 17 degrees Celsius, and that the infection rates are lower in tropical regions [31]. In a previous
study, Chan et al. had analyzed the effects of temperature and humidity on another type of coronavirus,
SARS. According to this study, when the temperature increases, the survival time of the virus on the
surfaces can decrease, and this leads to a lower epidemic rate [32].

The review of these previous studies and the size of the pandemic reveals that new coronavirus
(COVID-19) as an infectious disease has undesirable social, environmental, and economic impacts and
might lead to serious challenges and threats in many societies. Therefore, the paper will prioritize
and analyze the role of certain environmental parameters, including daily average temperature,
relative humidity, wind speed, and an urban parameter, population density, which have essential roles
in reducing the negative impacts of this global crisis by using artificial intelligence techniques.

2. Methodology

Two analytical approaches have been used. At first, by using a multivariate linear regression
(MLR) model, the correlations between the three climate parameters, including average temperature,
humidity, and wind speed, and the confirmed cases of COVID-19 were investigated, and the required
datasets for artificial intelligence prepared. Then, two artificial intelligence techniques based on ANN,
including the PSO algorithm and DE algorithm, have been used for predicting the confirmed cases of
COVID-19 and to prioritize and reduce the input parameters.

Analysis Conditions:

• The analysis factors are the population density of each region, average daily temperature,
relative humidity, wind speed, and the positive cases in the following days;

• Since the incubation period of the virus is about 14 days, the sum of previous positive cases up to
14 days previously has been considered;

• The analysis period is from 14 February 2020 to 24 March 2020.
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In addition, it must be noticed that there are some delays between the exact dates when patients
got infected by the COVID-19, and the dates when confirmed cases were registered in the media
as follows:

• The incubation period of COVID-19 varies from about 2 to 14 days [33];
• The lab tests of COVID-19 were on patients with symptoms [34];
• The symptoms of COVID-19 occur after 3 to 5 days [35];
• The results of the laboratory tests took one day to be ready [36,37];
• The daily announcement of new confirmed cases of COVID-19 usually refers to one day before [38].

Therefore, to find an appropriate correlation between weather data and confirmed cases, the climate
factors have been shifted backward from one to nine days with respect to observations, and by the
MLR method, the best correlation for each region has been selected. The results are presented in
Appendix A, and have been used as a database in the artificial intelligence method.

It is evident that using daily positive cases—and especially data from one day before—could
not be correct, due to the incubation period of COVID-19 (2 to 14 days), the symptoms of COVID-19
(which occur after 3 to 5 days), and finally, the fact that the lab tests of COVID-19 were on patients with
symptoms. Therefore, the new positive case in date X will depend on the accumulative positive cases
up to 14 days ago (Date X-14). This variable cannot reach a plateau since it represents the accumulation
of 14 days, not the period from start to end, as presented in Appendix B.

2.1. Artificial Intelligence Methods

2.1.1. Artificial Neural Network (ANN)

The human brain, as a complex natural system, is unique in its kind. Some of the processes in this
natural system are so complex that their processing is also complex for many super systems [39–44].
Analytical processes are very complex, because of the high speed and power of information processing
by brain cells. Researchers were enabled to design advanced methods for solving various problems
of real world inspired by the function of the human brain. Hence, artificial intelligence (AI) is
considered one of the most successful achievements of computer science, simulating the behavior
of the human brain in data analysis [45–51]. One of the AI branches is the artificial neural network
(ANN). This information processing system, by a simulating strategy like communication between
brain neurons, has become a tool for analyzing complex and real systems. In recent years, ANN models
have been developed to overcome the difficulties presented by health issues [52–54]. Many types of
computational models have been introduced as general neural networks. The multilayer perceptron
(MLP) model is one of the most efficient ones, and has been used in a variety of activities. The MLP is
a supervised artificial neural network with at least three layers, including the input layer, hidden layer,
and output layer. The basic form of an artificial neural network includes a set of connected units or
nodes (artificial neurons), and connections (weights). The connections can transmit a signal from one
neuron to another, as shown in Figure 1. Depending on a particular problem, the number of neurons
and the hidden layer can be changed to find the best prediction model [55–60]. The performance
indicators of the algorithm evaluate the difference between the predicted values and the last layer
(output). The process of training and evaluating the results in this algorithm continues until a desirable
convergence is reached, and then it stops.
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Figure 1. The basic form of multilayer perceptron artificial neural network (ANN) [61].

2.1.2. Particle Swarm Optimization (PSO) Algorithm

In recent years, the use of artificial intelligence by many researchers to solve complex and uncertain
problems has become widespread [62–71], and there have been especially successful applications in the
health problems [72–76]. One of these advanced techniques is the particle swarm optimization (PSO)
algorithm, first introduced by Kennedy and Eberhart [77–79]. The algorithm was designed to simulate
the swarm behavior of particles and to inspire the movement of birds and flocks. The PSO algorithm
has been used successfully for modeling in engineering and academic applications. In this algorithm,
each particle in the particle set is considered as a potential solution that the process of this algorithm
begins with the generation of a random particle set. Then, the process continues by moving the set of
particles to search for an optimal answer in the search space. In addition, if there is a D-dimensional
set, including N particles, each i particle in this set is indicated with an Xi vector that includes vectors
of position and velocity. In fact, the PSO algorithm differs from other algorithms in having a velocity
vector. The new velocity vector and the new position vector of each particle are updated based upon
Equations (1) and (2) in each moment. They depend on the particle’s best position (Pbest) and the
global best position (Gbest) [80].

V(k+1)
i = wVk

i + c1r1.(pbesti −Xk
i ) + c2r2.(gbest−Xk

i ) (1)

X(k+1)
i = Xk

i + Vk
i (2)

where Xk
i and Vk

i are the current position and velocity of the particle i, respectively, and V(k+1)
i and

X(k+1)
i its new position and velocity. The parameter w is called the inertia weight, and varies between

0.4 and 0.9. The r1 and r2 are two random numbers within [0, 1]. The constants C1 and C2, called the
individual learning factor and social learning factor, are positive and must satisfy Equation (3). Figure 2
shows the update of the velocity and position vectors of a particle in the set [81,82].

c1 + c2 ≤ 4 (3)
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Eventually, all particles converge to the optimal point after a thorough search. Figure 3 presents
the flowchart of the PSO algorithm.
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2.1.3. Differential Evolution (DE) Algorithm

The differential evolution (DE) is an evolutionary computation that is suitable for dealing with
complex problems in the real world. The DE algorithm is a population-based algorithm that was
proposed by Price and Storn for solving the continuous value problems [84–87]. Then, in the following
years, the method developed and used for solving binary and discrete problems. The DE algorithm has
been widely applied as an optimization algorithm to solve complex problems in various engineering
sectors. The DE algorithm and some Meta heuristic algorithms like genetic algorithms have similar
operators, including crossover, mutation, and selection. However, there are some differences among
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them, like the lack of local search in genetic algorithm, while the DE algorithm supports local search.
In addition, the DE relies on mutation operation while the genetic algorithm relies on a crossover.
Like other evolutionary algorithms, the DE starts by randomly generating the initial population. Then,
after initialization, the search space is expanded by the mutation. The Vg

i is the mutant solution vector
of Xg

i which is calculated based on Equation (4) [88].

Vg
i = Xg

r1 + Fk.(Xg
r3 −Xg

r2) (4)

where Fk is the scaling factor varying in the range [0, 1] and determines the length of the mutation
step. Xg

r1, Xg
r2 and Xg

r3 are solution vectors that are randomly selected, with the condition expressed by
Equation (5) [89].

Xg
r1, Xg

r2, Xg
r3|r1 , r2 , r3 , i

i = [1, 2, 3, . . . , NP]
(5)

where “i” is the index of the current solution. The trial vector (Ug
ij) is produced by mixing the mutated

vector and the parent vector in a crossover operation based on Equation (6) [90].

Ug
ij =

 Vg
ij Rand j ≤ CR,

Xg
ij Rand j > CR,

j = 1, 2, 3, . . . ., n (6)

where Randj is a randomly chosen real number in the interval between 0 and 1. The CR is a crossover
constant. If the Randj is less than or equal to CR, the trial vector (Ug

ij) is inherited from the mutant

solution vector, otherwise, the CR is considered equal to Xg
ij. The flowchart of the DE algorithm is

shown in Figure 4.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 7 of 23 
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2.2. Subsection

In this research, the case studies are the four regions in Italy with the largest numbers of confirmed
cases of COVID-19, namely Lombardy (Milan), Piedmont (Turin), Veneto (Venice), and Emilia-Romagna
(Bolonia), whose general data are presented in Table 1. The locations of the case studies are shown in
Figure 5.

Table 1. The selected case studies.

Case Study Population [92] Density, Population/km2 [93]
Total Confirmed Cases
Until 24th March [94]

Lombardy (Milan) 10,060,574 422 30,703
Veneto (Venice) 4,905,854 272 5948

Piedmont (Turin) 4,356,406 172 5524
Emilia-Romagna (Bolonia) 4,459,477 199 9254Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 8 of 23 
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3. Model Development

3.1. PSO Modelling

The main goal of PSO is to train the artificial neural network for determining the feature selection
of confirmed cases of COVID-19, and the reduction of them under the highest relationship between
several independent variables and the dependent variable. For this purpose, three notable climate
parameters, namely daily average temperature, relative humidity, and wind speed, and one urban
parameter (population density × positive cases up to 14 days before), were considered as input data set,
and confirmed cases of COVID-19 were considered as the output dataset. It is worth mentioning that
the 4 input parameters are evaluated and reduced to 2. Firstly, before modeling, the control parameters
of an algorithm should be selected. There are no specific rules, and most of them are considered based
on the experts’ opinions and previous studies [61,82]. Hence, a number of different modeling are done
to determine an appropriate value for control factors, for instance, the size of a hidden layer of ANN
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was selected for 10, 20, and 30, the maximum iteration value was considered as 15, 20, 25, 30, 40, and 50
and the swarm sizes as 5, 10, 20, 30, and 40. Secondly, after the initial analysis and trial and error,
the best developed model was constructed with a structure shown in Table 2. Finally, the developed
model was implemented for determining the best answer with 2 parameters. The obtained result of
the best cost in each iteration is shown in Figure 6 for 2 parameters, respectively. In fact, the best cost
in each iteration shows the performance function of the algorithm depends on the values of error in
each iteration of modelling. It should be noted that we consider the mean squared error (MSE) for
evaluation of the performance, and 70% of data set were considered for training, and the rest were
considered for validation (15%) and testing (15%) [99].

Table 2. The control parameters of the developed model for ANN-PSO.

Control Parameters Values

Number of hidden layers 10

Swarm size 15

Individual learning factor (C1) 1.49

Social learning factor (C2) 1.49

Maximum number of iterations 30
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According to Figure 6, it is evident that after the sixth iteration with 0.00133, the best cost was
reached, and the model achieves a worthy convergence, and it was fixed to the end of the iteration.
In addition, the model reduced the number of parameters from 4 to 2 that, in fact, reveal that the urban
parameter and relative humidity were the priority of the model.

3.2. DE Modelling

As mentioned earlier, the DE algorithm is used for training the artificial neural network to
apply the feature selection with the four climate parameters, namely daily average temperature,
relative humidity, and wind speed, and one urban parameter (population density × positive cases up
to 14 days before) considered as the input data set, and the confirmed cases to COVID-19 considered as
an output dataset. At first, the control parameters of DE algorithm are determined to find the optimum
weights and biases of ANN model that can converge faster and accurately. For this purpose, similar to
PSO model, the crossover probability coefficient was selected as 0.2, and other parameters were
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determined by trial and error method from previous studies and experts’ opinions [87,88]. In addition,
the datasets for modeling were randomly divided into several subsets, including 70% for training
and the rest for validation (15%) and testing (15%) [99]. Hence, population sizes of algorithm of 5, 10,
20, 30, and 40 were selected, and the maximum iteration was used with a range of values equal to
15, 20, 25, 30, 40, and 50. The values of 10, 20, and 30 were chosen for the size of the hidden layers of
ANN. After the initial evaluation, the optimized model selected with the values of 5, 15, and 30 for the
hidden layer, population size, and the maximum number of iterations, respectively. The process of
optimization based on iterations is presented in Figure 7, which shows that the process reached the
desired precision level of best cost with the value of 0.0014 from the 8th iteration, and it was fixed from
the 8th to the 30th iteration.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 10 of 23 
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The developed model by DE algorithm determined the urban parameter and relative humidity
as priorities of prediction in this research. More discussions regarding the comparison of algorithms’
performances and the priorities of the parameters in the forecast will be given in the following section.

4. Discussion

In this research, two machine learning techniques of artificial intelligence, namely ANN based on
the PSO algorithm and DE algorithm, were used for prioritizing climate and an urban parameter based
on the feature selection process. Both developed models based on PSO and DE algorithms selected the
urban parameters and relative humidity in the feature selection process, and the reduction of number
of parameters. In fact, at first, these models calculated and achieved the best relationships between
the output and all inputs based on the values of best cost, then the models considered the features as
a binary choice, and finally they could find out that the best values of best cost with these two features
are very close to the values of the best cost of all features. The developed model by the PSO algorithm
achieved a suitable convergence with good accuracy in the sixth iteration, while the developed model
by DE algorithm reached an appropriate convergence in the eighth iteration. Consequently, it is
clearly seen that, although there is no salient difference between the performances of the two models,
the model developed by PSO algorithm has a better performance in this specific problem, based on the
best cost value and the rate of convergence.

Our results are in good agreement with those of Chan et al. [32] about the important role of
humidity in another type of coronavirus, SARS, and of Pirouz et al. [28], that identified relative
humidity as the higher-impact weather parameter.
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For further evaluation, the obtained results were validated by multivariate linear regression
(MLR) technique and partial least squares regression (PLSR). For this, since for all four case studies,
the correlations can be based on the two variables of humidity and urban parameter, the simplified
final MLR and PLSR models are as follows:

• Prediction of MLR y = 169.96 + 0.000284 X 1 + 0.59 X 2, R2 = 0.76
• Prediction of PLSR y = 193.26 + 0.00028 X 1 + 0.257 X 2, R2 = 0.76

where X1 is the urban parameter, and X2 is the relative humidity. Therefore, the analysis shows that the
prediction of confirmed cases of COVID-19 could be made by using two factors of relative humidity
and urban parameter (population density X positive cases up to 14 days before).

The trend of confirmed cases in four regions is shown in Figure 8, and the daily relative humidity
in Figure 9. According to Figure 8, it is evident that the number of infections in all regions were
equal at the beginning, but in Lombardy with the highest density increased more. Analysis of relative
humidity exhibits that the fluctuations of humidity percentage was the highest in Lombardy, and then
in Piedmont, as well as the number of confirmed cases that in both case studies show daily fluctuations.
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In addition, the analysis determined that even in one climate type, as the climate type of all four
regions is humid subtropical, there might be other essential variables such as population density that
affect the final results. In addition, the differences in the fluctuation of relative humidity in one type of
climate as an influential parameter in the number of confirmed cases of COVID-19 show that for other
types of climates, the selection of different case studies is a necessity.

Finally, it is worth mentioning that the results of this research are derived explicitly for the studied
regions in the north of Italy with a humid subtropical climate, and they should not be used directly
in other countries. For possible future work referring to other countries, it is recommended to see
the effectiveness of the other parameters, such as different climate conditions and urban parameters.
In addition, the outdoor humidity could affect the indoor humidity, which might be another important
parameter for future analysis. In addition, it might be worth studying whether the use of other machine
learning methods may improve our results.
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5. Conclusions

With regard to the immense importance of sustainable development to improve the conditions
of today’s and future generations, evaluating its challenges and obstacles has considerable effects on
government decisions. Hence, in this research, the pandemic novel coronavirus infection (COVID-19) as
a new challenge of sustainable development was investigated, using two machine learning techniques.
For this purpose, we evaluated several notable climate parameters and an urban parameter, in order
to find a relationship between them and the confirmed cases of COVID-19. For this, two artificial
intelligence techniques, including ANN based on the PSO algorithm and DE algorithm, were used to
predict the confirmed cases of COVID-19 with highly acceptable degrees of accuracy and robustness,
in order to prioritize and reduce input parameters. The obtained results indicated that both developed
models by PSO and DE algorithms were able to select the urban parameter and relative humidity from
other effective parameters. In addition, although the two developed models had the high capability
in predictive process with best costs equal to 0.0013 and 0.0014 for the PSO and DE algorithms,
respectively, the developed model by PSO algorithm was a more efficient approach, compared to the
other predictive method. Finally, the results were tested by a MLR and PSLR, which described the
correlation between the urban parameter and relative humidity and the confirmed cases of COVID-19,
with R2 equal to 0.76 for both regression models. For future studies, it is recommended to focus on
other algorithms, other parameters for proper feature selections, and other types of climate.
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Appendix A

Table A1. The dataset of Lombardy (Milan) according to results of multivariate linear regression (MLR),
[100,101].
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Table A2. The dataset of Piedmont (Turin), according to results of MLR, [100,101].

X1, Average
Temperature, ◦C X2, Humidity, % X3, Wind, km/h X4, Positive Cases

up to 14 Days before
X4 new (Urban
Parameter) *

Y, Confirmed
Cases

[Shifted 6 Days
(24-Feb to 18-Mar)]

[Shifted 9 Days
(21-Feb to 15-Mar)]

[Shifted 9 Days
(21-Feb to 15-Mar)]

[Shifted 2 Days
(28-Feb to 22-Mar)]

[Shifted 2 Days
(28-Feb to 22-Mar]

[1-Mar to 24-Mar]

5.2 72.7 2.9 10 1720 38

10.2 63.2 3.2 10 1720 2

7.0 73.4 3.0 48 8256 5

2.9 78.3 4.3 50 8600 26

2.7 78.7 5.1 55 9460 26

3.5 64.7 14.3 81 13932 35

4.6 39.6 13.7 107 18404 64

3.1 58.7 6.3 142 24424 153

3.8 49 3.8 206 35432 -

4.1 72.4 4.3 359 61748 103

4.8 80.6 4.3 359 61748 48

2.6 78.1 7.5 462 79464 79

2.5 51.9 4.9 510 87720 260

4.9 58.1 6.3 588 101136 33

5.8 90.0 5.4 839 144308 238

4.1 72.8 3.7 872 149984 405

7.2 48.9 5.2 1072 184384 381

9.8 62.6 4.3 1475 253700 444

11.0 70.0 5.0 1851 318372 591

9.4 55.0 4.5 2269 390268 529

6.6 74.7 3.6 2834 487448 291

7.1 83.4 3.0 3328 572416 668

5.8 84.4 6.7 3555 611460 441

7.5 84.2 3.8 4070 700040 654

* Urban parameter is population density * positive cases up to 14 days before. y = 288.108 + 9.740x1 − 3.219x2 −

8.188x3 + 0.151x4, R2 = 0.79.

Table A3. The dataset of Veneto (Venice) according to results of MLR, [100,101].

X1, Average
Temperature, ◦C X2, Humidity, % X3, Wind, km/h X4, Positive Cases

up to 14 Days before
X4 new (Urban
Parameter) *

Y, Confirmed
Cases

[Shifted 5 Days
(20-Feb to 19-Mar)]

[Shifted 8 Days
(17-Feb to 16-Mar)]

[Shifted 6 Days
(19-Feb to 18-Mar)]

[Shifted 4 Days
(21-Feb to 20-Mar)]

[Shifted 4 Days
(21-Feb to 20-Mar)]

[25-Feb to 24-Mar]

7.5 92.2 5.6 2 544 11

7.2 89.9 6.3 18 4896 28

7.8 86.7 10.1 25 6800 40

7.4 74.3 7.9 32 8704 40

8.9 71.3 6.3 43 11696 40

9.3 68.2 7.9 71 19312 72

9.1 87.6 6 111 30192 10

8.2 86.4 10 151 41072 34
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Table A3. Cont.

X1, Average
Temperature, ◦C X2, Humidity, % X3, Wind, km/h X4, Positive Cases

up to 14 Days before
X4 new (Urban
Parameter) *

Y, Confirmed
Cases

[Shifted 5 Days
(20-Feb to 19-Mar)]

[Shifted 8 Days
(17-Feb to 16-Mar)]

[Shifted 6 Days
(19-Feb to 18-Mar)]

[Shifted 4 Days
(21-Feb to 20-Mar)]

[Shifted 4 Days
(21-Feb to 20-Mar)]

[25-Feb to 24-Mar]

9.1 92.7 14.6 191 51952 53

7.3 90 10.7 263 71536 47

8.6 62.6 9 273 74256 81

7.1 52.5 9.7 307 83504 55

10 64.2 11.6 360 97920 127

9.1 79.8 14.8 407 110704 74

7.2 94.8 10.7 486 132192 112

7.5 89.8 5.6 525 142800 167

8.9 76.2 16.7 645 175440 361

9.4 72.8 5.3 712 193664 211

8.6 80.7 11.4 813 221136 342

9.1 82.5 7.9 952 258944 235

9.1 68 6.5 1273 346256 301

9.2 68.2 6.7 1444 392768 231

11.2 74.2 7.9 1746 474912 510

11.5 82.3 6.7 1909 519248 270

9 84.9 14.1 2200 598400 547

8.2 89.8 17.6 2397 651984 586

9 73.8 9.3 2854 776288 505

11.1 64.3 7.2 3077 836944 383

14.2 52.6 7.2 3543 963696 443

* Urban parameter is population density * positive cases up to 14 days before. y = 1.477 − 10.341x1 + 0.457x2 +
11.467x3 + 0.165x4, R2 = 0.82.

Table A4. The dataset of Emilia-Romagna (Bologna) according to results of MLR, [100,101].

X1, Average
Temperature, ◦C X2, Humidity, % X3, Wind, km/h X4, Positive Cases

up to 14 Days before
X4 new (Urban
Parameter) *

Y, Confirmed
Cases

[Shifted 8 days
(17-Feb to 16-Mar)]

[Shifted 6 days
(19-Feb to 18-Mar)]

[Shifted 8 days
(17-Feb to 16-Mar)]

[Shifted 3 days
(22-Feb to1-Mar)]

[Shifted 3 days
(22-Feb to1-Mar)]

[25-Feb to 24-Mar]

8.8 83.3 5.6 2 398 8

11.5 72.9 6.5 9 1791 21

10.2 74 6.3 18 3582 50

8.0 74.2 7.6 26 5174 48

9 73.2 4.3 47 9353 72

7.2 77.6 5.3 97 19303 68

8.8 84.3 7.4 145 28855 50

10 69.6 4.9 217 43183 85

9.8 33.6 5.8 285 56715 124

11.2 37.8 10.2 335 66665 154

8.6 36.1 20.8 420 83580 172
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Table A4. Cont.

X1, Average
Temperature, ◦C X2, Humidity, % X3, Wind, km/h X4, Positive Cases

up to 14 Days before
X4 new (Urban
Parameter) *

Y, Confirmed
Cases

[Shifted 8 days
(17-Feb to 16-Mar)]

[Shifted 6 days
(19-Feb to 18-Mar)]

[Shifted 8 days
(17-Feb to 16-Mar)]

[Shifted 3 days
(22-Feb to1-Mar)]

[Shifted 3 days
(22-Feb to1-Mar)]

[25-Feb to 24-Mar]

10.5 66.2 19.1 544 108256 140

8.6 90.5 7.2 698 138902 170

10 82.8 12 870 173130 206

6.2 84.9 7.9 1008 200592 147

10.3 69 14.1 1171 233029 206

7.5 82.5 9.7 1368 272232 208

7.5 81.3 8.1 1507 299893 316

8.5 74.3 13.9 1692 336708 381

8.7 59.9 10.6 1850 368150 449

8.8 70.6 6.7 2118 421482 429

8.6 62.9 7.6 2427 482973 409

8.1 61.7 7.4 2808 558792 594

9.1 74 6.3 3187 634213 689

11.5 79.6 8.1 3511 698689 754

13 71.1 5.1 3981 792219 737

13.2 56.4 9 4516 898684 850

9.2 54.4 8.3 5098 1014502 980

7.6 59 6.7 5695 1133305 719

* Urban parameter is population density * positive cases up to 14 days before. y = −64.970 + 14.653x1 − 0.327x2 +
1.616x3 + 0.162x4, R2 = 0.94.

Appendix B

The validity of using the sum of 14 days for confirmed cases for the updated data of Lombardy
(Milan) until 17 April. The dataset and the graph as bellow:

Table A5. The updated dataset of Lombardy (Milan).

Date Daily New
Cases

X4
Positive Cases up
to 14 Days before
[Shifted 3 Days]

X4new
[Population
Density *X4]

Date Daily New
Cases

X4
Positive Cases up
to 14 Days before
[Shifted 3 Days]

X4new
[Population
Density *X4]

20-Feb 0 0 0 04-Apr 1598 27060 11419320
21-Feb 15 0 0 05-Apr 1337 26181 11048382
22-Feb 40 0 0 06-Apr 1079 25256 10658032
23-Feb 57 0 0 07-Apr 791 23603 9960466
24-Feb 61 15 6330 08-Apr 1089 23249 9811078
25-Feb 67 55 23210 09-Apr 1388 22773 9610206
26-Feb 65 112 47264 10-Apr 1246 21622 9124484
27-Feb 98 173 73006 11-Apr 1544 21068 8890696
28-Feb 128 240 101280 12-Apr 1460 19913 8403286
29-Feb 84 305 128710 13-Apr 1262 18750 7912500
01-Mar 369 403 170066 14-Apr 1012 18177 7670694
02-Mar 270 531 224082 15-Apr 827 18045 7614990
03-Mar 266 615 259530 16-Apr 941 18153 7660566
04-Mar 300 984 415248 17-Apr 1041 18118 7645796
05-Mar 431 1254 529188 18-Apr 1246 17380 7334360
06-Mar 361 1520 641440 19-Apr 855 17029 7186238
07-Mar 808 1820 768040 20-Apr 735 16615 7011530
08-Mar 769 2251 949922 21-Apr 960 16263 6862986
09-Mar 1280 2597 1095934 22-Apr 1161 15781 6659582
10-Mar 322 3365 1420030 23-Apr 1073 15437 6514414
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Table A5. Cont.

Date Daily New
Cases

X4
Positive Cases up
to 14 Days before
[Shifted 3 Days]

X4new
[Population
Density *X4]

Date Daily New
Cases

X4
Positive Cases up
to 14 Days before
[Shifted 3 Days]

X4new
[Population
Density *X4]

11-Mar 1489 4077 1720494 24-Apr 1091 15606 6585732
12-Mar 1445 5296 2234912 25-Apr 713 15678 6616116
13-Mar 1095 5551 2342522 26-Apr 920 15363 6483186
14-Mar 1865 6975 2943450 27-Apr 590 15208 6417776
15-Mar 1587 8322 3511884 28-Apr 869 14377 6067094
16-Mar 1377 9289 3919958 29-Apr 786 13837 5839214
17-Mar 1571 11070 4671540 30-Apr 598 13165 5555630
18-Mar 1493 12288 5185536 01-May 737 13022 5495284
19-Mar 2171 13395 5652690 02-May 533 12981 5477982
20-Mar 2380 14700 6203400 03-May 526 12638 5333236
21-Mar 3251 15893 6706846 04-May 577 12334 5204948
22-Mar 1691 17633 7441126 05-May 500 11621 4904062
23-Mar 1555 19652 8293144 06-May 764 11292 4765224
24-Mar 1942 22095 9324090 07-May 720 11134 4698548
25-Mar 1643 23017 9713174 08-May 634 10674 4504428
26-Mar 2543 23292 9829224 09-May 502 10277 4336894
27-Mar 2409 24912 10512864 10-May 282 9924 4187928
28-Mar 2117 25066 10577852 11-May 364 9467 3995074
29-Mar 1592 26164 11041208 12-May 1033 9256 3906032
30-Mar 1154 27478 11595716 13-May 394 8618 3636796
31-Mar 1047 27730 11702060 14-May 522 8392 3541424
01-Apr 1565 27735 11704170 15-May 299 8556 3610632
02-Apr 1292 27512 11610064 16-May 399 8164 3445208
03-Apr 1455 26988 11388936 17-May 326 8088 3413136
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As, the graphs show, neither X4 nor X4new reached a plateau. Thus, the mentioned method for X4,
using the shifted sum of 14 days previously that is in line with the COVID-19 incubation period,
might be more exact than using daily confirmed cases.
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