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Abstract: Haematopoietic stem cell transplant (HSCT) is an intensive therapy for some pediatric
hematological illnesses. Survivors are at risk for adverse effects including exercise intolerance.
Peripheral tissue dysfunction may contribute to exercise intolerance; therefore, we examined the
feasibility of a magnetic resonance spectroscopy (MRS) protocol to evaluate skeletal muscle metabolism
in children post-HSCT. We measured demographic characteristics, aerobic exercise capacity (YMCA
protocol), and skeletal muscle function in response to exercise (MRS; Siemens 3T MRI) in five children
post-allogeneic HSCT and five age/body mass index-matched healthy controls (HCs). The mean
age (± standard deviation) of the HSCT group and HC group were 11 ± 1.2 and 12.8 ± 2.4 years,
respectively. Children post-HSCT had a lower peak aerobic exercise capacity compared to HCs
(27.8 ± 3.4 vs. 40.3 ± 8.1 mL kg−1 min−1, respectively; p = 0.015). Exercise MRS testing protocols were
successfully completed by all HSCT and HC participants; however, MRS-derived skeletal muscle
metabolism variables were not different between the two groups. In conclusion, the use of exercise
protocols in conjunction with MRS to assess peripheral skeletal muscle metabolism was achievable
in children post-HSCT. In the future, larger studies should determine if skeletal muscle function is
associated with exercise capacity in children post-HSCT.

Keywords: haematopoietic stem cell transplant; pediatric; exercise; muscle metabolism; exercise
tolerance; magnetic resonance imaging

1. Introduction

Haematopoietic stem cell transplant (HSCT) is a potentially life-saving but high-risk treatment for
both malignant and non-malignant pediatric hematological diseases [1]. Allogeneic HSCT requires
stem cells from a donor to be transplanted to a patient, effectively replacing the patient’s dysfunctional
hematopoietic precursor cells [2]. This treatment is highly intensive, requiring the use of high
chemotherapy doses with or without radiation and stem cell infusion. Immunosuppressive therapy is
also given to improve engraftment and prevent graft-versus-host disease [3]. While advancements in
treatment and expansion of the donor pool have improved survival in children receiving HSCT [1,4,5],
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many late and long-term adverse effects are associated with this type of treatment. One such adverse
effect is exercise intolerance [6–10].

Exercise intolerance is common in pediatric HSCT recipients, and manifests as impairments to
aerobic function, muscle strength and power, as well as poor balance and motor coordination [11].
These physiological changes can contribute to further physical functional decline, impacting the
recipient’s ability to engage in recreational physical activity, resulting in further deconditioning and
the reduced ability to perform activities of daily living [11]. This, in turn, may negatively impact the
quality of life of HSCT recipients. Furthermore, when compared to conventionally treated childhood
cancer survivors (chemotherapy/radiation only), survivors of childhood-HSCT experienced more
musculoskeletal impairment and lower physical activity levels [12]. Therefore, HSCT recipients
represent a particularly vulnerable group, underscoring the importance of addressing poor exercise
tolerance in this cohort.

While exercise intolerance is prevalent in HSCT recipients, the pathophysiology underlying the
physical limitations has not been well described. Multiple contributing factors are likely at play.
For example, cytotoxic chemotherapy such as cyclophosphamide and total-body irradiation can cause
damage to the heart and lungs [13–15], which may result in impaired oxygen uptake at the lungs
and delivery to tissues for aerobic function. Deconditioning caused by extended periods of inactivity
during hospitalization may also lead to exercise intolerance [11].

Peripheral tissue dysfunction is another possible factor contributing to exercise intolerance
post-HSCT. Children who undergo chemotherapy experience increased systemic inflammation [16–20],
which becomes especially apparent following a HSCT in patients presenting with graft-versus-host
disease [21]. Systemic inflammation contributes to muscle dysfunction via free radical damage to
mitochondria [22,23], resulting in impaired oxidative metabolism [24,25], which can result in impaired
muscle function. Once it is determined how skeletal muscle is affected in children post-HSCT, we can
develop an informed exercise program to reduce physical morbidity targeting the appropriate energy
systems (i.e., anaerobic, aerobic, or a combination of both). However, skeletal muscle metabolism
has not been examined in children post-HSCT, due to the invasiveness of research protocols such as
muscle biopsies.

Our research team has examined changes to skeletal muscle metabolism in pediatric cohorts
with chronic disease by using magnetic resonance spectroscopy (MRS) in conjunction with specific
exercise protocols. We have successfully examined skeletal muscle metabolism in children with
Turner syndrome, cystic fibrosis, primary ciliary dyskinesia, malignant hyperthermia susceptibility,
and obesity/metabolic syndrome [24,26–28]. However, we have not piloted the use of exercise MRS
assessments in children post-HSCT.

The primary aim of this study was to examine the feasibility of our MRS protocol to evaluate
skeletal muscle metabolism in children post-HSCT. We conducted an implementation-focused feasibility
pilot study to examine the success or failure of the execution of MRS skeletal muscle testing in children
post-HSCT [29]. More specifically, we evaluated skeletal muscle metabolism in response to exercise in
five children post allogeneic-HSCT vs. five healthy age and body mass index (BMI) controls (HC).
We hypothesized that our protocol would be feasible, i.e., that children post-HSCT would have success
in completing the MRS protocol and produce analyzable data [29]. Our secondary aim was to examine
if there were any differences in exercise capacity, daily physical activity, or skeletal muscle function
post-allogeneic HSCT. We hypothesized that children post-HSCT would have impaired aerobic capacity,
poor daily activity levels, and impaired skeletal muscle metabolism compared to the HC group.

2. Materials and Methods

2.1. Study Participants

Children and adolescents aged 8–18 years who had completed their first allogeneic HSCT within
the last 6–36 months at SickKids Hospital were recruited for the HSCT study group. Patients were



Int. J. Environ. Res. Public Health 2019, 16, 1608 3 of 10

excluded if they reported any contraindication to exercise and/or magnetic resonance imaging (MRI;
i.e., non-compatible implanted device), or body mass >100 kg. All participants in the HSCT group
received permission to participate from their primary HSCT physician. Healthy controls (who had no
chronic diseases and were generally healthy) were recruited via poster or by word of mouth, and were
included based on age and BMI matched to the HSCT group. All study testing occurred at the Hospital
for Sick Children in Toronto, and this study was approved by the local research ethics board (REB#
1000039644). All participants were informed about the benefits and risks of the study and provided
informed consent to participate in the study.

2.2. Descriptive Characteristics and Exercise Tolerance

Height and weight were measured to the nearest 0.1 cm and 0.1 kg, respectively, using a stadiometer
(model 555; SR Instruments, Tonawanda, NY, USA). Body composition was measured non-invasively
using the BOD POD (COSMED, Rome, Italy). Participants also completed the Habitual Activity
Estimation Scale questionnaire [30] to estimate daily physical activity levels.

2.3. Systemic Aerobic Capacity

Peak aerobic exercise capacity (VO2 peak) was estimated using a sub-maximal cycling test
(YMCA protocol) [31]. This cycling protocol involves 3-minute bouts of incremental workloads until
approximately 85% of age-predicted maximum heart rate (220-age) is achieved. Heart rate was
measured using a Polar heart rate monitor (H7, Polar, Quebec, QC, Canada). Maximum oxygen
consumption was determined using standardized calculations. Equation (1) was used to calculate
the VO2 at respective work rates and subsequently used to find predicted VO2 peak using Equation
(2) [31].

VO2 (mL kg−1 min−1) = [(10.8 ×work rate in watts) / body weight in kg] + 7 (1)

VO2 peak (mL kg−1 min−1) = VO2 at work rate 2 + [((VO2 at work rate 2 − VO2 at
work rate 1)/HR2 − HR1)) × HRmax − HR2]

(2)

2.4. Magnetic Resonance Imaging and Spectroscopy

All MRI and spectroscopy data were collected using a Siemens Magnetom Tim TrioTM 3 Tesla MRI
(Siemens AG, Medical Solutions, Erlangen, Germany). A dual tuned 1H/31P transmit/receive surface
coil (1H: butterfly coil, 180 mm × 244 mm; 31P: loop coil, 110 mm diameter) was used for imaging
and spectroscopy acquisition. Patients were placed supine and head first inside the magnet. First,
T1-weighted anatomical images were acquired axially from the mid-quadriceps region (turbo spin
echo (TSE, 2 turbo factor), 200 echo trains per slice (150◦ flip angle), 10 slices (0.5 mm gap), 5 mm thick,
FOV 220 mm, TE/TR = 16/600 ms, total acquisition time = 2 minutes). Following anatomical imaging,
with a participant remaining in the scanner, 31P-MRS scanning was performed with the same coil.

31P-MRS FID spectra were obtained from the vastus lateralis under partially saturated conditions
with a hard pulse (0.25 ms duration, 40◦ flip angle, TR = 1000 ms), eight averages (total acquisition
time = 8 seconds per spectrum). Ten resting spectra were acquired and then averaged to determine
baseline high energy phosphate content. Subsequently, participants performed a leg extension exercise
using an up-down ergometer with power meter (Lode BV Medical Technology, Groningen, NL) while
inside the MRI. They performed 30 seconds of exercise at their predicted maximal value, 60 seconds at
85% of maximum, and five bouts of 30-second exercise at 65% of maximum, separated by 15 seconds
of rest. All exercise tests were performed on the same day, in the same order for all participants (30 s,
60 s, and 5 × 30 s). Each of these exercise tests were separated by 5 minutes of rest. To determine the
resistance to apply to the leg extension ergometer, we calculated target maximal power (wattage) using
the Fleisch equation (Equation (3)). We then applied the maximal power for 30 seconds, 85% of this
calculated power for 60 seconds, and 65% of this power for the five bouts of exercise. We note that



Int. J. Environ. Res. Public Health 2019, 16, 1608 4 of 10

there is a baseline resistance of 5 watts with the Lode MRI cycle, so all predicted and actual power
outputs were calculated/measured, and then an additional 5 watts was added.

Maximal Exertion Power (watts) = (Body Mass × 0.45) × 0.4 (3)

Spectra were obtained immediately following each exercise bout and in between each bout of
the 5 × 30-second exercise. ATP production rates in each of the bioenergetics systems were calculated
according to the equations developed by Newcomer and colleagues [32], as previously described by
our group [33].

2.5. MR Data Analysis

Spectral analysis was performed using Java-based magnetic resonance user interface (jMRUI)
(v. 4.0). Areas under inorganic phosphate (Pi), phosphocreatine (PCr), and the three peaks of
adenosine triphosphate (ATP; γ, α, β) were calculated with an AMARES (advanced method of accurate,
robust, and efficient spectroscopic fitting) algorithm, assuming 100% Lorentzian line shapes for all
peaks, as previously described [27]. The concentrations of each peak were normalized to 41.3 mmol,
the total sum of muscle phosphate [34]. Changes in intracellular magnesium (Mg2+) and pH during
exercise were calculated from the chemical shift of β -ATP with respect to PCr and Pi with respect to
PCr, respectively [35]. PCr recovery curves were fit with a monoexponential function with tau PCr
representing 63% of the metabolite’s recovered value.

2.6. Statistical Analyses

Demographic characteristics of the participants were assessed using descriptive statistics (means
and standard deviations calculated). The primary purpose of this paper was to examine the feasibility,
i.e., whether the exercise MRS protocols could be successfully completed by children post-HSCT [29].
We considered successful execution of the protocol to be that the participants were able to complete
the exercise assessments in the MRI, and that the data received were able to be analyzed for relevant
variables. To examine whether there were differences in power achieved during MRI exercise protocols,
daily physical activity levels, skeletal muscle metabolism, and VO2 peak in children post-HSCT vs.
healthy controls, we conducted t-tests, and statistically significant differences were considered at
a p < 0.05. Statistical analyses were performed in STATA (11.1, College Station, TX, USA).

3. Results

3.1. Descriptive Characteristics

Nine patients from the HSCT clinic at The Hospital for Sick Children consented to participate
in this study. Two participants had disease-related complications and were excluded from the study,
one aged out of the study’s HSCT time limitation prior to testing (allogeneic HSCT > 36 months
prior) and one participant did not complete study procedures due to time limitations with our MRI
scheduling. Therefore, a total of five children/adolescents post-HSCT and five HCs completed the
study procedures for this pilot feasibility study.

Participants’ descriptive characteristics are shown in Table 1. The mean age (± standard deviation)
of the HSCT group was 11 ± 1.2 years, and the mean age of the HC group was 12.8 ± 2.4 years (p > 0.05).
The mean BMI of the HSCT group was 19.2 ± 3.8 kg/m2, and the mean BMI of the HC group was
18.3 ± 4.7 kg/m2 (p > 0.05). Body composition (i.e., body fat percentage and total body lean mass) were
not different in the HSCT group vs. the HCgroup (p > 0.05). The primary diagnosis requiring HSCT for
the children varied; two children had aplastic anemia, and three had leukemia. On average, children
were 15.8 ± 5.3 months from their HSCT when they completed study testing.
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Table 1. Demographic characteristics.

HSCT
N = 5

HC
N = 5

p-value

Age (years) 11 ± 1.2 12.8 ± 2.4 0.172

Weight (kg) 40.4 ± 9.0 45.5 ± 15.6 0.541

Body mass index (kg/m2) 19.2 ± 3.8 18.3 ± 4.8 0.749

Total body fat tissue (%) 29.1 ± 8.5 23.7 ± 7.1 0.348

Total body lean mass (kg) 28.3 ± 5.5 35.7 ± 11.0 0.226

Time post HSCT (months) 15.8 ± 5.3 N/A N/A

Mean ± standard deviation unless otherwise indicated. HSCT: haematopoietic stem cell transplant;
HC: healthy control.

3.2. Aerobic Exercise Capacity and Habitual Daily Physical Activity

Exercise characteristics are presented in Table 2. Children post-HSCT had significantly lower
predicted VO2 peak compared to the HC group (HSCT: 27.8 ± 3.4 vs. HC: 40.3 ± 8.1 mL kg−1 min−1,
p = 0.015). Habitual daily physical activity (hours/day) was similar between the HSCT and HC groups
during the week, however, average weekend total activity (hours/day) was lower in the HSCT group,
and average weekend total inactivity (hours/day) was higher in the HSCT group vs. the HC group
(p = 0.006 for both).

Table 2. Exercise Characteristics.

HSCT
N = 5

HC
N = 5

p-value

VO2 peak (mL kg−1 min−1) 27.8 ± 3.4 40.3 ± 8.1 0.015 *

Avg weekday total activity (hours/day) 5.3 ± 1.8 6.6 ± 3.3 0.476

Avg weekday total inactivity (hours/day) 18.7 ± 1.8 17.4 ± 3.3 0.484

Avg weekend total activity (hours/day) 6.0 ± 1.4 9.3 ± 1.4 0.006 *

Avg weekend total inactivity (hours/day) 18 ± 1.4 14.7 ± 1.4 0.006 *

Mean ± standard deviation unless otherwise indicated. * HSCT vs. HC.

3.3. Magnetic Resonance Spectroscopy

Participants performed three exercise bouts in the MRI designed to test the three energy systems:
30 seconds of maximal exercise, 60 seconds at 85% of maximum, and five bouts of 30-second exercise
at 65% of maximum. All HSCT participants and HCs completed the 30-second exercise MRS testing,
and the 5 × 30-second exercise MRS testing. One HSCT and HC participant did not complete the
60 second exercise MRS test, due to time restrictions in the MRI suite.

The mean predicted power (Table 3) was similar between the HSCT participants and HCs for
each of the 30-second (12.12 vs. 13.24 watts, respectively; p = 0.46), 60-second (11.05 vs. 12.00 watts,
respectively; p = 0.46), and 5 × 30-second exercise tests (9.63 vs. 10.36 watts, respectively; p = 0.47).
If pedaling during the exercise bout became too difficult to maintain, wattage was reduced to allow the
participants to complete the full exercise time. Therefore, we also recorded the actual power achieved
during each exercise bout. The actual power achieved was similar for HSCT partipants and HCs
during the 30- and 60-second exercise tests (p > 0.05). HSCT and HC partipants were able to maintain
between 78–105% of their prescribed power. By the 5 × 30-second test, the actual power achieved was
lower in the HSCT participants vs. HCs (6.20 ± 1.30 vs. 9.38 ± 1.38 watts, respectively; p = 0.009).
HSCT participants maintained 64% of the prescribed power during this bout of exercise compared to
HCs who were able to maintain 90% of their prescribed power.
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Table 3. MRI exercise power results.

HSCT
N = 5

HC
N = 5

p-value

Power achieved 30 s (watts) 10.25 ± 2.63 13.67 ± 4.04 0.229

% of predicted power 85% 103%

Power achieved 60 s (watts) 8.63 ± 2.98 12.67 ± 3.06 0.139

% of predicted power 78% 105%

Power achieved 5 × 30 s (watts) 6.20 ± 1.30 9.38 ± 1.38 0.009

% of predicted power 64% 90%

MRI: magnetic resonance imaging. Mean ± standard deviation unless otherwise indicated. % of predicted
power = mean power achieved/mean predicted power × 100.

31P-MRS results are presented in Table 4. No statistically significant differences were observed
between the HSCT and HC groups at rest for Pi, PCr, Pi/PCr, or PCr time constant (p > 0.05).
No differences were observed in any MRS variables following each of the 30 second, 60 second,
or 5 × 30 second exercise protocols (p > 0.05 for all).

Table 4. MRS results.

31P-MRS Measurement HSCT
N = 5

HC
N = 5

Mean Pi (mM) rest 2.05 ± 0.32 2.02 ± 0.25

Mean PCr (mM) rest 19.0 ± 1.33 18.55 ± 0.75

pH
dpH

rest
30 s
60 s

6.87 ± 0.12
0.18 ± 0.05
0.27 ± 0.16

6.79 ± 0.21
0.14 ± 0.18
0.15 ± 0.17

Pi:PCr (ratio) rest
30 s
60 s
5 × 30 s

0.108 ± 0.013
1.11 ± 0.62
1.99 ± 1.15
1.42 ± 1.03

0.108 ± 0.013
1.33 ± 0.814
1.60 ± 0.33
2.18 ± 2.58

PCr time constant (s) 30 s
60 s
5 × 30 s

25.86 ± 10.3
29.69 ± 9.38
24.91 ± 9.51

29.88 ± 13.7
27.67 ± 18.8
28.25 ± 14.3

ATP production rate (mM/s)
High energy phospagen

30 s
60 s
5 × 30 s

0.258 ± 0.100
0.173 ± 0.032
0.316 ± 0.128

0.284 ± 0.105
0.168 ± 0.026
0.306 ± 0.117

ATP production rate (mM/s)
Anaerobic glycolysis

30 s
60 s
5 × 30 s

0.390 ± 0.078
0.343 ± 0.167
0.552 ± 0.361

0.286 ± 0.520
0.205 ± 0.164
0.416 ± 0.676

ATP production rate (mM/s)
Oxidative phosphorylation

30 s
60 s
5 × 30 s

0.264 ± 0.131
0.275 ± 0.056
0.200 ± 0.068

0.246 ± 0.045
0.338 ± 0.068
0.162 ± 0.072

MRS: magnetic resonance spectroscopy. Mean ± standard deviation. p > 0.05 between HSCT and healthy controls
(HCs) for all variables.

4. Discussion

Exercise intolerance and resulting physical dysfunction are common outcomes in children treated
with HSCT [11]. There are many potential factors that contribute to poor physical function, one of
which might be impaired skeletal muscle metabolism, leading to inefficiency of the muscle’s ability
to engage in exercise. However, no published studies have examined skeletal muscle function at the
cellular level in children post-HSCT. As a first step to being able to address this question, we conducted
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an implementation-focused feasibility study, and found that our MRS exercise protocol in the MRI is
feasible in children post-HSCT. All HSCT participants successfully completed the 30-second exercise
MRS testing, and the 5 × 30-second exercise MRS testing. One HSCT participant did not complete the
60-second exercise MRS test; however, this was a due to logistics issues and not participant-related
complications. Our primary finding is that children post-HSCT are able to complete the MRS protocol
and produce analyzable data indicative of skeletal muscle function.

We found that each of the participants in the study was able to complete the majority of the MRS
protocol as designed. This was evidenced by the actual power output being similar between the HSCT
and HC groups during the 30- and 60-second exercise bouts. However, children post-HSCT were
unable to maintain the prescribed power during the 5 × 30-second exercise bout. HSCT participants
were only able to maintain 64% of their predicted power (vs. 90% in the HC group; p = 0.009) during
the 5 × 30 s test. This finding is not surprising, and indicates that children post-HSCT were more
fatigued by the time the third exercise test was completed. The ability to maintain physical activity
is indeed reduced in the children post HSCT, as they were not able to maintain power during short
exercise bouts like their healthy counterparts. This is indicative of the exercise intolerance present in
children post-HSCT.

The secondary aim of this study was to examine if there were any differences in exercise capacity,
daily physical activity, and skeletal muscle metabolism in children post-HSCT vs. HCs. We found
that following a submaximal cycle test, children post-HSCT had significantly lower aerobic capacity
compared to HCs (VO2 peak: 27 vs. 40 mL kg−1 min−1 mL/kg min). A mean predicted VO2 peak
value of 27 mL kg−1 min−1 indicates poor aerobic capacity; a normal value for children derived from
a cycle protocol such as the one used in this study is at least ~36 mL kg−1 min−1 [36]. Our findings
are similar to other studies that report VO2 peak in children post-HSCT. For example, one study
examined VO2 peak determined by an incremental cycle test in 63 children post-HSCT vs. healthy
controls, and repoted that VO2 peak was 37.4 26 mL kg−1 min−1 (95% CI: 35.3; 39.5) in the patient
group and 44.6 mL kg−1 min−1 (95% CI: 42.5; 46.8) in the healthy controls [37]. We note that their HSCT
participants were on average 7 years (range 3.5–10.4 years) post-HSCT, as their study was a long-term
follow-up [37]. In the current study, the median interval from HSCT was much shorter (15 months)
and can account for the lower VO2 peak values we report. Our values are similar to those of San
Juan et al. [38], who reported a pre-training VO2 peak of 26 mL kg−1 min−1 in their HSCT group
(N = 8; age 10.9 ± 2.8 years, time since transplant between 2–12 months). Overall, our pediatric HSCT
recipients demonstrated poor aerobic exercise capacity.

When we examined habitual daily physical activity levels, interestingly, we found that children
post-HSCT had similar activity levels compared to the HCs during the week. On the weekend, however,
children post-HSCT engaged in less activity (6 vs. 9 hours per day, respectively, p = 0.006) and more
inactivity (18 vs. 15 hours per day, respectively, p = 0.006) compared to the HCs. One hypothesis for
this finding is that children post-HSCT maintain weekday activity levels, as they have a scheduled
day that involves attending school, and attempting to keep as “normal” as a daily life as possible.
However, by the weekend, the children post-HSCT are fatigued and engage in less daily activity,
using the weekend to recover. With that said, we interpret these findings with caution, as our study
was not powered to detect physiological changes between the HSCT and HC groups.

Unlike aerobic capacity and daily activity level, skeletal muscle metabolism as measured by MRS
was not different in children post-HSCT compared to the HCs. Previous studies in other children with
chronic diseases who experience exercise intolerance have found that skeletal muscle metabolism is
impaired when compared to healthy controls [26,27]. For example, in one study by our research group
that used similar methods to the current protocol, girls with Turner syndrome had a greater difference
in rest and end-exercise skeletal muscle pH compared to HCs after 30 seconds and 90 seconds of
exercise, which is suggestive of greater anaerobic stress during exercise. This may lead to feeling
muscle fatigue and pain due to lactic acid build up during high intensity activity [26]. We expected
that we might observe similar changes to muscle metabolism in the HSCT group vs. the HC group;
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however, as previously mentioned, our current study was not powered to detect differences and thus
presents a potential for Type II error. In future studies we plan to examine MRS in a larger group of
participants powered to detect physiological changes.

There are limitations of the current study. As mentioned above, we only measured MRS variables
in five HSCT participants and five HCs. We did not power this study to examine physiological
differences in the variables; it was a pilot study to determine if children following HSCT could complete
our exercise MRS protocol. Our future direction includes conducting a study with a greater number
of participants to accurately determine differences in skeletal muscle function. Another potential
limitation is that we matched our HSCT and HC participants based on age and BMI. We did not
match children who were pre-pubertal based on sex, because exercise capacity and changes to muscle
as a result of hormone differences do not begin until puberty [39]. However, future studies should
consider examining/matching participants by Tanner stage. All but one individual in this feasibility
study was female; our future larger study should include a representative sample of males.

5. Conclusions

In conclusion, the use of exercise protocols in conjunction with MRS to assess peripheral skeletal
muscle metabolism is feasible, as indicated by our observations that children post-HSCT had success
in completing the MRS protocol and produced analyzable data. As well, we report that children
post-HSCT have poor aerobic exercise capacity and engage in less weekend daily physical activity (vs.
HCs). The MRS protocol discussed herein can therefore be used in future studies to determine if skeletal
muscle function is associated with poor exercise capacity in a larger sample of children post-HSCT.
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