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The supplementary materials are organized as follows. Section A describes detail infor-
mation of three type of transmission chain. Section B gives the detail information for the
construction of statistical model. Section C presents the EM algorithm for the estimation
of parameters R0 and k. Section D gives technical details for the construction of bootstrap
confidence interval (CI) of the estimates from EM algorithm.

A. Description of different transmission chain

The details of the transmission chains grouped based on individual-case information in-
Tianjin are given below.

a. Simple transmission chain

There are 36 size-one chains, 5 size-two chains and 2 size-four chains. The detailed infor-
mation about two size-four chain as following:

• Chain A The case with primary ID 32, a 28-year-old man, confirmed on January 31st.
He infected three relatives, confirmed durg February 1st to February 3rd. No more cases
have been detected with epidemiological links with these four individuals.

• Chain B The case with primary ID 82, a 47-year-old man, confirmed on February 8th.
He infected two relatives and one colleague, confirmed on February 9th, 11th and 21st
respectively.

b. Ordinary transmission chain

• EMU depot transmission chain This was the first ordinary transmission chain reported
in Tianjin, including 16 cases. The primary case with primary ID 2 was a 57-year-old
man who works in Tianjin EMU depot, and has a history of business trip to Wuhan.
He confirmed on January 21st and directly infected six colleagues in close contact with



him and indirectly infected 9 cases. His six colleagues successively confirmed between
January 23rd and February 3rd. These six cases, as secondary cases in this transmission
chain, successively infected other colleagues or their relatives. A third-generation case
in this chain died, and he has a history of hypertension for 30 years, cerebral infarction
for 10 years, and diabetes for 18 years.

• Department store chain This was the largest transmission chain reported in Tianjin,
including 45 cases. Among of cases, 5 cases are salesclerksand 40 cases are shoppers or
their relatives. The primary case is a 43-year-old woman, working in the department
store. She had no history of travel or residence in Wuhan before the onset of illness.
However, she travelled to Beijing from January 16th to 17th, and worked closely with a
fever customer in a jewelry mall in Beijing. Sine the specific transmission routes cannot
be determined in department store, except the primary case, we cannot distinguish
between different generations of other cases. Thus, in Figure 2, we used a dotted box to
indicate that all cases in this chain have the potential to infect others.

• Chain C The case with primary ID 3, a 68-year-old woman, confirmed on January 21th.
She worked at Wuhan city and showed symptoms on January 14th. She infected case 9
which showed symptoms on January 24th and confirmed on January 25th. Then case 9
infected two relatives of him.

• Chain D The case with primary ID 93, a 50-year-old woman, confirmed on February
7th. She infected 3 relatives of her. Three neighbors were infected when visited her at
her home and then transmit virus to their family members.

• Chain E The case with primary ID 102, a 49-year-old man, confirmed on January 11th.
He infected his wife who confirmed on January 12th and his wife infected her sister who
confirmed on January 14th.

c. Complex transmission chain

• Chain F A couple (aged 49 and 50 respectively) with primary ID 95 and 101 infected
three of their relatives. The couple stayed closed all the time, and had equal chance of
infecting their relatives. In addition, they both showed first symptoms on January 1st.
So we regarded them both as primary cases. The couple were confirmed on February
10th and 11th. Their relatives were confirmed on February 11th, 13th and 16th.

• Chain G A couple (aged 80 and 85 respectively) with primary ID 100 and 113 infected
three of their relatives. Both of them had a contact history with a person returning to
Tianjin from Shanghai and we regarded them as primary cases. The couple confirmed
on February 11th and 13th. The relatives of them confirmed on January 11th and 12th.

c. Complex transmission chain

• Chain H A couple with primary ID 95 and 101 infected three of their relatives. The
couple stayed closed all the time, and had equal chance of infecting their relatives. In
addition, they both showed symptoms on January 1. So we regarded them both as

2



primary cases. The couple confirmed on February 10 and 11. The relatives of them
confirmed on February 11, 13 and 16.

• Chain I A couple with primary ID 100 and 113 infected three of their relatives. Both
of them have a contact history with a person returning to Tianjin from Shanghai and
we regarded them as primary cases. The couple confirmed on February 11 and 13. The
relatives of them confirmed on January 11 and 12.

B. Statistical Model

Likelihood function

To quantify the transmission potential and degree of transmission heterogeneity for the
COVID-19 outbreak in Tianjin, we adopt a likelihood-based approach proposed by [1] which
characterizes both the mean and heterogeneity of individual infectiousness. In consideration
of three different types of transmission chains included in the data set, we here use different
methods to model each type of chains. Under the assumption that transmission chains are
independent with each other, the overall likelihood function has the form

L (R, k) = LI (R, k)LII (R, k)LIII (R, k) , (S.1)

where R and k are parameters of interest, LI (R, k), LII (R, k), and LIII (R, k) represent the
likelihood function of the model for fitting simple, ordinary, and complex transmission chains,
respectively. In the following, we present the ways to model each type of transmission chains
and construct the corresponding likelihood functions.

Firstly, regarding the simple transmission chain, since the information of who-infected-
whom has been recovered completely, we are able to directly model the offspring distribution.
To be specific, let S denote the number of secondary cases caused by an infected individual,
and assume that S follows a Negative Binomial distribution (referred to as the offspring
distribution). Suppose there are si secondary cases directly caused by the i-th case included
in simple transmission chains, for i = 1, · · · , nI , then the likelihood function of the model for
fitting simple transmission chains can be written as

LI (R, k) =

nI∏
i=1

f1(si;R, k), (S.2)

where f1(si;R, k) is the probability mass function (pmf) of the Negative Binomial with mean
R and dispersion parameter k, i.e.,

f1(si;R, k)
def
= Pr (S = si) =

Γ (si + k)

Γ (si + 1) Γ (k)

(
k

R + k

)k (
R

R + k

)si

,

in which Γ denotes the Gamma function.
We here consider the Negative Binomial to characterize the offspring distribution given

its general formulation in that the negative binomial model also includes the conventional
Poisson (k →∞) and geometric (k = 1) models as special cases. Consequently, the offspring
distribution has the variance equals R(1 + R/k), thus smaller values of k indicate greater
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heterogeneity which means a preponderance of very small and very large chains (large chains
are associated with super-spreading events), together with a low frequency of intermediate-size
chains [2].

Secondly, for the ordinary transmission chain, it is inappropriate to model the offspring
distribution due the uncertainty in transmission relationships between inner-generations and
inter-generation, thus we consider the chain size distribution instead. We here approximate
the transmission dynamics of infection through a Galton–Watson branching process [3]. Let
Q denote the overall size of a transmission chain. According to [4, 1], the probability of a
transmission chain with one primary case having an overall size of q equals

f2(q;R, k)
def
= Pr (Q = q) =

Γ (kq + q − 1)

Γ (kq) Γ (q + 1)

(
R

k

)(q−1)(
1 +

R

k

)−kq−q+1

.

Assume that the j-th ordinary transmission chain has an overall size of qj, for j = 1, · · · , nII ,
then the likelihood function of the chain size model for ordinary transmission chains equals

LII (R, k) =

nII∏
j=1

f2(qj;R, k). (S.3)

Thirdly, in handling a complex transmission chain with two primary cases, we regard it
can be separated into two ordinary transmission chains, each of which is led by a primary
case. The difficulty lies in that the exact size of each ordinary chain is unclear. We here
consider the combinatorial method in [1] to deal with this ambiguity by allowing for all
the possible combinations and treat the sum as an overall probability. Suppose the m-th
complex transmission chain is with an overall size of rm, and let m1 and m2 denote the sizes
of two separated ordinary chains of the m-th complex chain, for m = 1, · · · , nIII . Then the
probability of a complex transmission chain with size rm is

∑
m1+m2=rm

f2(m1;R, k)f2(m2;R, k),

and hence the likelihood of the model for complex transmission chains is

LIII (R, k) =

nIII∏
m=1

( ∑
m1+m2=rm

f2(m1;R, k)f2(m2;R, k)

)
. (S.4)

Notice that the complex transmission chain in Tianjin COVID-19 data contains at most
two primary cases, thus we only need to consider all possible combinations of the chains with
two primary cases. While this combinatorial method can be naturally extended to the more
complicated chains with more than two primary cases.

Lastly, followed by equations (S.1), (S.2), (S.3), and (S.4), the overall likelihood function
turns out to be

L (R, k) =

nI∏
i=1

f1(si;R, k) ·
nII∏
j=1

f2(qj;R, k) ·
nIII∏
m=1

( ∑
m1+m2=rm

f2(m1;R, k)f2(m2;R, k)

)
. (S.5)

Up to now, we successfully build up a likelihood function to simultaneously accommodate
the three different types of transmission chains, i.e, the simple, ordinary, and complex trans-
mission chains. In this way, we are able to use the mixed-type data to get a comprehensive
estimation of R and k at the same time.
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Estimation and Inference of R and k

Next, we consider to estimate and make inference about R and k based on the derived
likelihood function (S.5). It is straightforward to obtain the maximum likelihood estimates
(MLE) of parameters R and k by maximizing the log-likelihood function. By taking the first
derivative of logL (R, k) with respect to R and then equating it to zero to solve for R, one
can easily get

R̂ =

nI∑
i=1

si +
nII∑
j=1

(qj − 1) +
nIII∑
m=1

(rm − 2)

nI +
nII∑
j=1

qj +
nIII∑
m=1

rm

def
=
No

N
, (S.6)

where No and N denote the total number of offspring infections and the total number of
infections across all chains, respectively. The MLE of R is analytically tractable, while that of
k is not thus it can only be derived by computational optimization. In our implementation, we
apply the modified quasi-Newton method proposed by [5] to solve such optimization problem.
In addition, we here adopt the likelihood profiling considered in [1] to determine the confidence
intervals (CI) and confidence region for R and k.

C. EM algorithm for the estimation of R0 and k

Besides the MLE method introduced in the main text, we also propose to adopt the EM
algorithm for dealing with the complex transmission chain in the estimation of parameters R0

and k. Given the size of transmission chain produced by each primary case is unknown, we
here treat the size as a latent variable X. Since all chains are independent from each other,
the latent variable for chains with the same size should share the same latent distribution.
Hence, the latent variable X can be viewed as a function of chain size rm, i.e., X = Xrm ∈
{1, 2, · · · , rm−1}. Then, the likelihood function for modeling the complex transmission chain
with the latent variable Xrm can be written as

LIII,EM(R0, k;Xrm) =

nIII∏
m=1

[f2(Xrm)f2(rm −Xrm)] , (S.7)

and the overall likelihood turns out to be

LEM(R0, k;XM) =

nI∏
i=1

f1(si)

nII∏
j=1

f2(rj)

nIII∏
m=1

[f2(Xrm)f2(rm −Xrm)] . (S.8)

In practice, the EM algorithm are executed as follows.

Step 1. Start with initial values for parameters R0 and k, denoted by R0
0 and k0, respectively.

One possible way to achieve the initial value is fitting a negative binomial model for the
offspring distribution to get the corresponding parameter estimate.

Step 2. Calculate the conditional distribution of X = (X3, X4, · · · ),

Q(x) =
LIII,EM(R0

0, k
0;x)∑

x

L3,EM(R0
0, k

0;x)
, xrm ∈ {1, 2, · · · , rm − 1}
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Step 3. Find the solution to the optimization problem

(R∗0, k
∗) = argmax

∑
x

Q(x) lnLEM(R0
0, k

0;x)
def
= argmaxJQ(R0

0, k
0)

Step 4. If the deduction of the target function in step 3 is greater than a small enough value ε,
i.e.,

JQ(R0
0, k

0)− JQ(R∗0, k
∗) ≥ ε,

then we set R0
0 = R∗0, k

0 = k∗, and repeat step 2-4; otherwise, return (R0
0, k

0) as the
final solution.

C. Bootstrap Confidence Interval for the EM algorithm

To construct CI for the estimates of R0 and k obtained from EM algorithm, we consider
the bootstrap method. Assume the original data set contains N1 simple transmission chains,
N2 ordinary transmission chains and N3 complex transmission chains. Let R̂0 and k̂ denote
the estimator of R and k, respectively. We here generate bootstrap samples using stratified
sampling method given there are three different types of transmission chains. The resampling
procedure is conducted as follows.

Step 1. Set bootstrap size B = 10000.

Step 2. Calculate the probability mass function (pmf) of chain size for each ordinary and complex
transmission chain, in which R0 and k are substituted by their corresponding estimate.
The pmf of the i-th ordinary and j-th complex transmission chain are denoted by f i

2

and f j
3 , respectively, for i = 1, . . . , N2 and j = 1, . . . , N3.

Step 3. Sum up {f i
2}

N2
i=1 and {f j

3}N3
j=1 obtained from Step 2 to get the cumulative distribution

function denoted by F2 and F3, respectively.

Step 4. Generate N1, N2 and N3 random samples from the negative binomial distribution, dis-
tribution F2, and distribution F3, respectively.

Step 5. Apply the EM algorithm to the bootstrap samples generated from Step 4 to get esti-
mates of R0 and k.

Step 6. Repeat Step 4-5 until achieve B bootstrap estimates. Denote R̂r
0 and k̂r as the estimates

from the r-th bootstrap samples, for r = 1, . . . , B.

With the bootstrap estimates, we here construct corresponding bias-corrected CI for each
parameter. To be specific, the lower and upper thresholds of R0 are βlower = Φ(2z+Φ−1(α/2))
and βupper = Φ(2z + Φ−1(1 − α/2)), respectively, where Φ is the cdf of the standard normal

distribution, Φ−1 is the inverse function of Φ, and z = Φ−1( 1
B

B∑
r=1

1[R
(r)
0 < R̂0]) being the

fraction of bootstrap estimates lower than R̂0. The lower and upper bounds of the bias-
corrected interval are the βlower and βupper quantile of {R̂(r)

0 }Br=1. The CI for k can be derived
similarly.
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In practice, the distribution of the estimator k̂, approximated by the bootstrap, shows
severe skewness (asymmetry). Therefore, we adopt the bias-correction method aiming to
correct for the bias induced by this feature. The correction coefficient, z, measures how far
the point estimate is from the median. When the sampling distribution is heavily skewed, the
corrected lower and upper thresholds tends to deviate further from the traditional thresholds,
i.e., α/2 and 1− α/2.

Bootstrapping provides a way to derive CI for more complex estimators. Since the EM
method requires maximizing likelihood with latent variables, likelihood ratios (LR) are difficult
to calculate, and thus LR test does not apply. Bootstrap can overcome this complexity with
slightly more computational costs.

From our results as shown in the main text, the bootstrap method gives narrower CIs
than the LR. One possible reason is that the chi-square distribution, as the limit distribution
of likelihood ratio, does not give good approximation to the sampling distribution of LR due
to the data size being too small. Another possible factor is the sampling scheme, where we
assumed constant number of chains of each type. This information have potential influence
on the length of the interval.

It is worthwhile to point out that when original data size is too small, parametric bootstrap
works better than nonparametric bootstrap, which resamples with replacement from original
data itself, not from the estimated distribution. The latter will give biased results since the
empirical distribution of the data is not close from the true one.
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