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Abstract: Background: Exposure to endocrine disruptors is on the rise, with new compounds regularly
incriminated. In animals and humans, this exposure during critical developmental windows has
been associated with various developmental abnormalities, including the emergence of psychiatric
disorders. We aimed to review the association between perinatal endocrine disruptor exposure and
neurodevelopmental disorders in humans, focusing on cognitive and psychiatric disorders. Methods:
We performed a systematic review with key words referring to the fields of neurodevelopment and
endocrine disruptors. We reviewed 896 titles, choosing studies on the basis of titles and abstracts.
We searched through the methodology sections to find perinatal exposure and neurodevelopmental
disorders, following the categories indicated in the Diagnostic and Statistic Manual of Mental
Disorders (5th edition). References in some studies brought us to a total of 47 studies included
here. Results: Convergent studies report an association between exposure to endocrine disruptors
and autism spectrum disorder, attention-deficit hyperactivity disorder, global developmental delay,
intellectual disability, communication disorders and unspecified neurodevelopmental disorders.
Conclusion: Sufficient data exist to report that exposure to some endocrine disruptors is a risk factor
for the emergence of neurodevelopmental disorders. Studying endocrine disruptor exposure in
humans is still associated with some limits that are difficult to overcome.

Keywords: endocrine disruptors; neurodevelopmental disorders; environmental exposure; prenatal
exposure; autism spectrum disorder

1. Background

The notion of endocrine disruptor compounds (EDCs) was first used at the Wingspread Conference
Center in 1994 [1]. It describes any exogenous chemical compound able to interfere with the endocrine
system, resulting in adverse effects on the health of an individual and/or his/her offspring. They may
not only be medicines, but also pesticides, compounds used in the plastic industry, mass consumption
goods, industrial products or pollutants. Since the early nineties, some studies have reported permanent
effects of EDCs on development. In 2012, the Global Assessment of the State-of-Science of Endocrine
Disruptors issued by the World Health Organization and the United Nation Environment Program
concluded that “different EDCs can act together and result in an increased risk of adverse effects on
human health and wildlife.”
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Several developmental windows are critical in terms of exposure to EDCs, especially fetal
development, early childhood and puberty. In adults, exposure to EDCs can result in an immediate
effect that will disappear when the exposure is gone. In children though, the exposure can cause
permanent effects [2], which may appear even years later. During fetal development, it appears that
environmental EDCs are able to cross the placental barrier and reach the brain [3].

A large amount of work has been done trying to investigate the effects of exposure to EDCs on global
development. Evidence for reduced birth weight was reported with phthalates [4], bisphenol A (BPA) [5]
and polybrominated diphenyl ethers (PBDE) [6]. Studies found a relationship between persistent organic
pollutants (POPs) and male genital defects [7]. A relationship was shown between parental exposure
to pesticides and increased risk of hypospadias and cryptorchidism in children [8]. Some studies
found a relationship between POPs and precocious puberty or earlier menarche in girls, others found
delayed puberty in boys [9]. Lastly, some links were suggested between EDCs exposure and obesity;
for example, cord blood polychroeinated biphenyl (PCB) and dichlorodiphenyldichloroethylene (DDE)
concentrations were associated with increased body-mass index (BMI) in 1- to 3-year-old children [10].

The endocrine system has a key role in determining how an organism adapts to its environment.
Classically, EDCs act by modifying actions of endogenous hormones, stimulating or inhibiting their
production, changing the way they travel through the body or altering their functions. Recent studies
pointed to the fact that these mechanisms are actually very broad. Not only do EDCs act via nuclear
receptor signaling, but they can also act through membrane receptors, co-activators, cell signaling and
trafficking [11] as well as alterations of epigenetic programming [12].

Receptors for steroid hormones are expressed in the developing brain, playing a role in neural
cell migration, differentiation synaptogenesis and myelination. Thus, they can affect behavior in
a gender-specific manner in vertebrates [13]. EDCs may alter these processes by affecting those
hormones/receptor complexes [14]. For example, animal studies found that prenatal/perinatal exposure
to EDCs, such as PCBs, changes the volume of sexually dimorphic hypothalamic regions and
affects neuronal types [15]. In zebrafish, recent results supported a disruption by ethynilestradiol of
neurogenesis in the brain [16].

EDCs distribute throughout the whole body, brain included [17]. A lot of work has been done lately
trying to find an association between neurodevelopment and EDCs exposure. Animal models have
suggested relations between EDCs exposure and behavior abnormalities [18], spatial difficulties [19],
hyperactivity [20] and anxiety [21]. Animal models hardly match the complexity of psychiatric diseases
in humans. Moreover, in the literature, we did not find any cohesive reviews adopting a clinician
point of view. Indeed, most studies focus on one EDC, and describe its potential neurodevelopmental
effects. Here, we aim to review the state of the art on environmental EDCs exposure in relation to
neurodevelopmental cognitive and psychiatric disorders in humans. We chose a cohesive perspective,
tailored for clinicians, presenting our results according to already well-described psychiatric disorders.

2. Materials and Methods

Our eligibility criteria did not screen participants on age. Children and adults were both
included since the neurodevelopmental window can be very large, with symptoms appearing years
later. Studies followed a prospective or retrospective observational design (due to obvious ethical
questions). They may, or may not, have had a control group. Indeed, some EDCs being ubiquitous
in our environment, comparisons could only be assessed according to high vs. low exposure.
The psychiatric assessment needed to follow a standardized method. We reviewed studies that had
been published until 1 December 2018, exposing us to publication and selective reporting within
studies biases. We screened the PubMed and Embase databases. Regarding exposure, we searched the
terms: “endocrine disruptors,” “bisphenol,” “phthalates,” “pollutants,” “polybrominated diphenyl
ethers” (PBDE), “hexaclorobenzene” (HCB), “polychlorinated biphenyls” (PCB), “metal,” “solvents,”
“polycyclic aromatized hydrocarbons” (PHA), “chlorpyfiros” (CPH), and “organohalogens compounds”
(OHC). Regarding the outcomes we used the terms: “neurodevelopment,” “attention deficit disorder
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hyperactivity” (ADHD), “autism spectrum disorder” (ASD), “intellectual disabilities” (ID), “learning
disorders” (LD), “developmental delay,” “language” and “behavior”. We first reviewed titles and
abstracts. We then searched for the methodology to find our eligibility criteria.

3. Results

We reviewed 864 titles and found 32 other titles through references in screened articles. We chose
studies based on title and abstract. A total of 770 studies that did not concern neurodevelopment were
excluded. We then carefully searched for the methodology to find human exposure, perinatal exposure
and neurodevelopmental disorders assessed with a standardized method. A total of 79 studies that did
not meet these criteria were excluded, which brought us to a total of 47 studies included here (PRISMA
chart in Figure 1).
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The results are presented here according to neurodevelopmental categories as defined in the
Diagnostic and Statistic Manuel of Mental Disorders (DSM) (ADHD, ASD, ID, global developmental
delay, communication disorders and unspecified disorders).

3.1. EDCs Exposure and ASD

ASD is characterized by persistent deficits in social communication and social interaction across
multiple contexts, including deficits in social reciprocity, nonverbal communicative behaviors used for
social interaction, and skills in developing, maintaining, and understanding relationships. In addition
to social communication deficits, the diagnosis of ASD requires the restricted or repetitive patterns
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of behavior, interests, or activities. There has been a large increase in the diagnosis of ASD in recent
decades [23]. One of the main explanations could be the use of better tools designed to diagnose the
disease. As of today, the diagnosis itself is also better understood and recognized. The model of a
multifactorial disease with complex genetic factors interacting with environmental factors has been
advanced. Based on that idea, we can hypothesize that changes in the environment could, at least
partially, explain the recent increase in the number of cases.

The results of ten studies [24–33], published between 2006 and 2017, are shown in Table 1. ASD
was assessed as a clinical category in six studies while four others investigated autistic traits through
social competence evaluation. We noticed that the first six studies have very different designs, which
make them difficult to compare. Windham and Nishijo both studied prenatal exposure with follow-up
studies [24,25]. Nishijo’s cohort included younger children and the diagnosis was made using a scale,
not through a clinical examination, unlike other studies. To these six studies, we added four more
studies that found an association between EDCs exposure and autistic traits, measured using scales
about social competence [26–29].

Five authors found significant associations between an ASD diagnosis and exposure to phthalates,
air pollutants, 2,3,7,8-Tetrachlorodibenzodioxin (TCDD) and BPA [24–28]. Only Rahbar et al. did not
find any association between an ASD diagnosis and postnatal exposure to different EDCs (dioxins,
dibenzofurans, BPA and phthalates), though this cohort was small and a few patients were under the
range of detection threshold for each EDC [33].
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Table 1. Endocrine disruptors and autism spectrum disorders.

Authors Outcome Exposure Dose (Medians) Population Results

Testa et al., 2012 [32] ASD diagnosis (DSM-IV) Phthalates (postnatal)

Urinary samples
5-OH-mono-ethylhexin

phthalates (MEHP) = 0.18 µg/L
5-oxo-MEHP = 0.096 µg/L

n = 48 ASD (mean 11 years) +
45 controls

Higher rates of 5-OH-MEHP,
5-oxo-MEHP and MEHP in ASD patients

(p < 0.05).

Windham et al., 2006 [24] ASD diagnosis (DSM-IV) Air pollutants (prenatal)
Estimated concentrations by US

Environmental Protection
Agency (EPA)

n = 284 ASD (mean 12 years) +
657 controls

Ajusted odds-ratio (AORs) elevated by
50% in top quartile of chlorinated

solvents and heavy metals (IC 1.1–2.1).

Volk et al., 2011 [30] ASD diagnosis
(clinical diagnosis) Air pollutants (neonatal) Distance to freeways n = 304 ASD (5–14 years) +

259 controls

Association of maternal residence at
birth near a freeway (≤ 309 m) with ASD

odds-ratio (OR) = 1.86 (1.04–3.45).

Rahbar et al., 2017 [33] ASD diagnosis (DSM-5)
BPA, phthalates, dioxins

and dibenzofurans
(postnatal)

Serum samples (dioxins and
dibenzofurans) and urine

samples (BPA and phthalates)

n = 30 ASD (2–8 years) +
10 controls

Mean concentrations did not differ
between the ASD cases and control

group (p ≥ 0.27).

Nishijo et al., 2014 [25]
ASD diagnosis (Autism
Spectrum Rating Scale
(ASRS) and Bailey III)

TCDD (pre and postnatal) Milk sample n = 153 (3 years)

The high TCDD groups showed higher
ASRS scores than the mild-TCDD groups

(p = 0.042). No differences in
neurodevelopmental scores.

Stein et al., 2015 [31] ASD diagnosis
(DSM-IV-TR) BPA (postnatal) Urine sample n = 46 ASD (mean 10 years) +

52 controls
Association between ASD and total BPA

and bound BPA (p < 0.05).

Ribas et al., 2007 [26]
Social competence

California preschool social
competence scale (CP-SCS))

HCB (prenatal) Cord serum HCB = 0.73 ng/mL n = 477 (4 years)
Association of postnatal exposure (HCB

> 1.5 ng/mL) with social impairment:
Relative risk (RR) 4.04 (1.76–9.58).

Gascon et al., 2011 [27] Social competence (CP-SCS) PBDE (pre and postnatal)
Cord blood PBDE 47

at birth = 2.10 ng/g lipid
at 4 years = 0.12 ng/g lipid

n = 422 (4 years) Association of postnatal exposure with
social impairment: RR = 2.6 (1.2–5.9).

Miodovnik et al., 2011 [28] Social competence (Social
Responsiveness Scale (SRS))

Phthalates and BPA
(prenatal)

Urinary samples
BPA 1.25 µg/L

LMW phthalates 419 µg/L
n = 137 (7–9 years)

Association of LMWP with social
impairment β = 1.53 (p < 0.05).

No association with BPA.

Nowack et al., 2015 [29] Autistic Traits (SRS)
Polychlorinated

dibenzodioxins (PCDD) and
PCB (prenatal)

Maternal blood samples
PCDD = 12.91 pg/g

PCB = 6.85 mg/g
n = 100 (10 years)

Negative associations between PCDD
levels and SRS scores in the whole group

(p < 0.05) in girls and in one subscale
(social motivation) in boys. For PCB,
associations with one subscale for the
whole group (autistic mannerisms).
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3.2. EDCs Exposure and ADHD

ADHD is a neurodevelopmental disorder defined by impaired levels of attention, disorganization,
and/or hyperactivity-impulsivity. As for ASD, diagnoses of ADHD have been increasing lately.
Population surveys suggest that ADHD occurs in most cultures in about 5% of children and about 2.5%
of adults. Changes in our environment, in association with better tools for diagnosis, could explain
this observation [34].

The results of thirteen studies [26,27,35–45], published between 2003 and 2016, are shown in
Table 2. Jacobson et al., in 2003, first showed a correlation between “ADHD-like” profiles and prenatal
exposure to PCB [35]. Seven years later, Sagiv found a similar result [36].

Three studies using the same cohort from Minorca (Spain) found an association between the
diagnosis and PBDE, HCB and nitrogen dioxide [26,27,37]. Another study found an association with
PBDE exposure (mostly postnatal) [38].

Regarding BPA, prenatal exposure was not found to be associated with ADHD [37], although
postnatally, the results seem to differ according to two studies [39,40].

Once again, one main difference among all studies is the way ADHD is diagnosed. In some, the
outcome is an ADHD diagnosis, as defined in the DSM, while in others, the outcome is defined as
“ADHD-traits.” It has been suggested that ADHD psychopathology can be viewed dimensionally,
with symptoms distributed continuously in the general population [46,47]. Thus, healthy individuals
may present high and low levels of ADHD-traits, altering their functioning, but not display enough
symptoms to suffer from an ADHD, in the clinical sense.

3.3. EDCs Exposure and Global Developmental Delay (GDD)

Global developmental delay is diagnosed when an individual fails to meet expected milestones
in several areas of intellectual functioning. The diagnosis is made with systematic assessment
of intellectual functioning such as the Bayley Scale of Infant Development (BSID) or the Gesell
Developmental Schedules (GDS). These tests are chosen according to the individual’s age. The results
of seven studies, published between 2006 and 2012, are shown in Table 3 [48–54]. Most of these studies
present a positive association between prenatal exposure to EDCs and a decrease in mental and/or
psychomotor index. Two studies found an association with phthalates [48,51], and two studies also
found an association with polycyclic aromatic hydrocarbon (PAH) [50,53]. Noteworthy, Perera et al.
presented recent results in favor of a reversible decrease of developmental quotient after a source of
PAH was removed [54].
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Table 2. Endocrine disruptors and attention-deficit hyperactivity disorder.

Authors Outcome Exposure Dose (Medians) Population Results

Gascon et al., 2011
(2nd part) [27]

ADHD (DSM-IV Criteria,
Connors Scale) PBDE (pre and postnatal)

PBDE 47
Cord blood (birth) = 2.10 ng/g

Blood sample (4 years) =
0.12 ng/g

n = 422 (4 years) Association of postnatal exposure with ADD
RR = 1.8 (1.0–3.2). No prenatal association.

Ribas et al., 2009
(2nd part) [26]

ADHD (DSM-IV Criteria,
Connors Scale) HCB (prenatal) Cord serum = 0.73 ng/mL n = 477 (4 years) When HCB > 1.5 ng/mL, association of prenatal

exposure with ADHD, RR= 2.71 (1.05–6.96).

Sagiv et al., 2009 [36] ADHD (DSM-IV Criteria,
Connors Scale)

PCB and
p,p′-dichlorodiphenyldichloroethylene

(DDE) (prenatal)
Cord serum = 0.19 ng/g lipid n = 573 (mean 8.2 years)

Association of ADHD Index/DSM-IV criteria
with PCB and p,p′-DDE levels,

p < 0.05.

Eskenazi et al., 2013 [38] ADHD (DSM-IV Criteria,
Connors Scale) PBDE (pre and postnatal)

Maternal serum PBDE10 =
28.7 ng/g

Child serum (7 years) PBDE10 =
90.9 ng/g

n = 310 (5 years) +
323 (7 years)

Association of prenatal exposure with Connors
ADHD DSM-IV total scale AOR = 2.6 (0.2–5.0) in

5-year-old children.
Association of postnatal exposure with

hyperactivity AOR = 4.8 (0.5–9) and inattention
AOR = 2.9 (0.4–5.5) on BASC2 teacher report in

7-year-old children.

Morales et al., 2009 [37] ADHD (DSM-IV Criteria
Connors Scale)

Gas appliance and nitrogen dioxide
(neonatal) NO2 concentration = 15.8 ppb n = 482 (4 years)

Association of use of gas appliances with ADHD
symptoms OR = 2.72 (1.01–7.28). Association of

nitrogen dioxide concentrations with
ADHD symptoms,

OR = 1.04 (1.00–1.09).

Arbuckle et al., 2016 [40]
ADHD & Learning

(Strenght and difficulties
questionnaire (SDQ))

Phthalates, BPA and lead (postnatal) Blood sample (lead) and urine
sample (BPA and phthalates)

LD n = 94, ADD/ADHD n
= 49, (6–11 years)

Association of lead exposure with ADHD
(p = 0.047).

Janulewicz et al., 2008 [41] ADHD diagnosis (clinical) PCE (pre and postnatal)
Estimation in water by area

Prenatal = 7.34 g
Postnatal = 20.34 g

n = 1063 exposed vs. n =
1023 unexposed (5 years) No association with ADHD.

Harley et al., 2013 [39]

Behavior ((Behavior
assessment system

forchildren (BASC2) &
Conners Scale)

BPA (pre and postnatal)

Urinary maternal (birth) = 1.1
µg/L

Child (5 years) = 2.5 µg/L
(geometric mean)

n = 292 (7 years)

No association of prenatal exposure with ADHD.
Association of postnatal exposure with ADHD
in girls on mothers β = 1.3 (0.2–2.3) and teachers

report β = 1.7 (0.3–3.1). Association with
inattention in boys in teachers report β = 1.7

(0.3–3).

Laslo et al., 2004 [42] Neuropsychological Profile
(with Connors Rating Scale) Organic solvents (prenatal) Interrogation n = 32 (3–7 years) Association with ADHD β = 0.62 (p < 0.02).

No association with IQ.
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Table 2. Cont.

Authors Outcome Exposure Dose (Medians) Population Results

Chopra et al., 2014 [43] ADHD & LD (diagnosis) Phthalates (postnatal) Urine sample ADD n = 102, LD n = 173,
both n = 56 (6–15 years)

Association of ADD with urinary concentration
of di–2-ethylhexyl phthalates OR = 2.1 (1.1–3.9)

and phthalates OR = 2.7 (1.2–6.1). No
association with LD.

Verner et al., 2010 [44] Behavior (Behavior rating
scale (BRS) & BSID-II) PCB (pre and postnatal) Cord blood PCB-153 =

112.3 ng/g lipid n = 168 (11 months)
Correlation of prenatal PCB-153 level with

inattention r 0.205 (p < 0.05) and of postnatal
levels with hyperactivity r 0.181 (p < 0.05).

Perera et al., 2011 [45] Behavior (Child behavior
checklist (CBCL)) PAH (prenatal) Cord blood 32P = 2.45

adducts/108 nt n = 215 (followed 8 years)
Association of exposure and attention problems

at 4,8 years β = 0.38 (0.06–0.69) and 7 years
β = 0.22 (0.06–0.38)

Jacobson et al., 2003 [35]

ADHD like
neuropsychological profile
(continuous performance

test (CPT),
DigitCancellation, etc.)

PCB (prenatal) Cord serum PCB = 2.7 ng/mL n = 144 (11 years)
Correlation between exposure and attention
deficit r = 0.17 and working memory r= 0.22

(p < 0.05)
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Table 3. Endocrine disruptors and global developmental delay.

Authors Outcome Exposure Dose (Medians) Population Results

Kim et al., 2011 [48] Development (BSID-II)
Phthalates
(prenatal
exposure)

Urinary mono
(2-ethyl-5-hydroxyhexyl)
phthalates (MEHHP) =

8.9 µg/L (mean)

n = 460 (6 months)

Association of mental
development index (MDI) with
MEHHP β = −0.97 (−1.85 −0.08)
and mono (2-ethyl-5-oxohexyl)
phthalates MEOHP β = −0.95

(−1.87 to −0.03). Association of
PDI with MEHHP β = −1.20

(−2.33 to −0.08).

Herbstman et al.,
2010 [49]

Development (BSID-II)
and Intelligence

(Wechsler preschool
and primary scale of

intelligence
(WPPSI-R))

BPDE (prenatal
exposure)

Cord blood PBDE47 =
11.2 ng/g lipid PBDE99

= 3.2 ng/g lipid
PBDE100 = 1.4 ng/g

lipid

n = 96 (3 years)

Association of 24-month MDI
(BDE-47, 99, and 100), 48-month
full-scale β = −3.29 (−5.95 −0.63)

and performance intellectual
quotient (IQ) (Brominated
diarylethers (BDE)-100).

Perera et al., 2006 [50] Development
(BSID-II/CBCL)

PAH (prenatal
exposure)

Air concentrations
measures

n = 181 (followed 3
years)

No association of prenatal
exposure to PAHs with

psychomotor developmental
index (PDI) or behavioral

problems. Association of high
prenatal exposure to PAHs (upper
quartile) with lower MDI at age 3

β = −5.69 (−9.05 to −2.33)

Whyatt et al., 2012 [51] Development
(BSID-II/CBCL)

Phthalates
(prenatal
exposure)

Urinary MiBP = 9.3
µg/L

MnBP 38.0 µg/L
(mean)

n = 319 (3 years)

Association of PDI scores with
mono-n-butyl phthalates MnBP
β = −2.81 95% (−4.63, −1.0) and
monoisubitil phthalates (MiBP)
β = −2.28 (−3.90, −0.67). In girls,
association of MDI scores with
MnBP β = −2.67 (−4.70, −0.65).

Rauh et al., 2006 [52] Development
(BSID-II/CBCL)

CPF (prenatal
exposure) Umbilical cord blood n = 234 (3 years)

Association of highly exposure
(>6.17 pg/g plasma) with PDI at 3
years compared with lower levels
(p = 0.006). Association of highly
exposure with ADHD at 3 years of

age compared with those with
lower levels of exposure

(p = 0.018).

Tang et al., 2008 [53] Development (GDS) PAH (prenatal
exposure)

Cord blood adducts =
0.32 adducts/108 nt

(mean)

n = 110 (followed
2 years)

Association of increased adduct
levels with decreased average
GDS developmental quotient

(DQ) β = −14.58 (−28.77 to −0.37).

Perera et al., 2008 [54] Development (GDS) PAH (prenatal
exposure)

Cord blood adducts =
0.20 adducts/108 nt

(mean)

n = 107 (followed
2 years)

No association of adduct levels
with average GDS DQ.

3.4. EDCs Exposure and Intellectual Disability

Intellectual disability is characterized by deficits in general mental abilities. The deficit results in
the impairment of adaptive functioning in the conceptual, social and practical domains. It is typically
measured using psychometry valid tests. Those tests need to be adapted to the child’s age. The results
of five studies, published between 2009 and 2017, are shown in Table 4 [55–59].

Two studies from two different cohorts found convergent results in favor of an association between
exposure to PAH and intellectual quotient (IQ) alterations. We notice that they used two different
methods to assess the IQ, and in one study [57], the exposure was 10 times higher than in the other [58].
Two studies searching for an association with PCB exposure reported inconsistent results, but again,
the exposure itself and PCB concentrations differed [55,56].
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Table 4. Endocrine disruptors and intellectual disability.

Authors Outcome Exposure Dose (Medians) Population Results

Cho et al., 2010 [59]

Intelligence
(K-Wechsler

intelligence scale for
children (WISC))

Phthalates
(postnatal)

Urinary MEHP = 21.3
µg/L, MEOHP = 18.0
µg/L and MPB = 48.9
µg/L (geometric mean)

n = 667 (9 years)

Association of full-scale IQ and
verbal IQ scores with MEHP;

β = −1.93 and β = −0.91 (p < 0.05)
and MEOHP metabolites

β = −0.91 and β = −0.81 (p < 0.01)
but not with MBP metabolites.

Edwards et al., 2010 [57]
Intelligence (Raven’s
colored progressive
matrices (RCPM))

PAH (prenatal) PAH in air = 39.62
ng/m3 (mean) n = 214 (5 years)

Association of higher
(>17.96 ng/m3) prenatal exposure
to airborne PAHs with decreased
RCPM scores at 5 years of age β =

−1.36 (−2.48 −0.23).

Perera et al., 2009 [58] Intelligence (WPPSI-R) PAH (prenatal) PAH in air = 3.48
ng/m3 (mean) n = 249 (5 years)

Association of high PAH levels
(>2.26 ng/m3) with full-scale IQ

β = −4.307
(p = 0.007) and verbal IQ

β = −4.668
(p = 0.003).

Zhang et al., 2017 [56]

Reading
(Woodcock-Johnson
(WJ)-III and Wide

range achievement test
(WRAT)-4),

intelligence (WISC-IV)
and Behavior (BASC-2)

PBDE and PCB
(prenatal)

Maternal serum
(Sum4PBDEs = 35.65
ng/g) (Sum4PCBs =

31.30 ng/g)

n = 239 (at 5 and 8
years)

Association of Sum4PBDE with
reading composite score and FISQ,
and externalizing problems at 8
years (not at 5). No association

with Sum4PCB

Lai et al., 2002 [55] Behavior (WPPSI-R,
CBCL and Rutter’s) PCBs (prenatal) Interrogation

(contaminated oil)

n = 118 (followed 4
years) + 118

controls

Exposed children scored 3 points
lower than controls for IQ

(p < 0.05, 3 points higher on the
CBCL (p = 0.002) and 6 points

higher (p = 0.001) on the
Rutter’s scale.

3.5. Exposure to EDCs and Communication Disorder

Disorders of communication include deficits in language, speech and communication. They are
assessed with standardized measures that must take into account the individual’s cultural and linguistic
context. Till et al. found a significant association between high prenatal exposure to organic solvents
and difficulties in receptive (p = 0.25) and expressive (p = 0.44) language as well as graphomotor
abilities (p = 0.04) when compared to low exposure [60]. The results are summarized in Table 5.

Table 5. Endocrine disruptors and communication disorders.

Authors Outcome Exposure Dose Population Results

Till et al.,
2001 [60]

Behavior
(NEPSY and

CPT)

Organic
solvents

(prenatal)
Interrogation/checklist n = 33 (3–7 years)

Association of high exposure with
difficulties in receptive (p = 0.025)

and expressive (p = 0.044)
language as with graphomotor

abilities (p = 0.004) when
compared to low exposure.

3.6. ED Exposure and Behavior/Unspecified Disorders

Here, we included symptoms (mostly behavioral symptoms) that cause impairment in social,
occupational, or other important areas of functioning, that do not meet the full criteria for any of the
disorders in the neurodevelopmental disorders diagnostic class (“unspecified neurodevelopmental
disorders” as defined in DSM-5).

The results of thirteen studies published between 1994 and 2017 are shown in Table 6. Six studied
perinatal exposure to BPA. Among these, three studies used the Health Outcome and Measures of the
Environment (HOME) cohort and showed no associations between behavior and BPA exposure at 5
weeks [61], but found an association in girls, aged 2 and 3 years old [62,63]. In older children (aged 10 years
old), three other studies found an association between urinary BPA concentration and behavior [64–66].

Five studies examined the consequence of prenatal exposure to phthalates. At 5 days, no
association was found [67]. At 5 weeks, authors found an association with decreased regulation,
decreased handling, and nonoptimal reflexes [61]. In older children (3–9 years old), all three studies
found an association with several behavioral abnormalities [68–70]. Finally, two studies found an
association with prenatal exposure to PCB and behavior [71,72].
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Table 6. Endocrine disruptors and unspecified neurodevelopmental disorders.

Authors Outcome Exposure Dose (Medians) Population Results

Chen et al., 1994 [71]
Behavior (Rutter’s Child

Behavior Scale and Werry Weiss
Peter’s Activity Scale)

PCB (prenatal) Interrogation (contaminated oil) n = 115 (followed 6 years)
+ 115 controls

Exposed children found to have scores
7% to 43% (mean = 23%) higher than the

control children on the Rutter scale at
every time point.

Braun et al., 2011 [63]
Behavior (BASC2 and behavior
rating inventory of executive

function (BRIEF)).
BPA (pre and postnatal) Urinary BPA = 1.2 ng/mL n = 239 (followed 3 years)

In girls, association of prenatal exposure
to BPA in with BASC-2 and BRIEF-P

scores (increased 9 to 12 points).
No associations of postnatal BPA

exposure with behavior.

Braun et al., 2009 [62] Behavior (BASC2) BPA (prenatal) Urinary BPA = 1.3 ng/mL n = 249 (2 years) In girls, association of BPA exposure with
externalizing scores β = 6.0 (0.1–12.0).

Plusquellec et al.,
2010 [72] Behavior (BSID-II) PCBs, Hg and Pb (pre and

postnatal)

Cord blood:
PCB-153 = 120.6 µg/kl

Pb = 5µg/dL, Hg = 22.2 µg/L
(mean). 5 years old blood:

PCB-153 =159 µg/dL
Pb = 5.4 µg/dL Hg = 9.6 µg/L

(mean)

n = 110 (5 years)

Association of postnatal exposure to Pb
with impulsivity and irritability β = 0.20

(p < 0.05). Association of prenatal
exposure with PCB 153 with anxiety
β = 0.26 (p < 0.01). Association of

postnatal exposure with global activity
latency β = −0.25 (p < 0.05).

Perez et al., 2015 [64] Behavior (CBCL) BPA (postnatal) Urine sample = 18.48 microg/L n = 300 (9–11 years)

Higher BPA concentrations associated
with worse behavioral scores on several

syndrome scores such as somatic
complaints (p = 0.015), social problems

(p = 0.043) and thought problems
(p = 0.017).

Evans et al., 2014 [65] Behavior (CBCL) BPA (prenatal) Urine sample at 27 weeks of
pregnancy 1.10 microg/L n = 153 (6–10 years)

We observed a significant interaction
between maternal urinary BPA and sex

for several behaviors (externalizing,
aggression, anxiety disorder,

oppositional/defiant disorder and
conduct disorder traits), but no

significant associations between BPA and
scores on any CBCL scales.



Int. J. Environ. Res. Public Health 2019, 16, 1318 12 of 19

Table 6. Cont.

Authors Outcome Exposure Dose (Medians) Population Results

Hong et al., 2013 [66]
Behavior (CBCL/Learning
Disability Evaluation Scale

(LDES))
BPA (postnatal)

Urinary
BPA = 1.32 lg/g

Cr (geometric mean)
n = 1089 (8–11 years)

Significant (p < 0.05) association between
exposure and internalizing problems
β = 1.07, attention problems β = 1.22,

social problems β = 0.93 and
anxiety/depression β = 0.66. On the
LEDS, significant associations were

found for thinking β = −0.36, writing β

= −0.31, calculations β = −0.43 and
learning quotient β = −1.90.

Yolton et al., 2011 [61]
Behavior (NICU Network

Neurobehavioral Scale
(NNNS))

BPA (prenatal) Urinary BPA = 1.7 ng/mL (mean
at 26 weeks) n = 350 (5 weeks)

No association of prenatal exposure to
BPA was found with neurobehavioral

traits.

Yolton et al., 2011
(2nd part) [61] Behavior (NNNS) Phthalates (prenatal)

Urinary
DBP sum = 113 µM/L

DHEP sum = 245 µM/L (mean)
n = 350 (5 weeks)

Association of higher DBP metabolites
with decreased regulation (p = 0.04),

decreased handling (p = 0.02).
Association of higher total (DEHP)
metabolites with more nonoptimal

reflexes (p = 0.03).

Swan et al., 2010 [70] Behavior (Pediatric Attachment
Style Indicator (PASI)) Phthalates (prenatal)

Urinary
DBP sum in boys = 35.6 µM/L in
girls = 42.5 µM/L DHEP sum in
boys = 23.4 µM/L in girls = 27.0

µM/L (mean)

n = 143 (mean 60 months
for boy and 59 months for

girls)

Associations of MiBP and DHEP with a
decreased (less masculine) composite

score in boys
r = −4.53 and −4.20 (p = 0.01 and 0.04).
Associations of MEHHP and MEOHP

and the DEHP sum with decreased
masculine score r = −3.29, −2.94 and
−3.18 (p = 0.02, 0.04 and 0.04),

respectively.

Philippat et al., 2017 [68] Behavior (SDQ)
Phthalates and phenols

(among them is BPA)
(prenatal)

Urine sample during pregnancy n = 529 (3.1 years old) and
n = 464 (5.6 years)

BPA was associated with relationship
problems at 3 years and

hyperactivity/inattention at 5. MnBP was
associated with internalizing behavior,

relationship problem and emotional
symptoms at 3. MPzP was associated

with internalizing problems and
relationship problems at 3.
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Table 6. Cont.

Authors Outcome Exposure Dose (Medians) Population Results

Engel et al., 2010 [69] Behavior and Cognitive
functioning (BASC and BRIEF) Phthalates (prenatal) Urinary low-molecular-weight

phthalates LMWP = 1.88 µM/L
n = 188 children (4–9

years)
Association of LMWP exposure with
conduct problems β = 2.40 (1.34–3.46)

Engel et al., 2009 [67]
Neonatal Behavior (Brazelton

Neonatal Behavioral
Assessment Scale BNBAS)

Phthalates (prenatal)

Urinary
Sum LMW = 2.23 µM/L

Sum high molecular weight
(HMW) = 0.46 µM/L

n = 295 (5 days) No associations of exposure to phthalates
and BNBAS scores.

Roze et al., 2009 [73] Neuropsychological Profile
(WPSSI-R and NEPSY-II)

Organohalogens
(prenatal)

Maternal serum BDE-47a = 0.9
ng/g lipid (mean) n = 62 (5–6 years)

For specified metabolites, association of
exposure to brominated flame retardants
with worse attention, better coordination,

better behavior and better total
intelligence. Association of exposure to
chlorinated OHCs with less choreiform

dyskinesia, worse fine manipulative
abilities, worse inhibition and worst

behavior. Association of PCP with worse
coordination and worse

performance intelligence.
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4. Discussion

The aim of this review was to present an overview of the known effects of EDCs on the emergence
of cognitive and psychiatric neurodevelopmental disorders. We chose clinical approach and presented
our results with categories based on DSM classification, aware that it may not corroborate the
pathophysiological processes underlying each disease. We believe this different approach may be
useful to clinicians, presenting our results in a more clinical and cohesive manner and providing them
guidance in going through patients’ medical histories. Numerous recent studies have shown that
exposure to EDC can be linked to specific or less specific neurodevelopmental disorders. However, a
number of issues make it difficult to characterize the relation between the exposure and the outcome.

• First, the exposure itself can be difficult to define in terms of duration and moment of exposure.
The specific measurement of one exposure may be difficult to obtain. As of today, more than
800 products are considered as EDCs, some being commonly found in our environment. We are
probably mostly studying mixture effects, and it may be difficult to isolate one specific exposure [74].
Long-lived EDCs are easier to study than many other EDCs (such as BPA and phthalates) that are
quickly metabolized in humans and rapidly degraded in the environment. Some papers have
tried to overcome this issue in animals, but it has yet to be done in humans [75]. In humans,
evidence is mostly based on correlations between concentrations of chemicals and outcomes,
assessed at one point during an individual’s life, which is not a real-world situation. At some
very specific times, even in very low concentrations, any exogenous EDCs may exceed the body’s
natural endogenous hormone levels, changing target cells that are sensitive to hormones. Thus,
even extremely low dosages of EDCs can alter biological outcomes. Moreover, studies showed
that, due to nonmonotonic dose–response curves, the effects of low doses cannot be predicted by
the effects observed at high doses [76].

• Second, the pathophysiological processes involved with EDCs have not been clearly elucidated yet.
If, by definition, they are all able to alter the physiological endocrine system, their pathophysiology
may differ or overlap. EDCs interfere with the endocrine system in multiple ways, making
it difficult to link one pathway to one symptom. They can act directly on the behavior and
development via sexual hormone perturbations (for example, the anti-androgenic effect of
phthalates [77]), but they could interfere directly with the neuronal development as well; for
instance, interactions with the vasopressin system [78] and oxytocin [79] have been described,
among others.

• Third, the outcome measurement is most often based on neuropsychological assets that may not
correlate to a clinical diagnosis, but more to a ‘profile.’ The fact that diagnosis in the developmental
disorder categories co-occur frequently makes it difficult to determine the specificity of the
cause–effect relationship [80].

Under the ‘neurodevelopmental disorders’ section, the DSM-5 includes disorders such as
intellectual disabilities, communication disorders, ASD, ADHD, specific learning disorders and motor
disorders. Those disorders are mainly diagnosed in children. We know now that other psychiatric
disorders, such as schizophrenia, diagnosed years later, are also considered as neurodevelopmental
disorders. We could assume that perinatal exposure to EDCs also has an impact in these ‘adult’
disorders [81]. Although research in the field is still scarce [82], an effort in that direction now
seems crucial.

Finally, the expanding work around EDCs is recently taking a new turn with the notion of
epigenetic transgenerational inheritance and of all its possible consequences [82]. Indeed, it has been
reported that prenatal exposure to an EDC may not only cause adult late-onset disease, but may
affect future generations through the germline [83]. Transgenerational behavioral phenotypes of
development exposure have indeed been shown for two EDCs, namely vinclozin [84] and BPA [85].
These transgenerational effects may be supported by molecular alterations to the germline, promoting
effects on subsequent generations. As reported in a recent communication by Skinner, recent work
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suggests that endocrine disruptors may alter the epigenetic programming of the germline, these
changes being transmitted across generations in the absence of direct exposure [86].

5. Conclusions

Sufficient data exist to report that exposure to some EDCs participates in the emergence of
neurodevelopmental disorders. This may account for the growing incidence of neurodevelopmental
disorders observed in the general population. Despite the current effort in the field, the specificity
of this link in terms of exposure and outcome will be difficult to assess. Indeed, the measurements
of exposure, use of biomarkers and neuropsychological tools used for outcome all show an extreme
variability in the literature, making it difficult to accumulate evidence and identify pathophysiological
processes. While EDCs are increasingly prevalent in our environment, more cohorts in humans and
experimental studies in animals are urgently needed to bring a more comprehensive picture of the
long-term neurodevelopmental consequences of EDCs, as well as to define the precise windows
of vulnerability.
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