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Abstract: The impact of human activities on ecosystems can be measured by ecosystem services.
The study of ecosystem services is an essential part of coupled human and natural systems.
However, there is limited understanding about the driving forces of ecosystem services, especially
from a spatial perspective. This study attempts to fill the gap by examining the driving forces of
ecosystem services with an integrated spatial approach. The results indicate that more than US$430
billion of ecosystem services value (ESV) is produced annually in the Middle Reaches of the Yangtze
River Urban Agglomerations (MRYRUA), with forestland providing the largest proportion of total
ESV (≥75%) and hydrological regulation function accounting for the largest proportion of total ESV
(≥15%). The average ESV in the surrounding areas is obviously higher than those in the metropolitan
areas, in the plains areas, and along major traffic routes. Spatial dependence and spatial spillover
effects were observed in the ecosystem services in the MRYRUA. Spatial regression results indicate
that road density, proportion of developed land, and river density are negatively associated with
ecosystem services, while distance to a socioeconomic center, proportion of forestland land, elevation,
and precipitation are positively associated with ecosystem services. The findings in this study suggest
that these driving factors and the spillover effect should be taken into consideration in ecosystem
protection and land-use policymaking in urban agglomerations.

Keywords: land-use/land-cover change; ecosystem services; driving forces; spatial regression;
Middle Reaches of the Yangtze River Urban Agglomerations; China

1. Introduction

Urban agglomerations in China have become the main spatial carrier of urbanization [1].
Human activities in urban agglomerations have increasingly intensified land-use/land-cover change
(LULCC) and exacerbated the evolution of ecosystem services [2,3]. Clearly identifying the evolutionary
mechanisms of ecosystem services in urban agglomerations carries great significance for policy
implications in land-use planning and ecosystem management. However, there is limited understanding
about the determinants of ecosystem services from a spatial perspective. Within this context, it is
crucial to characterize the spatial pattern of ecosystem services and explore their driving forces in
urban agglomerations.

More specifically, an accurate assessment of ecosystem services is the foundation for studying
the evolutionary mechanisms of ecosystem services, yet the assessment of ecosystem services and the
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study of the evolutionary mechanisms of ecosystem services in the emerging urban agglomerations
in China remains incomplete. The Middle Reaches of the Yangtze River Urban Agglomerations
(MRYRUA), an emerging urban agglomeration in China composed of the Wuhan metropolis,
the Changsha–Zhuzhou–Xiangtan metropolis, and the Poyang Lake city group, was selected as
the study area to explore land-use features and identify the driving forces of ecosystem services with
spatial regression models. Geographically, the MRYRUA is located at the intersection of the east–west
and north–south development axes of China, and it is an important economic center. The Yangtze River
Middle Reach City Group Development Plan, implemented in 2015, proposed a strategic positioning
for building a new growth pole for China’s economic development, a new type of urbanization
leading zone in central and western China, an inland open cooperation demonstration zone, and a
“two-type” (resource-saving and environmentally friendly society) social construction leading zone
in China [4]. Thus, it is beneficial to examine the evolutionary mechanism of ecosystem services in
this fast-developing urban agglomeration. To that end, this study has three specific research aims:
To explore the spatiotemporal features of LULCC and the spatial pattern of ecosystem services in the
MRYRUA from 1995 to 2015; to examine the driving forces of ecosystem services based on spatial
aspects; and then to explain related policy implications based on the spillover effect found in this study.

The term “Ecosystem Services” was first proposed by Ehrlich and Ehrlich (1981) based on the
concept of “Environmental Services” proposed by Carroll and Wilson (1970) and the concept of
“Natural Services” proposed by Westman (1977) [5–7]. Although there is not a uniform definition
of ecosystem services, the general consensus is that ecosystem services are the benefits obtained by
human beings from ecosystems; that the natural ecosystems and the resources needed for human
survival and development ultimately come from natural ecosystems, the subject of ecosystem services;
and that ecosystem services are reflected by the conditions and processes of the ecosystem itself [6,7].
The increasing demand for ecosystem services but the scarcity of ecosystem services has brought up
increasing attention to define and estimate the value of ecosystem services. One way is to monetize
these tangible or intangible natural capitals, which can reflect the value brought by ecosystem services
and provide the basis reference for management decisions.

The ecosystem services classification and assessment framework proposed by
Costanza et al. (1997) has pushed ecosystem services research into a new phase [8]. An increasing
number of comprehensive ecosystem services studies concerning ecosystem services assessment,
evolutionary mechanism, trade-offs and synergies, flows, and budgets have previously been carried
out [9–12]. However, there is still work to be done in the study of ecosystem services [13]. For example,
the existing literature about the driving forces of ecosystem services usually ignores the spatial
dependence and spatial spillover effects. However, ecosystem services in one unit are influenced
by individual elements as well as by the provision capacity of ecosystem services in neighboring
spatial units; that is, ecosystem services in one unit are likely to deteriorate if the ecosystem services in
surrounding units deteriorate [14]. Considering only individual elements may miss or distort the truth
of the evolutionary mechanism of ecosystem services. To date, the binary logistic regression model [15],
gray correlation analysis [16], and ordination analysis [17] have been widely used to examine the
driving forces of ecosystem services, while only a few studies identified the spatial determinant
of ecosystem services with spatial regression models [9,10]. In an increasingly connected world,
the spatial interaction features of ecosystem services and spatial determinants provide important
information about the coordinated management of cross-regional land use and ecological protection in
urban agglomerations. Thus, the spatial autocorrelations and spatial spillover effects should be taken
into consideration in understanding the driving factors of ecosystem services.

The evolution of regional ecosystem services takes place under the combined influences of physical,
human, and neighborhood factors, as well as land-use policy and planning [16–19]. Physical elements,
such as elevation, hydrological conditions, and climate, have dominant influences on the spatial
distribution pattern of ecosystem services [20,21]. The provision capacity of ecosystem services
varies substantially at different elevations by different hydrological conditions and climate [22,23].



Int. J. Environ. Res. Public Health 2020, 17, 3717 3 of 19

However, we live on an increasingly human-dominated planet, and the impact of human activities on
the terrestrial ecosystem has dramatically exceeded those of the physical elements [24]. The human
factors affecting the evolution of ecosystem services are both direct and indirect. The chief direct
factors are land-use change [25], afforestation [26], deforestation [27], and land reclamation [28],
among others. The primary indirect factors include urbanization [29,30], economic growth [16],
population migration [31,32], traffic accessibility [33], and land-use policies [34].

Urbanization is a complex process, as are economic agglomeration, population agglomeration,
and the increased demand for developed land and ecological land in urban areas [35]. Urbanization-led
LULCC has profoundly transformed ecosystem services [3] and the proportion of developed land
should be an essential consideration in the evolution of ecosystem services. High population density
and intense economic activities in urban areas have resulted in large-scale modification of ecosystem
services [36]. The construction of infrastructure, such as highways and railways, promotes economic
growth and population migration [37], thereby affecting LULCC and the provisioning capacity of
ecosystem services. Proximity factors, such as distance to city centers, are closely associated with other
socioeconomic factors that should also be considered [38].

2. Materials and Methods

2.1. Study Area and Data

The MRYRUA in this study consists of three provinces: Hunan, Hubei, and Jiangxi (Figure 1).
The MRYRUA is located in the transitional zone between China’s second and third steps. The types of
landforms in the study area are complex and diverse, with significant spatial differences. The overall
terrain is high in the west and low in the north. There are many types of landforms, including plains,
hills, and mountains in the MRYRUA. The MRYRUA is surrounded by the Wu Mountains and
Xuefeng Mountains in the west, Nanling Mountains in the south, and Wuyi Mountains in the east.
The area is rich in farmland, forestland, water resources, and biodiversity, all of which play an
important role in grain-producing and ecosystem services provisioning in China. With the Wuhan
megalopolis, Changsha–Zhuzou–Xiangtan urban agglomerations, and Poyang Lake city group as
its development centers, the MRYRUA has become an emerging national-level urban agglomeration
in China. Rapid development in the MRYRUA greatly promoted the land-use transition and the
deterioration of ecosystem services. During the period of 1995–2015, deforestation, afforestation,
land reclamation, and returning sloping farmland to forestland occurred frequently in the MRYRUA,
causing a dramatic effect on regional ecosystem services. In the context of the important strategic
position of the MRYRUA and the environmental problems, it is necessary to study the supply capacity
of the ecosystem services and their driving mechanism.

The 30-m resolution LULCC dataset was downloaded from the Data Center for Resources
and Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn) [39].
Landsat TM/ETM+ remote sensing imagery was the primary source of data for the LULCC dataset.
Using the human–computer interactive interpretation method, Liu et al. constructed the national
LULCC dataset in China at 5-year intervals [39]. According to specific research needs, the land
uses are divided into six first-level types—farmland, forestland, grassland, water area, construction
land, and unused land. To ensure the quality of the LULCC datasets, nationwide field surveys were
conducted; the overall accuracy was over 90% [39–41].

http://www.resdc.cn
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2.2. Dependent Variables

The theoretical framework for the measurement of ecosystem services value (ESV) proposed
by Costanza et al. (1997) has greatly promoted the study of the assessment of ESV globally [8].
Xie et al. (2003, 2008) revised the ecosystem services classification and equivalent table based on the
expertise of ≥700 ecologists in China using the method of Costanza et al. (1997) [42,43]. Specifically,
ecosystem services were reclassified into four main types and nine subtypes. The equivalent table
of ESV was modified with the concept of equivalent value per unit area. The economic value of
grain production per unit area of farmland was assumed to be 1. The equivalent value per unit area
of other ecosystem services was identified based on their relative importance to grain production
of farmland. The ESV equivalent factor per unit area was defined as equal to 1/7 of the average
economic value of grain production per unit area of farmland. Chen et al. (2019a) calculated the ESV
equivalent value ($US344.927/(hm2 a)) based on the grain yield data and the grain price data in the
MRYRUA [44] (Equation (1)). Ecosystem services have been localized based on biomass, but biomass
was not completely positively correlated, particularly in the water areas and wetlands [42]. However,
the water area and wetlands in the MRYRUA are vast, contributing more than 10% of the total
ESV [44] Chen et al. (2019b) further revised the ESV equivalent value based on the biomass of farmland
(Equation (2)). [45] Based on the results of Chen et al. (2019b) [45], we took the average ESV of each
county as the dependent variable in 1995, 2005, and 2015. The equations are as follows:

EV =
1
7
×

∑ hr × pr × qr

M
(1)

ESVcorrected =
VCIk

VCI
×

m∑
j=1

n∑
i=1

(LUCi × EVi j) (2)

where EV is the economic value of grain production per unit area of farmland (ESV equivalent value;
dollars/(hm2

· a)); hr is the sown area of the rth grain crop (hm2); pr is the average price of the rth grain
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crop ($/ton); qr is the per unit area yield of the rth grain crop (ton/hm2); M is the sown area of all the
grain crops (hm2); and ESVcorrected indicates the corrected ESV.

VCI indicates the average vegetation condition index computed from the normalized difference
vegetation index of the farmland; VCI indicates the annual average VCI; VCIk is the average VCI of
the kth county; EVij is the jth category of ESV equivalent value for the ith land use type; and LUCi
represents the area of the ith land-use type.

2.2.1. LULCC in the MRYRUA from 1995 to 2015

Forestland in the MRYRUA accounted for the largest proportion of the total coverage (more than
58%), followed by farmland (30%). Land use in the MRYRUA changed significantly during 1995–2015.
Forestland increased slightly from 1995–2005 (0.19%), while a significant decline was witnessed during
2005–2015 (0.60%). The area of farmland showed a continuous downward trend (−0.24% during
1995–2005 and −0.79% during 2005–2015). However, a continuous increase can be found in construction
land (0.09% during 1995–2005 and 1.12% during 2005–2015) and water areas (0.26% during 1995–2005
and 0.21% during 2005–2015) (Table 1). Several important trends and transitions between different
land-use types are also worth noting during 1995–2015. The most significant transitions happen
between farmland and forestland: 5906.48 km2 of forestland converted to farmland, and 5459.57 km2

of farmland converted to forestland. For farmland and construction land, 5001.00 km2 of farmland
were converted to construction land, while only 781.48 km2 of construction land were converted to
farmland (Table 2). A significant imbalance can be found in the amount of cultivated land transferred
in and transferred out during 1995–2005 and 2005–2015. The possible reason is that rapid urbanization
took over a large amount of farmland, resulting in a rapid decline in the proportion of farmland.
Additionally, since the implementation of the Farmland Balance Policy, the same amount of farmland
should be reclaimed to make up for the farmland occupied by construction land, resulting in a large
amount of forestland being converted to farmland. At the same time, due to the policy of returning
farmland to forestland and the implementation of a series of ecological engineering projects, a large
amount of farmland was converted into forestland during the study period.

Table 1. Area and changes of land-use types in the Middle Reaches of the Yangtze River Urban
Agglomerations (MRYRUA) from 1995 to 2015.

Land Use Type Units 1995 2005 2015 1995–2005 2005–2015 1995–2015

Farmland
Area (km2) 176,032.81 174,649.62 170,191.07 −1383.19 −4458.55 −5841.74
Proportion (%) 31.17 30.93 30.14 −0.24 −0.79 −1.03

Forestland
Area (km2) 330,189.84 331,286.12 327,894.71 1096.28 −3391.41 −2295.13
Proportion (%) 58.47 58.67 58.07 0.19 −0.60 −0.41

Grassland
Area (km2) 21,920.51 20,241.30 20,585.03 −1679.20 343.73 −1335.47
Proportion (%) 3.88 3.58 3.65 −0.30 0.06 −0.24

Water area
Area (km2) 25,857.54 27,360.30 28,500.41 1502.76 1140.11 2642.87
Proportion (%) 4.58 4.84 5.05 0.26 0.21 0.47

Construction land
Area (km2) 10,575.69 11,055.84 17,402.33 480.15 6346.48 6826.64
Proportion (%) 1.87 1.96 3.08 0.09 1.12 1.21

Unused land
Area (km2) 95.3 78.52 97.66 −16.78 19.14 2.35
Proportion (%) 0.02 0.01 0.02 0 0 0
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Table 2. Transition matrix of land use from 1995 to 2015 in the MRYRUA.

Year Land Use Type Farmland Forestland Grassland Water Area Construction Land Unused Land

1995–2015

Farmland 161,659.56 5906.48 538.05 1299.92 781.48 5.58
Forestland 5459.57 320,176.40 1814.89 297.64 137.81 8.39
Grassland 340.46 922.65 19,248.44 57.82 13.96 1.70
Water area 3567.13 786.77 115.73 23,919.71 109.77 1.30

Construction land 5001.00 2375.86 202.15 280.69 9532.21 10.41
Unused land 5.04 21.27 1.22 1.76 0.45 67.93

1995–2005

Farmland 163,167.32 7641.20 657.95 1596.11 1576.59 10.45
Forestland 7628.76 320,480.64 2467.68 465.45 233.64 9.95
Grassland 415.38 905.03 18,681.15 221.52 16.40 1.83
Water area 3092.75 641.96 79.69 23,421.04 124.19 0.67

Construction land 1724.81 517.59 33.58 152.23 8624.30 3.33
Unused land 3.79 3.42 0.47 1.19 0.56 69.08

2005–2015

Farmland 159,171.53 7739.92 491.30 1827.54 956.79 4.17
Forestland 7279.17 318,331.52 1509.28 531.42 238.84 5.62
Grassland 531.49 2160.83 17,828.35 44.50 19.24 1.20
Water area 2631.06 850.68 232.88 24,640.65 144.49 0.69

Construction land 5026.10 2181.54 178.46 314.46 9694.74 7.05
Unused land 10.42 22.30 1.65 1.75 1.74 59.80

Notes: Rows show land-use types in 2015, and columns show land-use types in 1995. The number 5906.48 indicates
5906.48 km2 of forestland converted to farmland, while the number 5459.57 indicates 5459.57 km2 of farmland
converted to forestland during 1995–2015; the other numbers follow the same rule.

2.2.2. ESV in the MRYRUA from 1995 to 2015

The average ESVs in the MRYRUA in 1995, 2005, and 2015 were US$7724.03/hm2
· a,

US$7817.47/hm2
· a, and US$7877.02/hm2

· a, respectively, documenting a gradually increasing
trend during the period studied. Forestland provided more than 75% of the ESV in the MRYRUA,
while farmland and water areas provided more than 10% of the total ESV (Table 3). The other land-use
types, including grassland and unused land, provided only a small proportion of ESV. Among all the
ecosystem functions, the hydrological regulation function accounted for the largest proportion of the
total ESV (15.79% in 1995, 15.91% in 2005, and 15.98% in 2015). During 1995–2005, the 9 categories
of ecosystem functions provided by grassland and unused land decreased, while the ecosystem
functions provided by farmland, forestland, and water areas increased. The hydrological regulation
function provided by water areas increased the most (US$1101.73 million), while the soil formation and
retention function provided by grassland decreased the most (−US$122.97 million). During 2005–2015,
only the ecosystem functions provided by farmland decreased. The soil formation and retention
function provided by farmland decreased the most significantly (−US$228.37 million). The hydrological
regulation function provided by grassland increased the most (US$528.70) during 2005–2015.

In terms of spatial distribution, the spatial pattern of the average ESV in the MRYRUA is relatively
stable, and the low-value areas of the average ESV are distributed primarily in the Jianghan Plain,
the Poyang Lake Plain, and the Dongting Lake Plain, especially in the key cities and surrounding
areas (Figure 2). The high-value areas of the average ESV are mainly south of the Dabie Mountains
and Wushan in the western area of Hubei, the Xuefeng Mountains in the central and western part
of Hunan Province and Nanling in the southern part of Hunan Province, the Wuyi Mountains in
the eastern region of Jiangxi Province, and the Luoxiao Mountains between Jiangxi Province and
Hunan Province. The supply capacity of ESV provided by ecosystems varied significantly due to the
significant differences in natural conditions and socioeconomic development levels in mountainous
and plain areas.
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Table 3. Ecosystem services value (ESVs) of different land-use types from 1995 to 2015 (million US$).

Year Land Use Type
Supplying Services Regulating Services Supporting Services Cultural Services

Food
Production

Raw
Material

Gas
Regulation

Climate
Regulation

Hydrological
Regulation

Waste
Treatment

Soil Formation
and Retention

Biodiversity
Protection

Recreation and
Culture

Total

1995

Farmland 6218.56 2425.24 4477.36 6032.00 4788.29 8643.80 9141.28 6342.93 1057.16 49,126.63
Forestland 3908.02 35,290.64 51,159.59 48,198.96 48,435.81 20,369.09 47,606.84 53,409.66 24,632.39 333,011.01
Grassland 336.79 281.97 1174.87 1221.86 1190.53 1033.88 1754.47 1464.67 681.42 9140.46
Water area 398.88 264.43 1308.69 6996.09 14,435.87 13,109.26 1075.63 3191.04 4091.88 44,871.76
Unused land 0.06 0.13 0.19 0.41 0.22 0.83 0.54 1.27 0.76 4.43

2005

Farmland 6238.38 2432.97 4491.63 6051.23 4803.55 8671.34 9170.41 6363.14 1060.52 49,283.17
Forestland 3935.44 35,538.25 51,518.54 48,537.14 48,775.65 20,512.01 47,940.86 53,784.40 24,805.22 335,347.51
Grassland 313.19 262.20 1092.52 1136.22 1107.08 961.42 1631.49 1362.01 633.66 8499.79
Water area 429.32 284.61 1408.56 7530.02 15,537.60 14,109.74 1157.72 3434.58 4404.17 48,296.33
Unused land 0.05 0.11 0.16 0.36 0.19 0.71 0.47 1.09 0.66 3.80

2015

Farmland 6083.02 2372.38 4379.78 5900.53 4683.93 8455.40 8942.04 6204.68 1034.11 48,055.87
Forestland 3965.86 35,812.95 51,916.76 48,912.32 49,152.67 20,670.56 48,311.43 54,200.13 24,996.96 337,939.63
Grassland 326.22 273.11 1137.96 1183.48 1153.13 1001.41 1699.36 1418.66 660.02 8853.34
Water area 443.93 294.29 1456.49 7786.24 16,066.30 14,589.85 1197.12 3551.45 4554.03 49,939.70
Unused land 19.82 7.73 14.27 19.22 15.26 27.54 29.13 20.21 3.37 156.54

1995–2005

Farmland 27.42 247.61 358.95 338.18 339.84 142.92 334.02 374.74 172.83 2336.51
Forestland −23.61 −19.76 −82.35 −85.64 −83.45 −72.47 −122.97 −102.66 −47.76 −640.67
Grassland 30.44 20.18 99.88 533.93 1101.73 1000.48 82.09 243.54 312.29 3424.56
Water area −0.01 −0.02 −0.03 −0.06 −0.03 −0.12 −0.08 −0.18 −0.11 −0.63
Unused land −155.36 −60.59 −111.86 −150.69 −119.62 −215.94 −228.37 −158.46 −26.41 −1227.31

2005–2015

Farmland 30.42 274.70 398.22 375.18 377.02 158.55 370.57 415.73 191.74 2592.12
Forestland 13.03 10.91 45.44 47.26 46.05 39.99 67.86 56.65 26.36 353.55
Grassland 14.61 9.68 47.93 256.22 528.70 480.11 39.39 116.87 149.86 1643.37
Water area 0.01 0.03 0.04 0.09 0.05 0.18 0.12 0.27 0.16 0.95
Unused land −135.54 −52.86 −97.59 −131.47 −104.37 −188.40 −199.24 −138.25 −23.04 −1070.76

1995–2015

Farmland 57.84 522.31 757.17 713.35 716.86 301.47 704.59 790.47 364.56 4928.63
Forestland −10.58 −8.86 −36.91 −38.38 −37.40 −32.48 −55.11 −46.01 −21.40 −287.12
Grassland 45.05 29.86 147.81 790.16 1630.43 1480.59 121.48 360.40 462.15 5067.94
Water area 0.00 0.01 0.01 0.03 0.02 0.06 0.04 0.09 0.06 0.33
Unused land 19.82 7.73 14.27 19.22 15.26 27.54 29.13 20.21 3.37 156.54
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2.3. Independent Variables

Based on the driving factors found in previous studies that impact ecosystem services, for this study
we selected population density, road density, and proximity to represent human factors, and selected
elevation, slope, temperature, precipitation, and river density to represent physical factors [16–18,46].
The proportion of forestland and the proportion of developed land were chosen to represent the
land-use pressure [28]. Because a large number of variables may lead to a multicollinearity problem,
a variance inflation factor (VIF) test was performed on the independent variables. After the VIF test,
a set of factors was selected as independent variables (Table 4).

Table 4. Variable descriptions and data sources.

Variable Category Variable Description Data Sources

Dependent variable AESV Average ecosystem
services value

Calculated from Section 2.2.2

Physical driving forces

Elevation (m) Average elevation Geospatial Data Cloud Site,
Computer Network

Information Center, Chinese
Academy of Sciences

(http://www.gscloud.cn)
Precipitation (mm) Annual average

precipitation
Data Center for Resources and

Environmental Sciences,
Chinese Academy of Sciences

(RESDC)
(http://www.resdc.cn)

River density (km/km2) River length per
square kilometer

National Geomatics Center of
China (NGCC)

(http://ngcc.sbsm.gov.cn/)
Proportion of developed land Total developed land

divided by the
administrative area

Extracted from LULCC data

Proportion of forestland land Total forestland divided by
the administrative area

Extracted from LULCC data

Socioeconomic driving forces

Population density
(person/km2)

Total population divided by
the administrative area

Data Center for Resources and
Environmental Sciences,

Chinese Academy of Sciences
(RESDC)

(http://www.resdc.cn)
Railway density (km/km2) Railway length per

square kilometer
National Geomatics Center of

China (NGCC)
(http://ngcc.sbsm.gov.cn/)

Highway density (km/km2) Highway length per
square kilometer

National Geomatics Center of
China (NGCC)

(http://ngcc.sbsm.gov.cn/)
National road density

(km/km2)
National road length per

square kilometer
National Geomatics Center of

China (NGCC)
(http://ngcc.sbsm.gov.cn/)

Distance to socioeconomic
center (km)

Distance to
socioeconomic center

Calculated by ArcGIS10.3
software’s Near tool

2.4. Regression Analysis

2.4.1. Spatial Correlation Analysis

The spatial interaction and spatial diffusion assume that the attributes at one location are
interdependent with those at other locations [47]. Global spatial autocorrelation and local spatial
autocorrelation are commonly used to measure their spatial relationships. The regional spatial
dependence of the average ESV was measured with the global Moran’s I index and local Moran’s I
Index (LISA). Specifically, global spatial autocorrelation was used to verify the overall aggregation of
the specific phenomena or attribute values in the spatial distribution of the entire region, while the
local Moran’s I was used to measure the degree of spatial difference between a certain area and its
surrounding areas. The scatter plot of Moran’s I provided a clear spatial clustering pattern of average
ESV. The first and third quadrants in the scatter plot were, respectively, the high–high and low–low types;
and the second and fourth quadrants were, respectively, the low–high and high–low types. The LISA
map helps in understanding whether any of the spatial patterns are significant. Based on the statistical

http://www.gscloud.cn
http://www.resdc.cn
http://ngcc.sbsm.gov.cn/
http://www.resdc.cn
http://ngcc.sbsm.gov.cn/
http://ngcc.sbsm.gov.cn/
http://ngcc.sbsm.gov.cn/


Int. J. Environ. Res. Public Health 2020, 17, 3717 10 of 19

hypothesis testing, the Zscore ≥ 1.96 or Zscore ≤ –1.96 showed that the spatial autocorrelation was
statistically significant at the 5% level. GeoDa095i software (University of Chicago, Chicago, IL, USA)
was employed in this study to test the spatial autocorrelation of the county-level average ESV in
the MRYRUA in the years 1995, 2005, and 2015 using the queen’s contiguity weight method [48].
The equations are as follows:

I =
n

n∑
i=1

n∑
j=1

Wi j

×

n∑
i=1

n∑
j=1

Wi j(AESVi −AESV)(AESV j −AESV)

n∑
i=1

(AESVi −AESV)
2

(3)

Z(I) =
I − E(I)√

Var(I)
(4)

Ii =

n(AESVi −AESV)
n∑

j=1
Wi j(AESV j −AESV)

n∑
i=1

(AESVi −AESV)
2

(5)

where AESVi, AESVj are the spatial observations in position i and j, respectively; AESV is the average
value of ecosystem services; and Wij is the spatial weight connection matrix (i, j = 1,2,3 ... n). E(I) and
Var(I) are, respectively, the expected value and the variance of Moran’s I. The global Moran’s I value
generally ranged from –1 to 1. Moran’s I values > 0 indicate positive spatial autocorrelation, Moran’s I
values < 0 indicate negative spatial autocorrelation, and Moran’s I approaching 0 indicates a random
distribution pattern.

2.4.2. Spatial Regression Analysis

The spatial effects of the independent variables have often been neglected in previous research
about ecosystem services, and it is commonly assumed that the effects are spatially independent and
identically distributed. Using an ordinary least squares (OLS) model (Equation (4)) may lead to an
incomplete explanation of the regression results because it ignores the potential spatial effects [49,50].
In this study, we use three spatial regression models, including the spatial lag model (SLM) (Equation (5)),
spatial error model (SEM) (Equation (6)), and spatial error model with lag dependence (SEMLD)
(Equation (7)) [37,50]. The SLM assumes spatial autocorrelation occurs in the dependent variable,
emphasizes the neighborhood effect, and considers the phenomenon of spatial diffusion (the spillover
effect) in the dependent variable across geographic units [51]. The SEM focuses on the neglected
and unobserved spatial interdependencies among variables. The SEMLD is a spatial autoregressive
model augmented by adding the spatially lagged dependent variable to the SEM. All the models were
conducted in GeoDa095i at the county level. We identified the performance of the four models based
on the log-likelihood value, the Akaike information criterion (AIC), and the Schwarz criterion (SC).
The equations are given in Equations (6) through (9):

AESVt = Xtβ+ ε (6)

AESVt = Xtβ+ ρW1AESVt + ε (7)

AESVt = Xtβ+ ε, ε = λW2ε+ ξ (8)

AESVt = Xtβ+ ρW1AESVt + ε, ε = λW2ε+ ξ (9)

where AESVt is the matrix of dependent variable in time t; Xt is an n × k independent variables matrix
in year t; n is the number of study units; k is the number of independent variables; β is a vector of
coefficients of Xt indicating the influence level of the independent variables on the dependent variables;
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ρ is a spatial lag parameter; ε is a random error term vector; λ is a spatial error parameter; and W1 and
W2 are spatial weight matrices for the lag term and the error term, respectively.

3. Results

3.1. Spatial Autocorrelation

The exploratory spatial data analysis method was used to further study the spatial distribution
of aggregation and abnormalities of average ESV and the relationship of average ESV with the
adjacent areas in the MRYRUA. Geoda950i software was used to calculate the Moran’s I of the
average ESV from 1995 to 2015 in the MRYRUA. The global Moran’s I analysis of the average ESV
indicated that the positive global Moran’s I of the average ESV (0.539 in 1995, 0.576 in 2005, and 0.591
in 2015) in the MRYRUA showed that counties with a high or low average ESV in the MRYRUA
exhibited a significant agglomeration distribution pattern. Moreover, the gradual increasing trend
of global Moran’s I from 1995 to 2015 indicated that the agglomeration tendency in the MRYRUA
was strengthened. Additionally, the observed values of global Moran’s I and expected values (E(I))
did not change significantly, and p was significant at 0.01%, indicating that the average ESV in the
MRYRUA remained stable in magnitude and in spatial distribution pattern. The counties of high–high
type were concentrated primarily in the mountainous areas (i.e., Wu Mountains in western Hubei,
Xuefeng Mountains in western Hunan). The low–low type was distributed chiefly in the central areas
of the Wuhan metropolis, Changsha–Zhuzhou–Xiangtan Metropolis, and Poyang Lake city group,
which are surrounding counties of major cities. The distribution of the high–low type was apparent
in the counties surrounding Nanchang, there were few low–high types distributed discretely during
the study period, and the overall LISA clustering pattern of average ESV did not change significantly
during the study period (Figure 3).Int. J. Environ. Res. Public Health 2020, 17, x 4 of 21 
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3.2. Spatial Regression

The Moran’s I analysis indicates that spatial regression models for spatial estimation and
verification should be established. After OLS estimation, a Moran’s I index residual test was performed
on the residuals; the Moran’s I coefficients in 1995, 2005, and 2015 were 0.400, 0.426, and 0.398,
respectively. The p-value was 0.001, indicating strong spatial autocorrelation among the residuals.
The spatial dependence diagnostics by the OLS model further showed that statistically significant
spatial lag and spatial error terms existed in the model residuals (Table 5). The OLS estimation in the
classical linear regression model may have errors in model design with no consideration of spatial
autocorrelation. Based on the measures of model fit to the data—AIC, SC, and log-likelihood (Tables 5
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and 6)—the performance of the spatial regression models was better fitted to the data than that of the
OLS model. Among the three spatial regression models, the SEMLD had the best fit to the data, with
the lowest AIC and SC values and highest log-likelihood.

The regression results of the SEMLD are shown in Table 6. It was unanticipated that population
density was insignificant in all the models from 1995 to 2015. The possible reason is that other
determinants, such as the proportion of developed land, have advantages over population density,
and the impacts of population density were not obvious during these periods. Similar results can be
found in Hu et al. (2015) [28]. There was a negative spatial association between road density and
ecosystem services, but not in all models. Different levels of road density had different impacts on
ecosystem services. Similar results can be found in other studies—i.e., that an increase in the density of
roads is associated with a decrease in ecosystem services by leading to landscape fragmentation and
strengthening socioeconomic activities [52,53].

Distance to a socioeconomic center proved to be an important spatial determinant for ecosystem
services, and there was a positive relationship between ecosystem services and distance to a
socioeconomic center. Elevation exhibited a significant positive association with ecosystem services in
the years studied, indicating that counties at higher elevation tend to have higher ecosystem services.
An increase of 100 m in elevation led to an increase of average ESV by 0.200, 0.136, and 0.148 in SEMLD
in 1995, 2005, and 2015, respectively. Precipitation proved statistically significant only in OLS models
in 1995 and 2015; the positive relationship suggests that the increase in precipitation promoted the
increase of ecosystem services.

River density and ecosystem services were negatively associated in the OLS and SLM models.
Numerous studies have provided important evidence that settlements tend to be formed closer to
water bodies or rivers [54,55], which inevitably damages the ecosystem. In an additional Pearson’s
correlation analysis of river density and construction land, a significant negative correlation was
observed in the MRYRUA from 1995 to 2015 (r = 0.111 and p = 0.05 in 1995, r = 0.125 and p = 0.05 in 2005,
and r = 0.115 and p = 0.05 in 2015). The proportion of developed land was negatively associated with
ecosystem services in all models in 1995, 2005, and 2015. A 1% increase in the proportion of developed
land contributed to decreases of 0.497%, 0.402%, and 0.566% in ecosystem services in SEMLD in 1995,
2005, and 2015, respectively. The negative association between the proportion of developed land and
ecosystem services indicates that counties with a higher proportion of developed land tended to have
lower ecosystem services. An increase in the proportion of developed land means an increase in the
consumption of ecosystem services related to human activities, and the literature has shown that an
increase in the proportion of developed land leads to ecosystem deterioration [28,56,57]. A statistically
significant positive association can be observed between the percentage of forestland and ecosystem
services. Using SEMLD for interpretation, 1% of the percentage of forestland increase corresponds to a
0.410%, 0.340%, and 0.319% increase of average ESV, in 1995, 2005, and 2015, respectively.

Spatial lag terms in the SEMLD were statistically significant in 1995, 2005, and 2015, indicating that
the spatial spillover effect of ecosystem services was common in the MRYRUA. The ecosystem services
in one county were not only closely related to the individual elements (physical and social factors)
but also to other neighborhood factors (ecosystem services in adjacent counties). Each 1% increase in
average ESV in a neighboring county correlated to 0.276%, 0.134%, and 0.121% increases in each county
in 1995, 2005, and 2015, respectively. Moreover, the spatial error terms in the SEMLD were statistically
significant in 1995, 2005, and 2015, documenting that ecosystem services were impacted not only by
the driving forces studied in this study but were also influenced by other, omitted variables.
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Table 5. Regression results of the ordinary least squares (OLS), spatial lag model (SLM), and spatial error model (SEM) from 1995 to 2015.

Variable
1995 2005 2015

OLS SLM SEM OLS SLM SEM OLS SLM SEM

Population density −0.104
(0.094)

−0.086
(0.086)

−0.085
(0.073)

−0.009
(0.098)

0.008
(0.086)

0.020
(0.075)

−0.050
(0.088)

−0.033
(0.080)

−0.001
(0.071)

Railway density −0.063
(0.055)

−0.051
(0.051)

−0.004
(0.042)

−0.174 *
(0.093)

−0.180 **
(0.082)

−0.161 **
(0.066)

−0.012
(0.096)

−0.049
(0.089)

−0.017
(0.067)

Highway density 0.006
(0.046)

0.025
(0.042)

−0.030
(0.041)

−0.021
(0.048)

−0.009
(0.042)

−0.006
(0.041)

−0.078 *
(0.041)

−0.087 **
(0.038)

−0.056
(0.035)

National road density −0.076
(0.052)

−0.088 *
(0.048)

−0.022
(0.037)

−0.107 **
(0.054)

−0.126 ***
(0.048)

−0.049
(0.038)

−0.072
(0.058)

−0.097 *
(0.054)

−0.039
(0.043)

Distance to socioeconomic center 0.061 **
(0.030)

0.055 **
(0.028)

0.030
(0.035)

0.086 ***
(0.031)

0.075 ***
(0.028)

0.096 ***
(0.035)

0.042
(0.029)

0.043 *
(0.026)

0.075 **
(0.033)

Proportion of developed land −0.383 ***
(0.073)

−0.284 ***
(0.069)

−0.437 ***
(0.057)

−0.367 ***
(0.077)

−0.226 ***
(0.071)

−0.367 ***
(0.061)

−0.558 ***
(0.085)

−0.402 ***
(0.082)

−0.527 ***
(0.067)

Proportion of forestland land 0.238 ***
(0.027)

0.185 ***
(0.027)

0.394 ***
(0.031)

0.216 ***
(0.027)

0.164 ***
(0.026)

0.326 ***
(0.031)

0.193 ***
(0.026)

0.158 ***
(0.025)

0.308 ***
(0.030)

Elevation 0.124 **
(0.048)

0.059
(0.045)

0.179 ***
(0.059)

0.150 ***
(0.048)

0.055
(0.044)

0.124 **
(0.058)

0.201 ***
(0.044)

0.105 **
(0.043)

0.135 **
(0.055)

Precipitation 0.053 **
(0.026)

0.026
(0.024)

0.113
(0.076)

0.004
(0.025)

−0.011
(0.022)

0.020
(0.057)

0.041 *
(0.024)

0.016
(0.022)

0.054
(0.053)

River density −0.132 ***
(0.040)

−0.133 ***
(0.037)

−0.013
(0.028)

−0.089 ***
(0.040)

−0.092 **
(0.035)

−0.001
(0.029)

−0.092 **
(0.037)

−0.095 ***
(0.034)

−0.005
(0.028)

Spatial lag term 0.359 ***
(0.058)

0.419 ***
(0.054)

0.334 ***
(0.053)

Spatial error term 0.827 ***
(0.034)

0.753 ***
(0.042)

0.742 ***
(0.043)

Constant 0.503 ***
(0.025)

0.324 ***
(0.034)

0.345 ***
(0.051)

0.570 ***
(0.026)

0.330 ***
(0.035)

0.462 ***
(0.041)

0.576 ***
(0.023)

0.390 ***
(0.034)

0.468 ***
(0.036)

Moran’s I (error) 0.400 *** 0.426 *** 0.398 ***
LM (lag) 47.520 *** 67.119 *** 43.151 ***
Robust LM (lag) 10.205 ** 2.860 * 3.965 *
LM (error) 132.710 *** 150.926 *** 131.176 ***
Robust LM (error) 95.395 *** 86.667 *** 91.989 ***
LM (lag and error) 142.915 *** 153.786 *** 135.141 ***
Measures of fit
Log likelihood 341.339 360.724 415.646 339.456 367.692 409.750 367.818 386.784 431.184
AIC −660.678 −697.449 −809.292 −656.913 −711.383 −797.501 −713.636 −749.568 −840.368
SC −619.056 −652.043 −767.670 −615.291 −665.977 −755.878 −672.014 −704.162 −798.746
N 325 325 325 325 325 325 325 325 325

Notes: The study uses the queen’s contiguity weight matrix. *** p ≤ 0.01, ** p ≤ 0.05, * p ≤ 0.1. Standard errors are in parentheses. LM = Lagrange multiplier. AIC = Akaike information
criterion. SC = Schwarz criterion.
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Table 6. Regression results of the spatial error models with lag dependence from 1995 to 2015.

Variable 1995 2005 2015

Population density −0.074
(0.071)

0.021
(0.074)

0.002
(0.070)

Railway density −0.014
(0.041)

−0.156 **
(0.065)

−0.006
(0.066)

Highway density −0.041
(0.039)

−0.001
(0.040)

−0.045
(0.035)

National road density 0.001
(0.036)

−0.035
(0.038)

−0.025
(0.043)

Distance to socioeconomic center 0.047
(0.035)

0.107 ***
(0.036)

0.086 **
(0.034)

Proportion of developed land −0.497 ***
(0.057)

−0.402 ***
(0.063)

−0.566 ***
(0.069)

Proportion of forestland land 0.410 ***
(0.030)

0.340 ***
(0.031)

0.319 ***
(0.030)

Elevation 0.200 ***
(0.059)

0.136 **
(0.060)

0.148 ***
(0.056)

Precipitation 0.096
(0.086)

0.025
(0.063)

0.056
(0.057)

River density 0.003
(0.027)

0.008
(0.029)

0.002
(0.027)

Spatial lag term −0.276 ***
(0.071)

−0.134 *
(0.071)

−0.121 *
(0.066)

Spatial error term 0.864 ***
(0.029)

0.790 ***
(0.038)

0.774 ***
(0.040)

Constant 0.499 ***
(0.073)

0.533 ***
(0.062)

0.533 ***
(0.056)

Measures of fit
Log likelihood 422.660 411.177 432.621
AIC −821.320 −798.355 −841.242
SC −775.914 −752.949 −795.836
N 325 325 325

Notes: The study uses the queen’s contiguity weight matrix. *** p ≤ 0.01, ** p ≤ 0.05,
* p ≤ 0.1. Standard errors are in parentheses. LM = Lagrange multiplier. AIC = Akaike
information criterion. SC = Schwarz criterion.

4. Discussion and Implications

4.1. A Summary of the Findings

National strategies like the Central China Rising Strategy, the Yangtze River Economic Belt Strategy,
and the Triangle of Central China Strategy have greatly promoted urbanization and industrialization
in the MRYRUA. As a consequence, a considerable amount of farmland has been converted into
construction land. In response, a series of land-use policies, such as the Basic Farmland Protection
Regulation, the Farmland Balance Policy, and the increasing versus decreasing balance policy, have been
implemented in an attempt to control urban expansion and prevent the decline of farmland [58,59].
However, because of the huge economic benefits gap between farmland and construction land,
the targets for construction land expansion control and farmland protection were not met [60].
Additionally, land-use activities, such as deforestation and cultivation, as well as forestry engineering
in the shelterbelt program in the upper and middle reaches of the Yangtze River basin, resulted in
frequent conversion between farmland and forestland.

Spatial determinants identified in this study further showed negative associations among
ecosystem services and road density, the proportion of developed land, and river density, while the
distance to a socioeconomic center, proportion of forestland land, elevation, and precipitation
were positively associated with ecosystem services. Previous studies have evidenced that
developed land tends to expand along road networks [38]. The road network affects the flow
of elements and resources within and among regions, and the circulation and accumulation of labor,
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capital, technology factors, and resources affect population redistribution and land development,
directly or indirectly. The geographic characteristic (such as distance to a socioeconomic center) has
an evident impact on land-use change [61]. The availability and accessibility of multiple resources
in urban centers exacerbate the agglomeration of socioeconomic activities. Ecosystem services
around the central counties of cities and surrounding counties are becoming increasingly important.
Previous studies provide empirical evidence that human settlements are more likely distributed
near water bodies because of invaluable natural amenities [55]. River density is therefore negatively
associated with ecosystem services. The positive association between the proportion of forestland and
ecosystem services shows that an increase in forestland promotes an increase in ecosystem services.
Reforestation is an effective means for improving ecosystem services [28]. The ecosystem services
in the MRYRUA display significant spatial autocorrelation and spillover effects, indicating that the
ecological conservation and land-use policies in a single area cannot completely solve the problem
of regional ecological issues and land-use problems. The prevention and control of ecological issues
needs effective coordination across counties, especially in urban agglomerations.

4.2. Policy Implications

In practice, there always exist conflicts among various plans (e.g., economic and social development
planning, environmental protection planning, and land-use planning). For example, land-use planning
tends to ignore ecological impacts. In response, multiple planning integration efforts have been
promoted in China to balance the differences among various spatial plans and avoid unfavorable
outcomes. For example, the three designation zones (agricultural, ecological, and urban) and three
lines (urban development boundary, ecological red line, and permanent basic farmland red line) are to
alleviate the issues of the decline of farmland and the deterioration of ecosystem services due to the
expansion of construction land [62]. Therefore, it is necessary to strategically optimize national spatial
planning and ecosystem services management. Empirical research shows that the evolution of regional
ecosystem services is impacted not only by physical and human factors but also by the charateristics of
the neighboring areas. It is noteworthy that ecosystem services in the MRYRUA exhibit significant
spatial autocorrelation and spatial spillover features. In other words, regional ecosystem services are
affected by ecological regulation and industrial structure as well as by neighboring counties and more
distant counties; the ecological conservation regulation policy for a single area cannot completely
solve the problem of regional ecological issues [10]. The effective control of ecological issues requires
intercounty joint efforts.

4.3. Limitations and Future Research Directions

The revised benefit transfer method and an integrated spatial regression were used to measure the
spatial features and the influence mechanism of ecosystem services. However, this study focused only
on the supply capacity of the ecosystem services; their demand capacity was an essential aspect of
ecosystem services that also should be considered [9]. The study examined only the impact mechanism
of total ESV; future research could pay attention to the driving forces of regulating services, supplying
services, supporting services, and cultural services. Furthermore, an integrated cross-sectional spatial
regression approach was used to identify the spatial determinants of ecosystem services; dynamic
spatial panel data models that blend the inter-individual differences and intra-individual dynamics
could be considered in future research [63].

5. Conclusions

In this study, we examined the spatiotemporal pattern of the ESV in the MRYRUA from 1995
to 2015 using a revised benefit transfer method. Then we identified the spatial autocorrelation of
ESV with the global Moran’s I index and local Moran’s I index. We ultimately analyzed the spatial
determinants of average ESV using an integrated spatial regression approach and found a gradually
increasing trend in ESV. Forestland provided the greatest proportion of ESV (more than 75%) in the
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MRYRUA, and farmland and water areas provided more than 10% of the total ESV. The hydrological
regulation function accounted for the largest proportion of the total ESV (more than 15%) among all
the ecosystem functions. We observed evident spatial dependence and spatial spillover effects of
average ESV in the MRYRUA from 1995 to 2015. The average ESV in an area was impacted not only by
its factors but also by the characteristics of its neighboring areas due to the spatial spillover effects.
The spatial regression results showed that road density, river density, and proportion of developed land
were negatively associated with the average ESV, while elevation and precipitation were positively
associated with the average ESV. Distance to a socioeconomic center was also found to be an important
spatial determinant for average ESV. The results in this study provided important implications for the
cross-regional collaborative management of ecosystem services and sustainable land use.
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