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Abstract: The drinking water supply to Vila Pouca de Aguiar municipality in North Portugal
is based on high quality groundwater, namely on nearly one hundred artesian springs and fifty
boreholes. The groundwater resources are plentiful on a municipal level, but evidence some deficits
at the sub-municipal (village) level, especially during the dry period (July- August) that coincides
with the return of many emigrants for holiday time. The deficits affect mostly the municipal capital
(Vila Pouca de Aguiar) and a neighboring village (Pedras Salgadas), which populations nearly double
or even triple during that period. The estimated annual deficits approach 55,000 m3/yr in those
villages. If the anticipated increase in consumption/habitant and decrease in annual rainfall become
reality in the next two decades, then the deficits may raise to approximately 90,000 m3/yr. To balance
the water supply system, this study proposes its transition towards a conjunctive water management
based on surface water stored in small dams and groundwater. A hydrologic modeling involving
small forested catchments (< 15 km2) elected the Cabouço watershed as most suited basin to store
stream water, because surface water availability is large (2.4 Mm3/yr) and forest cover is dominant
(84.8%). Estimated nutrient loads are also compatible with drinking water supply.

Keywords: groundwater; surface water; small dams; conjunctive water management; hydrologic
modeling; geographic information system; municipality; drinking water supply; forest; water shortage;
water stress

1. Introduction

Water demand management is a central issue in the water policy agenda [1]. The attention to this
matter is related to the global population growth, increase of irrigation areas, economic development
and acute water shortages in many regions around the world [2–7]. The supply of water is largely
dependent on climatic factors, but management and policies play an immense role on the demand side
of water systems [8,9]. Climate change and socioeconomic factors have increased the complexity of
urban water supply systems [10–12]. Thus, fresh water sources are being gradually diversified [13],
and even include recycled water in some regions [14]. Conjunctive water management involves
the combined use of groundwater, surface water and/or additional sources of water to achieve
public policy and management goals. Conjunctive water management enables greater water supply
security and stability, helps adaptation to climate variation and uncertainty and reduces depletion and
degradation of water resources [15].
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The drinking water supply to Vila Pouca de Aguiar, a municipality located in the north of Portugal
and composed of small villages, is currently based on groundwater. In general, the villages are supplied
with perennial spring water complemented with groundwater pumped from boreholes during the dry
summer months (June-September). The months of July and August concur with the return of many
emigrants for holidays, which doubles or even triples the population in some villages. To account for
the concomitant water demand, the artesian wells need to be more intensely pumped, because springs
in this period are undergoing the recessive period with progressively lower discharge rates. In the
long term, the excessive pumping at the drilled wells is expected to cause borehole exhaustion and
aquifer over-exploitation. The steady reduction of precipitation over the past century is likely to add
negative effects on groundwater resources, namely on annual spring yields and borehole productivity.
The combined effects of well-exhaustion and rainfall reduction are leading the municipal system of
public water supply into a progressively more fragile situation.

A drinking water supply system based on groundwater is inestimable because the quality of
groundwater resources is usually very high. The system used in Vila Pouca de Aguiar, mostly based on
granite bearing shallow groundwater [16,17], is no exception. However, the aforementioned periodical
shortage problem needs to be solved. Eventually, the solution relies on moving the system to the
conjunctive water management era and in that context on complementing the groundwater supply
with an alternative source. In this study, surface water diverted into small dams in specific forested
basins is the proposed complementary source.

The storage of stream water in small reservoirs is likely to be an appropriate complement to
drinking water supply systems based on groundwater, such as the Vila Pouca de Aguiar system.
Catchments, even if they are relatively small, are apt to provide substantial volumes of stream water.
Eventually, these volumes can compensate the spring deficits observed in summer, and concomitantly
protect drilled wells from exhaustion and aquifers from over-exploitation. However, dam locations
need to comply with a number of physical, ecological and socioeconomic pre-requisites, as detailed in
the recent papers of Terêncio’s group [18,19]. A special attention is ought to dominant land uses and
corresponding natural uses to avoid the water quality impacts of land use conflicts [20,21], as well as
to biophysical processes controlling stream water quality [22,23].

Despite the large number of papers addressing conjunctive water management and the recent
development of spatially distributed models to allocate stream water collection systems in catchments,
the combined assessment of both topics in a single study is less frequent. The purpose of this study is
therefore to present an assessment of groundwater availability and public water consumption in the
municipality of Vila Pouca de Aguiar, coupling the results with a suitability analysis of potential small
dam sites, aiming the evaluation of annual groundwater deficits and the identification of areas that
require a drinking water complement with surface resources.

2. Materials and Methods

2.1. Study Area

The region of Vila Pouca de Aguiar is located in the north of Portugal and occupies an area of
approximately 437 km2 (Figure 1). The morphology is characterized by large-scale tectonic valleys
associated with the Vila Real fault. These valleys are surrounded by the Alvão (to the West) and
Padrela (to the East) mountains. Altitudes range from a minimum of 320 m in the northern valleys
to a maximum of 1130 m up in the mountains. The geology is characterized by Hercynian (syn- to
post-tectonic) granites that intruded Palaeozoic (Cambrian to Devonian) metasediments and were
covered by Quaternary alluvial and terrace deposits along the Vila Real fault. In the Southeast part
of the area, occupied by an extensive outcrop of metasediments, a geological structure was defined,
in which tectonic laminae are folded and separated by major thrusts [16,17].

Climate in the area is temperate with alternating wet–cold (October–April) and dry–warm
(May–September) seasons. The long-term average precipitation ranges from 900 mm/yr in the
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northeast to 1900 mm/yr in the southwest of the region, being influenced by the topography. In the past
seven decades precipitation has steadily decreased at a fairly constant average rate of 6.9 % per decade
(Figure 2). Groundwater composition is dominated by water-mineral interactions in granite and
metasediment bedrock [24–29]. Despite the potential threats from anthropogenic sources, such as
agriculture or domestic effluents, the chemical fingerprint of groundwater is natural [30,31] and
dominated by sodium and bicarbonate. On average, concentrations of dissolved compounds usually
linked to anthropogenic activity, such as chloride, nitrate or sulphate, are low: [Cl–] = 4.4 mg/L,
[SO4

2–] = 1.0 mg/L and [NO3
–] = 0.7 mg/L [17].
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Figure 1. Location, geology and altitude contours in the Vila Pouca de Aguiar municipality.
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Figure 2. Evolution of annual precipitation in the past seven decades in the Vila Pouca de Aguiar
municipality. The precipitation data were compiled from the Portuguese Water Institute (https://snirh.
apambiente.pt) and refer to National station 05L/01UG.
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In the municipality of Vila Pouca de Aguiar, the public supply of water is accomplished
with groundwater resources, namely artesian springs, drilled wells and an alluvial well (Figure 3).
This water supply infrastructure has been built for over 30 years and represents an asset of great
economic, environmental and social value to the community.
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Figure 3. Sources of groundwater used in Vila Pouca de Aguiar for public supply of drinking water:
left panel—spring/gallery; upper right panel—drilled well; lower right panel—alluvial well.

The annual discharge of approximately one hundred springs reaches 1.25 Mm3, but spring
discharges vary considerably within the municipality (Figure 4a). In the NW and NE sectors the
annual discharge is frequently < 5000 m3 per spring while in the SE sector it can reach 100,000 m3.
The variation of spring discharge is also expressed in time. The lowest discharges occur in August
(Figure 4b) and vary from 300 to 2900 m3/month. In this month the municipal capacity, considering
the contribution of all springs, is close to 83,000 m3. This value is 20% lower than the average monthly
discharge (≈ 104,000 m3/month).

The productivity of drilled wells is illustrated in Figure 4c, being influenced by local precipitation.
In the NE sector where precipitation is < 900 mm/yr the drilled well productivity is < 2 m3/h.
As one moves towards the SW sector and precipitation increases up to 1,900 mm/yr, the drilled well
productivity also increases reaching 10–20 m3/h in various areas. The alluvial well was installed in
the Torno River that ensures 0.5 Mm3/yr of groundwater supply. This well, with a 2.5 m diameter,
was dug in the riverbed until 7–8 m depth. The digging crossed the alluvial deposit and the underlying
granite. In the alluvial deposit, a couple of 5–6 m long and 40 cm wide horizontal drains were installed
along the river’s upstream and downstream directions and linked to the well. These drains were made
of fiberglass covered by geo textile and were installed over a gravel bed. At the bottom of the well,
a couple of 50 m long horizontal wells were drilled in the granitic bedrock to enhance groundwater
diversion towards the well. In both cases, the drilling was executed with 7.5 cm diameter.
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Figure 4. (a) Spatial distribution annual spring discharge. The shaded areas were drawn (interpolated)
on the basis of discharges measured at the monitored springs. The discharge at the other springs
(black circles) was estimated through digital sampling of interpolated discharges at the spring site.
(b) Spatial distribution of August’s spring discharge. This is the month when discharges are lowest.
(c) Spatial distribution of drilled well productivity, with indication of drilled and alluvial well locations,
the alluvial well contributing area, the drainage network and the contours of annual precipitation.
The source data were compiled from [16,17].

The consumption of groundwater in Vila Pouca de Aguiar has almost doubled in the past
two decades (Figure 5a), from approximately 0.6 Mm3/yr in 1995 to 1.1 Mm3/yr in 2011 (https:
//www.pordata.pt/). The average percent increase was 4.4%/yr. The growth is not related to
population increase, on the contrary, the population has decreased by some 2000 people during
the same period (from 15,000 to 13,000 inhabitants, approximately). The cause of consumption
increase, from 29 m3/yr/habitant to 51 m3/yr/habitant, was therefore the expansion of comfort water
uses, such as mechanical dishwashing, irrigation of private gardens, car washing, among others.
As illustrated in Figure 5b, total consumption comprises the water legally discharged from the public
network and paid by the residents (61%), the undetected leakages or clandestine consumption (10%)
and the public consumption related to irrigation of municipal gardens, maintenance of municipal
swimming pools, water supply to public interest organizations (local sports clubs, firefighter corps),

https://www.pordata.pt/
https://www.pordata.pt/
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among other uses (29%). In the context of conjunctive water management the groundwater currently
used for garden irrigation should be replaced by harvested rainwater or treated wastewater [32–36].

The consumption of groundwater is substantially different in the months of July and August,
when compared to the other calendar months, because July–August is the period when most emigrants
return for holiday time. During this stage the population almost doubles in the municipality and can
even triple in the capital (Vila Pouca de Aguiar town). The consumption of groundwater increases
proportionally. Therefore, in July and August the water consumption is estimated in 157,000 m3/month
while in the other months is half of that value.
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Figure 5. (a) Consumption of groundwater in Vila Pouca de Aguiar in the period 1995–2011, based on
municipal records. Evolution of resident population in the period 2001–2011 (https://www.pordata.pt/).
(b) Groundwater consumption as function of type: paid by residents, public use (unpaid) and clandestine
or related to network losses.

The spatial distribution of total consumption is portrayed in Figure 6. Approximately 40% of all
groundwater consumed in the municipality occurs in the capital (Vila Pouca de Aguiar) and Bornes
de Aguiar/Pedras Salgadas town, which is a consequence of population concentration in the larger
villages. A thorough inspection of this figure reveals a striking reality. The water consumption in
villages from the Jales plateau (Vreia de Jales and Alfarela de Jales) are included in the lowest category
(< 30,000 m3/yr), while this region is located where springs can naturally discharge over 100,000 m3/yr
of shallow groundwater. In opposition, consumption in Vila Pouca de Aguiar (≈ 257,000 m3/yr),
Bornes de Aguiar/Pedras Salgadas (≈ 200,000 m3/yr), Capeludos (≈ 89,000 m3/yr) and Telões
(≈ 85,000 m3/yr), are included in the highest categories, while these villages are located where average
spring discharge is low (5000–20000 m3/yr).

2.2. Conceptual Approach

The relationship between groundwater resource availability and consumption in the municipality
of Vila Pouca de Aguiar is summarized in Table 1. At a municipality level, the resource availability
far exceeds the water demand. The overall water surplus is > 1 Mm3/yr and occurs during the wet
season. The excess water from springs is discharged through stormwater discharge tubes located in
the upper part of drinking water tanks and naturally diverted to nearby streams. The excess water
from Torno River reservoir is released through overflow devices installed in the weir. Finally, the 8 h of
pumped borehole water cannot be used during the wet season.

https://www.pordata.pt/
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Figure 6. Spatial distribution of groundwater consumption within the Vila Pouca de Aguiar
municipality (graduated yellow circles). The circles are plotted over the spatial distribution of annual
spring discharge (average yield per spring) to expose the distortion between resource availability and
demand. For example, Vila Pouca de Aguiar has the largest demand for groundwater but is located
where spring discharge is low. Conversely, Alfarela de Jales or Vreia de Jales are low demanding
villages located in a region with large resource availability.

Table 1. Relationship between groundwater resource availability and groundwater consumption in the
entire Vila Pouca de Aguiar municipality and the two largest towns, considering the annual resources
and total consumptions as well as the July–August counterparts. The scenario “5–15” refers to the
expected 5% consumption increase and 15% precipitation decrease over the next two decades.

Source
Resource Availability (m3)

Municipality Vila Pouca de Aguiar and Bornes
de Aguiar/Pedras Salgadas

Annual In July and
August Annual In July and

August

Springs 1,246,123 166,188 317,580 21,017
Drilled wells (8 h pumping every day) 831,032 141,162 188,340 31,992
Alluvial well 470,844 62,779 470,844 62,779

Resource demand (m3)

Total consumption in 2011 1,099,302 314,086 457 332 171,500

Balance (Surplus/deficit)

Actual situation 1,448,697 56,043 519,432 –55,711
Scenario “5–15” 1,156,402 –9577 401,994 –87,226

The groundwater surplus scenario is not reproduced in the larger villages, especially in the dry
season. The smaller springs and scenario of Torno River groundwater discharges coupled with the
temporary population increase (return of emigrants) in the months of July and August have caused
water deficits in Vila Pouca de Aguiar and Bornes de Aguiar/Pedras Salgadas towns. In 2011, these
defices were > 55,000 m3 (Table 1). In general, these deficits have been satisfied by the municipal
authorities through translocation of water from the Alvão region using vehicle water tanks. The use of



Int. J. Environ. Res. Public Health 2019, 16, 1239 8 of 17

water from neighbouring large dams (e.g., the Pinhão River dam with a storage capacity of 4.2 Mm3;
http://www.somague.pt/portfolio_detail/barragem-do-pinhao/) has not been attempted. Normally,
the quality of surface water in large dams is poor because of multiple anthropogenic inputs [37,38] and
therefore requires expensive treatment [39]. Besides the quality issue, the large dam solution would
eventually imply a loss of municipal autonomy concerning drinking water supply to the population,
because large dams are frequently exploited by private companies. It is therefore urgent to set up
alternative strategies to balance water resource availability and demand in every village or town within
the Vila Pouca de Aguiar municipality. This exigency should be taken more seriously if projected
water deficits > 85,000 m3/yr become true, related to expected 5% consumption increase and 15%
precipitation decrease over the next two decades (Table 1).

In this study, the proposed alternative source was stream water stored in small dams installed
in small catchments and explored by the municipal authorities. The selection of sites was based on
three suitability parameters: water availability, dominant land cover and altitude difference between
the catchment outlet and drinking water tanks used to supply the towns of Vila Pouca de Aguiar
and Bornes de Aguiar/Pedras Salgadas. The suited sites will be located where high rainfall ensures
large stream flows, forest land cover makes certain good quality water, and the altitude of catchment
outlets allows the transport of water by gravity to the application areas reducing costs. The selection
of suitable catchments relied on hydrologic modeling (ArcSWAT) for determining water availability
and Geographic Information System (GIS) assessments for evaluating the aforementioned land cover
and altitude difference parameters, as detailed in the next sections.

2.3. Hydrologic Model and GIS Assessments

The availability of surface water in catchments and groundwater in underlying aquifers can be
accessed from a diversity of models [40–46]. The present study resorted to the SWAT model [47],
which simulates river flows based on meteorological data (rainfall, temperature, wind speed, solar
radiation, relative humidity) and information on the catchment’s physical characteristics (topography,
hydrologic network, soils) and vegetative cover/use. The ArcSWAT software (https://swat.tamu.edu/
software/arcswat/) implements the SWAT model in GIS (Figure 7). Firstly, the ArcSWAT delineates the
catchment’s hydrologic network from the reading and interpretation of a digital terrain model. At this
stage, the hydrographic density is selected by the user. Having completed this operation the software
draws a set of water lines and their intersections, also drawing the basins outlets and boundaries.
Subsequently, the ArcSWAT links the watercourses located upstream from the basin mouth to their
sub-basins and then subdivides the sub-basins into the so-called hydrological response units (HRUs).
The HRUs are homogeneous relative to topography (slope), soil and land cover. The sub-basins and
HRUs are then characterized for geometric properties (length, width, area, perimeter, mean slope),
hydrologic response (curve number), and meteorological settings (usually, daily precipitation records
and average values for the other relevant parameters). At the end of this geometric, hydrologic and
meteorological characterization, the flow components associated to each HRU are calculated using
water balance equations, flow models and routing algorithms adapted to the surface, sub-surface and
underground flow conditions. Based on the indicated land uses, nutrient loads (e.g., nitrate) are also
estimated using solute transport models. This step includes the estimation of total river flows and
nutrient concentrations at the basin outlet, which are iteratively adjusted to measured counterparts
through a calibration procedure. Finally, the calculated flow components (e.g., runoff, groundwater)
and nutrients are assigned to the respective sub-basins and associated outlets.

The GIS assessments comprised the digital sampling of forest cover percentages in each modeled
catchment (using the “Tabulate Area” tool of “Spatial Analyst > Zonal” toolbox of ArcGIS), and the
digital sampling of drinking water tank altitudes located in the Vila Pouca de Aguiar and Bornes de
Aguiar/Pedras Salgadas towns, as well as of altitudes at the catchment outlets (using the “Sample”
tool of the same toolbox). Having sampled the aforementioned altitudes, the differences between the

http://www.somague.pt/portfolio_detail/barragem-do-pinhao/
https://swat.tamu.edu/software/ arcswat/
https://swat.tamu.edu/software/ arcswat/
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2.4. Data and Software

The Digital Terrain Model used to characterize the relief and delineate the catchments,
sub-catchments, hydrologic networks and outlets, is a 25 × 25 m resolution raster map that was
downloaded from the of the Portuguese Geographic Institute (http://www.igeo.pt). This geographic
data is referenced in the Datum 73 system and Cascais Altimetric Datum, Hayford Ellipsoid. The soil
characterization was based on cartography and related datasheets published in digital format by
the Emergency Information System Network website (http://scrif.igeo.pt). This information is
referenced in the Datum International 1924 system, Transverse Mercator projection. The CORINE Land
Cover map for continental Portugal (CLC 2006, http://www.dgterritorio.pt/dados_abertos/clc/) was
used to characterize vegetation cover. This digital map is referenced in the Datum Lisbon system,
Hayford ellipsoid, Transverse Mercator projection. The meteorological data (daily precipitation and
long-term average temperature, humidity, wind speed and solar radiation) were downloaded from
the Portuguese Water Resources Information System (http://snirh.pt/), and span the 2003–2007
period. The coordinates of meteorological stations are referenced in the Datum Lisboa system,
Hayford ellipsoid, Transverse Mercator projection. All the digital data are based on rectangular
coordinates with Gaussian projection. The softwares used to handle all the geographic data were
ArcGIS (http://www.esriportugal.pt/) and ArcSWAT (https://swat.tamu.edu/software/arcswat/),
two common tools used in hydrologic and environmental studies [48–51].

http://www.igeo.pt
http://scrif.igeo.pt
http://www.dgterritorio.pt/dados_abertos/clc/
http://snirh.pt/
http://www.esriportugal.pt/
https://swat.tamu.edu/software/arcswat/
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3. Results

The geographic data used to run the ArcSWAT simulations are illustrated in Figure 8.
Figure 8a shows the modeled catchments (all perennial streams with area < 15 km2), the associated
hydrologic networks and basin outlets. It also represents the meteorological stations. In the tested
period (2003–2007), precipitation reached 1036 ± 653.9 mm/yr, while evaporation losses were
715.9 ± 169.4 mm/yr. Figure 8b describes the spatial distribution of major soil types, which correspond
to luvisols and cambisols. Figure 8c depicts land cover represented by major types (e.g., agriculture,
forest). Figure 8d illustrates the spatial distribution of terrain slope.
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The modeling results are summarized in Figure 9. Figure 9a describes surface water while
Figure 9b describes groundwater. In either case the annual volumes represent non calibrated values,
because no hydrometric stations were available to use in the calibration step. In the modeled
catchments, the maximum available surface water can reach 5 Mm3/yr (Ribeiro do Boco), while
the maximum storable groundwater will not exceed 3 Mm3/yr (Ribeiro do Boco and Ribeiro do
Cabouço). These values do not account for potential evaporation losses directly from the reservoir,
following dam construction. They also neglect losses related with ecological flows. Regardless the
catchment, the storage of surface water or groundwater would fulfill present day water deficits
and future demands, even considering the aforementioned losses. The percentage of forest cover in
the modeled catchments is represented in Figure 10. The percentages span a wide range of values
(from 49.1 to 88.8%).
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Figure 10. Percentage of forest cover (graduated grey circles) in the modeled catchments represented
by the blue boundaries. Altitude differences between catchment outlets and the drinking water tanks
(colored circles) located in the deficit villages of Vila Pouca de Aguiar and Bornes de Aguiar/Pedras
Salgadas represented by the black shaded areas. The South Valley used extensively for agriculture
is represented by the green shaded area. All this information is plotted over the municipal digital
terrain model.

The range of altitude differences between the catchment outlets and the drinking water tanks
located in the deficit villages of Vila Pouca de Aguiar e and Bornes de Aguiar/Pedras Salgadas are
also quite ample, which points to substantial differences between the catchments considering this
suitability parameter.
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A combined assessment of catchment suitability based on the volumes of surface water discharge,
percentage of forest cover and altitude difference between catchment outlet and drinking water
tanks is tempted in Table 2. In this suitability exercise, catchments were ranked according to surface
water availability (rank 1), percentage of forest cover (rank 2) and altitude difference (rank 3), and
then the three ranks were added (global rank). According to this combined assessment, the most
suitable catchment to install a small dam aiming the complement of drinking water supply to the
villages of Vila Pouca de Aguiar and Bornes de Aguiar/Pedras Salgadas is the Cabouço catchment.
This basin was ranked 7 on surface water availability (2.4 Mm3/yr), 8 on forest cover (84.8%) and 6 in
altitude difference (86.8 m), and would be a nice place to store good quality water in the Vila Pouca
Municipality. The use of other catchments is questionable given their low positions in one or more
ranks. For example, the Ribeiro do Carvalhal and Ribeiro do Boco catchments are highly positioned
in Rank 1 – water availability (positions 8 and 9, respectively), but the negative altitude differences
reduces their positions in Rank 3 (positions 1 and 2, respectively) virtually impeding their selection
for dam installation considering the potentially high water transport costs. Other catchments are
also affected by negative altitude differences, such as the Ribeiro da Peliteira and Ribeiro de Revel
(positions 4 and 3 in Rank 3). In these cases, dam installation suitability is further hampered by the
low positions in Rank 1 (5 and 2). Rank 2 may hinder the use of Rio Pinhão and Ribeiro dos Rebujais
catchments because of their limited forest cover (≈ 50%; positions 2 and 1). A similar rationale holds
for Rio Tinhela catchment (64.6% of forest cover, position 5 in Rank 2). Finally, the Ribeiro do Torno
catchment is positioned high in ranks 2 and 3 but low in Rank 1.

Table 2. Combined assessment of catchment suitability based on availability of surface water (Rank 1),
percentage of forest cover (Rank 2) and altitude difference between catchment outlets and drinking
water tanks located in the Vila Pouca de Aguiar and Bornes de Aguiar/Pedras Salgadas villages.

Identification and Characterization Water Availability Location Constraints
Global
RankCatchment Area

(km2)

Long-Term
Precipitation

(mm/yr)

Surface
Water

(Mm3/yr)

Groundwater
(Mm3/yr) Rank 1

Forest
Cover

(%)
Rank 2

Altitude
Difference

(m)
Rank 3

Ribeiro do Cabouço 7.1 1405.9 2.4 1.5 7.0 84.8 8.0 86.8 6.0 21.0
Ribeiro do Carvalhal 7.9 1405.9 2.7 1.3 8.0 88.8 9.0 -411.2 1.0 18.0
Rio Pinhão 13.0 815.4 0.4 1.0 6.0 52.1 2.0 138.2 9.0 17.0
Ribeiro do Torno 14.6 665.2 0.2 0.2 3.0 81.3 7.0 87.0 7.0 17.0
Ribeiro da Peliteira 11.8 815.4 0.4 0.9 5.0 66.3 6.0 -108.7 4.0 15.0
Rio Tinhela 8.3 815.4 0.3 0.2 4.0 64.6 5.0 73.4 5.0 14.0
Ribeiro do Boco 9.8 1405.9 3.4 2.1 9.0 53.0 3.0 -190.7 2.0 14.0
Ribeiro dos Rebujais 4.8 815.4 0.1 0.2 1.0 49.1 1.0 126.3 8.0 10.0
Ribeiro de Revel 9.3 815.4 0.2 0.3 2.0 62.9 4.0 -115.8 3.0 9.0

4. Discussion

The historical drinking water supply data of the municipality of Vila Pouca de Aguiar reveals
a generally sustainable system because at a municipal level the explored groundwater resources
exceed the peoples’ and public consumption. However, some local deficits were detected in two dry
months (July-August) and in larger villages (Vila Pouca de Aguiar and Bornes de Aguiar/Pedras
Salgadas), amplified by the return of emigrants during this period. The actual deficits are greater than
55,000 m3/yr and could increase to approximately 90,000 m3/yr in the near future (next two decades)
if the rainfall decrease (–7.5%/decade) and consumption increase (+2.5%/decade) scenarios become
reality, as can be anticipated from past trends (Figure 2 and 5a, respectively). The results of a study
conducted in Denmark also highlighted that freshwater impact assessments based on regional data,
rather than local data, may dramatically underestimate the actual impact on the water resource [52].
Some other studies generally discussed the role of scale on water scarcity assessments [53–55].

The general surplus of groundwater resources at the municipal scale could raise the hypothesis of
groundwater diversion from regions of surplus to regions of deficit. This has been tempted in Vila
Pouca de Aguiar, but with limited success. Local people and authorities usually look at the artesian
springs and boreholes explored in their territories as their property, and barely consider the possibility
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to share this water with neighbor deficit areas. The political debate between parties tends to exacerbate
this issue. To our view, the option is relevant but requires modification of governance in directions
comparable to other cases [56–59].

The alternative to balance water resource availability and demand in the Vila Pouca de Aguiar
municipality, proposed in this study, is to complement the installed groundwater system with
an adequate surface water system, following the conjunctive water management rationale and
guidelines [15]. This surface system is to be installed in areas where rainfall is high and land cover is
predominantly forest ensuring good quality. At these sites, stream is stored in small natural reservoirs
created by small dams and diverted to the deficit areas. Water diversion is a common practice at river
scale [60]. In the Vila Pouca de Aguiar municipality, the Cabouço catchment was considered the most
suited basin to install a small dam, because surface water availability was large (2.4 Mm3/yr) and
forest cover was dominant (84.8%). Given the location of Cabouço’s outlet at 900 m altitude, the water
transfer into the drinking water tanks from the Vila Pouca de Aguiar and Bornes de Aguiar/Pedras
Salgadas villages, located below 870 m of altitude, will be gravitational reducing the diversion costs.

The Cabouço catchment can deliver 2.4 Mm3/yr of surface water to the outlet but it also discharges
1.5 Mm3/yr of groundwater to the same point (Table 2). Therefore, the availability of clean water
resources in the catchment is 3.9 Mm3/yr. Actual and forecasted deficits are < 0.1 Mm3/yr (Table 1),
and hence some water could be released for other uses. The municipality of Vila Pouca de Aguiar
comprises a 12.1 km2 valley used for agriculture, termed the “South Valley” (the green shaded area in
Figure 10). The water for irrigation is usually pumped from the Corgo River that crosses the valley, or
from drilled wells. Farmland area and productivity in this valley would eventually increase if crops
could be irrigated with water from the Cabouço catchment, since the location is highly favorable
(Figure 10).

The creation of the Cabouço dam reservoir would also contribute to local aquifer recharge, and
hence improve productivity of boreholes downwards. Other studies refer to stream damming as a
measure to develop aquifer recharge [61,62]. The quality of stream water is another important issue,
because its purpose is to use it for drinking water. Water quality has not been measured in the Cabouço
catchment in this study. ArcSWAT provided estimates for annual nitrate loadings (Kg N/ha) in surface
water and groundwater (Figure 9) based on catchment land cover, which can be used as indicators
of water quality. The estimated loads are higher in groundwater (4.7 Kg.N/ha) than in surface water
(0.4 Kg.N/ha), but are generally low. It is very important to keep nutrient loads low in dam reservoirs
to prevent water quality deterioration and associated impacts, namely eutrophication, biodiversity
decline and general ecosystem degradation [63–65]. It is worth to note that the estimated nitrate loads
are rough indications of real loads because they could not be calibrated with measured data, and
therefore a specific dedicated study should be performed for a better assessment.

Overall, the conjunctive management of Cabouço stream water and the installed system based
on groundwater seems reliable for Vila Pouca de Aguiar in the long-term. It is also strategically
appropriate because it maintains municipal autonomy over the public drinking water supply. In this
context, it is worth mentioning the need to develop public policies and implement land management
plans in a manner that Cabouço area can be preserved from water pollution and legally protected for
conservation of water resources. This study exposed the interdependency, availability, and accessibility
of surface water and groundwater in Vila Pouca de Aguiar, and therefore contributed to identify and
manage water security in the municipality [66]. We are therefore confident that the construction of
Cabouço dam to complement drinking water supply in deficit areas and complementary irrigate the
South Valley, would represent the most reliable route to follow in achieving sustainable use of local
water resources.
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5. Conclusions

In this study, the proposal of conjunctive water management for drinking water supply of a small
rural municipality proved efficient. The studied area comprised the Vila Pouca de Aguiar municipality
located in the north of Portugal, which uses high quality groundwater as source for drinking water
supply. Although the groundwater resources are abundant at municipal level, some deficits were
detected at sub-municipal levels, in July and August, reaching > 55,000 m3/yr in the two largest
villages (the municipal capital Vila Pouca de Aguiar and the Pedras Salgadas town). These deficits
are recurrent and therefore this study investigated the possibility to reinforce the system with stream
water stored in small dams. The hydrologic model (ArcSWAT) of small forested catchments (< 15 km2)
located within the municipality limit revealed the suitability to store stream water in the Cabouço
catchment. This 7 km2 catchment can deliver approximately 3.9 Mm3/yr of good quality water,
because of its strategic location in a densely forested area (> 85% forest and shrub cover). The location
at an altitude of 900 m enables the gravitational transport of water towards the application areas
(mostly Vila Pouca de Aguiar and Pedras Salgadas towns), at low diversion costs. Overall, this solution
would bring the public supply of drinking water in Vila Pouca de Aguiar into the conjunctive water
management era, ensuring the system’s sustainability for the future generations.
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