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Abstract: Driver hazard perception is highly related to involvement in traffic accidents, and vision is
the most important sense with which we perceive risk. Therefore, it is of great significance to explore
the characteristics of drivers’ eye movements to promote road safety. This study focuses on analyzing
the changes of drivers’ eye-movement characteristics in anxiety. We used various materials to induce
drivers’ anxiety, and then conducted the real driving experiments and driving simulations to collect
drivers’ eye-movement data. Then, we compared the differences between calm and anxiety on
drivers’ eye-movement characteristics, in order to extract the key eye-movement features. The least
squares method of change point analysis was carried out to detect the time and locations of sudden
changes in eye movement characteristics. The results show that the least squares method is effective
for identifying eye-movement changes of female drivers in anxiety. It was also found that changes
in road environments could cause a significant increase in fixation count and fixation duration for
female drivers, such as in scenes with traffic accidents or sharp curves. The findings of this study can
be used to recognize unexpected events in road environment and improve the geometric design of
curved roads. This study can also be used to develop active driving warning systems and intelligent
human–machine interactions in vehicles. This study would be of great theoretical significance and
application value for improving road traffic safety.

Keywords: driving anxiety; eye movement; change-point analysis; least squares method

1. Introduction

During driving, drivers usually receive more than 80% of traffic environment information through
their vision [1,2]. The sudden changes of driver’s eye movement are closely associated with road
traffic crashes. Therefore, it is necessary to investigate drivers’ eye movement changes for improving
road safety.

Transportation scholars have explored drivers’ visual search modes in various types of roads [3–8]
(e.g., mountain roads, roundabouts, overpasses, curved roads, and grassland roads) and different
driving environments [9–15] (e.g., road construction, tunnel entrances, tunnel lighting environments,
and traffic signs and billboards). It was found that drivers’ eye movements change with the
driving environment.

Previous research suggests that there are relationships among driving anxiety, visual search mode,
and driving behavior. Taylor et al. [16] found that drivers with high anxiety are more likely to make
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mistakes during driving, based on the results of a questionnaire survey. Pourabdian [17] used the
Manchester Driving Behavior Questionnaire and the Spielberg State–Trait Anxiety Scale to analyze
the relationship between trait anxiety level and inappropriate driving behavior, and found that trait
anxiety level is prone to causing driver distraction and forgetfulness. Wester et al. [18] found that with
a high level of anxiety, drivers have an increased fixation frequency in the central area and a decreased
fixation frequency on both sides (narrowed attention). Anxiety can narrow driver attention, which
results in ignoring important peripheral information and increased driving risk [19].

There have been a number of studies showing driver’s eye movement characteristics.
Hills et al. [20,21] found that driver’s eye movements change with the level of driving experience. It is
not easy for novice drivers to apply appropriate eye-movement patterns to match the hazardousness
of the road. Foy et al. [22] studied the relationship between driver’s mental workload and eye
movement characteristics. It was found that an increased mental workload leads to wider visual
search breadth and longer gaze duration. Le et al. [23] combined a vestibulo-ocular reflex model with
a visual-kinematic reflex model to explore the effects of psychological load on driver’s eye movement.
Based on the findings, they developed a system to monitor drivers’ visual behavior. Bakhit et al. [24]
analyzed the relationship between eye scanning behavior and different levels of driving tasks, and
also developed two measures for distracted driving.

Drivers’ eye-movement analysis has received increasing attention in traffic safety research.
Li et al. [25] analyzed drivers’ eye-movement characteristics in accident-prone areas, focusing on
drivers’ cognitive workload and fixation point distribution. The findings of the study were used to
provide effective strategies to improve road safety. He et al. [11] analyzed the effects of highway tunnel
lighting environment on driving safety, using drivers’ eye movement parameters. Hills et al. [20]
explored the vertical eye-movement carryover from one task to a second task, and found that it
is one potentially distracting effect on the safety of novice drivers. Oviedo-Trespalacios et al. [26]
conducted a systematic literature review to identify the impacts of roadside advertising signs on
driver behavior and road safety. The findings suggested that roadside advertising can increase crash
risk, particularly when signs that are frequently changed. Vignali et al. [27] examined pedestrians’
first-fixation distance of the crosswalk to optimize the crosswalk design from a perspective of accident
prevention. Costa et al. [28] analyzed drivers’ first-fixation distance and fixation duration distributions
to vertical road signs in order to identify the fixation time for the driver to correctly identify a road
sign. Lantieri et al. [29] explored the effect of gateways to reduce the amount of distraction, through
analyzing drivers’ eye movement data.

In summary, most research on drivers’ eye movements has focused on exploring drivers’ eye
movement characteristics, as well as the relationship between visual search mode and driving emotion.
Few studies have attempted to investigate the change points of eye movement characteristics with
mathematical models and algorithms. This paper will use the least squares of change-point estimation
to detect and analyze eye movement changes of female drivers in anxiety.

2. Materials and Methods

The change-point method is a powerful tool to detect whether any changes have occurred [30–34].
It can determine the number of changes and estimate the time and location of each change. It is
also capable of detecting small changes, and is preferable particularly when dealing with large data
sets. Generally, a change-point analysis characterizes the changes accurately, controls the error rate
strongly, is robust to outliers, and is simple to use. Wang et al. have applied the change-point models
to analyze traffic flow theory, including the mean change-point model [35], the non-linear probability
change-point model [36], the least squares method, and the local comparison method [37]. Therefore,
the change point method was used for detecting drivers’ eye movement changes in this study.
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2.1. Formulation of the Change-Point Model

In a change-point problem, there are a series of observations, which are mostly arranged according
to the time of their occurrence. At an unknown moment, if the distribution of samples or their
numerical characteristics suddenly change, the moment is probably the point of change. Assuming
that Xi(1 ≤ i ≤ n) is a sample from the matrix X, we want to study the samples in order to determine
whether there is a significant change in the matrix, where the change occurs, and how large the
change is. Assuming that only one change occurs, the sample Xi before and after the change-point
follows a normal distribution with variance σ2, but the expected value of the distribution varies. The
location of the change is denoted as m (unknown). Therefore, the issue of “whether there is a change”
can be considered to a hypothesis test question under the premise that “X1, · · · , Xn” are mutually
independent, and follow a normal distribution with variance σ2:

Null hypothesis H: EX1 = EX2 = · · · = EX100 (no change-point);
Alternative hypothesis K: for m, 1 ≤ m ≤ 100, and a1 6= a2

EX1 = · · · = EXm−1 = a1, EXm = · · · = EX100 = a2 (change-point m) (1)

where m (unknown) is called a change-point, that is, “the point in time when a sudden change occurs”.
If null hypothesis is rejected, the position of change-point m and the change range (jump degree)
a2 − a1 will be determined. The analysis process of change point is shown in Figure 1.
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2.2. Least Square Method of the Change-Point Analysis

2.2.1. Mean Change-Point Model with Known Number of Change Points

Firstly, we determine a natural number q, and the number of change points should be less than
q. Compared to the sample size n, q is a rather small number. The discrete data model of the mean
change-point problem is: 

Xi = ai + ei, i = 1, · · · , n
a1 = · · · = am1−1 = b1

am1 = · · · = am2−1 = b2

· · ·
amq = · · · = an = bq+1

(2)

where Xi stands for the sample (as in Equation (1)), n represents the number of observation positions,
and 1 < m1 < m2 < · · · < mq ≤ n. If bj+1 6= bj, mi is the change point. Random error ei (i = 1,
. . . , n) is assumed to be independent, with equal variance σ2 and expected value 0.

2.2.2. Least Square Method of the Change-Point Search

The sum of the squared differences between observed and theoretical values is chosen as objective
function, in order to obtain the minimum value as the point estimate of the population parameter.
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The objective function is established as follows:

T = T(m 1, · · · , mq, b1, · · · , bq+1) =∑ q+1
j=1 ∑

mj−1
i=mj−1

(x i − bj
)2 (3)

Here, m0 = 1, mq+1 = n + 1. m1, · · · , mq remain unchanged; finding the minimum value of T,
we obtain:

bj = Y j = Xmj−1 + · · · + Xmj−1 /(mj − mj−1) (4)

Equation (3) reaches the minimum. By substituting Equation (4) into Equation (3), we get:

T(m 1, · · · , mq) =∑ q+1
j=1 ∑

mj−1
i=mj−1

(X i − Y j
)2 (5)

In the range of 1 < m1 < · · · < mq ≤ n, Equation (5) is adjusted iteratively to reach the
minimum. The steps are:

(1) Set a set of initial values m1, · · · , mq (1 < m1 < · · · < mq ≤ n);
(2) Select the first two terms of Equation (5); the sum is calculated by:

W =
m1−1

∑
i=1

(Xi −Y1)
2 +

m2−1

∑
i=m1

(Xi −Y2)
2 (6)

where Y1 and Y2 are calculated by Equation (4) based on the initial values m1, · · · , mq. m2

remains unchanged, and m1 is adjusted in a range of 1 < m1 < m2 to minimize W; that is, n = m2, q
= 1. W reaches the minimum value m1, denoted as m′1.

(3) The sum of the second and third terms of Equation (5) is determined by substituting m′1 into m1;
we obtain:

W =
m2−1

∑
i=m′1

(Xi −Y2)
2 +

m3−1

∑
i=m2

(Xi −Y3)
2 (7)

where Y2 and Y3 are calculated by Equation (4). However, m1 is replaced by m′1, and m′1 and m3

remain unchanged, while m2 is adjusted within m′1 < m2 < m3 to minimize W. W reaches the
minimum value m2, denoted as m′2.

(4) m′2 and m4 remain unchanged, and m3 is adjusted to get m′3. Iteratively, a set of new values m′′1 ,
. . . , m′′q are obtained. Take them as initial values, go back to the first step to get another set of
new values m′′1 , . . . , m′′q , and then go back to the first step. This iterative process continues until
there is no adjustment needed (the new value exactly equals to the previous one). The final value,
which is denoted as m̂1 · · · m̂q, can be used as an estimate of the change-point m1, · · · , mq. The
minimum value of T in Equation (3) is T(m1, · · · , mq), denoted as Tq.

2.2.3. Estimating the Number of Change-Points

When analyzing the change-point problems, we follow the following steps: the first step is
to detect if there is a change-point or not. If the null hypothesis (no change-point) is accepted, it
means that there will be no change-point (the test method is presented below); if it is rejected, at
most, q change points are allowed to be proposed. The following methods are used: put q = k in
Equation (3) and determine the minimum value Tk of T, that is T1, · · · , Tk. We can see T1 ≥ T2 ≥
· · · ≥ Tk. Considering the structure of Equation (3) and the minimum value of formula ∑(ai − b)2

at b = a, if there are only k change points, Tk is not much greater than TK+1. Otherwise, if there are
more than k, Tk is significantly higher than TK+1 (the jump size of parameter mean at the change-point
should be considered). The following empirical rules are often used to study practical problems: if the
values decrease dramatically from T1 to Tk and keep flattening after that, the estimated value of the
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change-point is k. After determining k, q in Equation (3) is substituted by k, and the values of m̂1 · · · m̂q

are obtained by minimizing T as the estimate of the change-point position.
The minimum value of Tk/Tq (in Equation (5)) can be considered as Tq, which is more than 1. A

number slightly larger than 1 can be set, such as 1.1, making Tk/Tq ≥ 1.1 the change-point estimate.

2.2.4. Hypothesis Test Problem of Change-Point

Regarding the problem of “whether there is a change-point or not”, the hypothesis testing
procedure is shown below. The null hypothesis H denotes a hypothesis in which there is no
change-point. That is, in Equation (2), b1 = · · · = bq+1. The variances of samples X1, · · · , Xn (not
divided by degrees of freedom, the same below) are given by:

S = ∑ n
i=1
(
Xj − X

)2 (X = ∑ n
i=1Xi/n

)
(8)

Divide samples X1, · · · , Xn into two segments, X1, · · · , Xi−1 and Xi, · · · , Xn, calculate their
variances respectively, and put them together:

Si=
i−1

∑
j=1

(X j − Xi1)
2
+

n

∑
j=i

(X j − Xi2)
2
(2 ≤ i ≤ n) (9)

Xi1 and Xi2 are the arithmetic means of the segments x1, · · · , xi−1 and xi, · · · , xn, respectively.
To simplify, use the identity below:

S = Si + n−1(i− 1)(n− i + 1)
(
Xi1 − Xi2

)2 (10)

As can be seen, Si ≤ S, and each sample has an equal variance of σ2:

E
[
n−1(i− 1)(n− i + 1)

(
Xi1 − Xi2

)2
]
= σ2 + n−1(i− 1)(n− i + 1) (E Xi1 − EXi2

)2 (11)

If there is no change-point, all the samples have the same expectation, and the second item on the
right side of Equation (11) is 0. If there is a change-point, this term is generally non-zero. Therefore, the
change-point increases the gap between S and Si. The minimum value of S2, · · · , Sn is denoted as S*

S∗= min(S 2, · · · , Sn) (12)

Moreover, the following test method can be used: when

S − S∗ > C (13)

the null hypothesis H is rejected; that is, the original change-point is identified. Otherwise, H is
accepted. C is an appropriately defined limit, which is determined by

lim
n→∞

p
[

S − S∗

σ2 < 2lglgn + lglglgn− lgπ + x
]
= exp

(
−2e−x/2

)
(14)

If σ2 is known, for a given level α > 0,

exp
(
−2e−x/2

)
= 1− α (15)

xα= −2lg(− 1
2

lg(1 − α)) (16)

C = σ2(2lglgn + lglglgn − lgπ + xα

)
(17)
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If σ2 is unknown,
σ2 = S∗/(n − 2lglgn − lglglgn − 2.4) (18)

2.2.5. Measurement of the Change-Point Magnitude

In Equation (2), bk+1 − bk is known as the jump degree at change-point mk, which can be used as a
measure of the change-point magnitude. If there is q change points, the estimated values are m̂1 · · · m̂q

from small to large, and then the jump degree at the i change-point is estimated by

θ̂ =
m̂i+1−1

∑
j=mi

xj/(m̂i+1 − m̂i)−
m̂i

∑
j=m̂i−1

xj/(m̂i − m̂i−1) (19)

2.3. Data Collection

2.3.1. Participants

In this study, we chose female drivers for analysis, because compared to men, women are more
likely to experience anxiety [38,39] and get involved in road traffic accidents [40,41]. A total of 36 female
novice extroversion drivers were selected to collect eye movement data. Subject driving propensity
was determined using the driving propensity questionnaire developed by Wang et al. [42]. Table 1
presents drivers’ driving propensity and their behavior. If a subject drove more than 10,000 kilometers,
he would be defined as an experienced driver, and a novice driver otherwise [43]. Participants were
aged between 21 and 45 years, and their driving age ranged from 1 to 23 years. In addition, all the
subjects had normal hearing, vision (or corrected vision), and color vision.

Table 1. Drivers’ driving propensity type and their behavior.

Driving Propensity Type Performance

Introversion Steady, prudent, stable attention and difficult to shift, not easy to generate
risk-taking motivation, easy to drive at low speed, fear of traffic accidents.

Middle type Obey the traffic rules strictly, observe thoughtful, consider the complex
traffic situation, more calm, self-control.

Extroversion Sensitive, active, prone to generate risk-taking motive, rapid response,
impetuous in the case of complex traffic, not careful observation.

2.3.2. Experimental Material and Equipment

• Emotion-induction materials

The International Affective Picture System (IAPS) and the Chinese Affective Picture System
(CAPS) were used as emotional induction materials. The IAPS is an emotional tool which is generally
acknowledged around the world, and the CAPS is an emotional instrument that adapts to the social
and cultural context of China. Various anxiety-inducing materials were used in the experiments,
including visual materials (e.g., words and pictures, light variation in driving environment), auditory
materials (e.g., noisy and irregular sounds), multi-channel materials (e.g., videos and movies), olfactory
materials (e.g., cigarettes and durian), and taste materials (e.g., balsam gourd and licorice). Parts of the
anxiety induction material are shown in Figure 2.
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• Experimental equipment

The experimental equipment includes a comprehensive experimental vehicle (equipped with
32-channel Lidar, laser distance sensor, SG299GPS non-contact multi-function speedometer, CTM-8A
non-contact multi-function speedometer, vehicle recorder, Tobii eye tracker, WTC-1 pedal power
manipulator, high-definition camera, and laptop, etc.), a high-fidelity driving simulation platform,
camera, Tobii Studio software, recorder, IR-Marker, and wedge foam, etc. Parts of the experimental
equipment are shown in Figure 3 and Appendix A Table A1.
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• Driving route

The selected route includes Beijing Road, Renmin West Road, Nanjing Road, and Xincun West
Road in Zibo city (as shown in Figure 4, total length of 5.6 km). The real driving experiments
were conducted on sunny days and favorable road conditions. All the subjects were novice drivers.
Considering that it is difficult for drivers to maintain calm state in high-traffic-volume roads, the
driving experiments in calm were carried out during the off-peak time on Saturday and Sunday
morning. Meanwhile, driving experiments under anxiety were conducted at the early peak and late
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peak from Monday to Friday. In the driving simulations, a two-lane one-way road with various
scenarios was designed (as shown in Figure 5), including unimpeded road, road maintenance, traffic
accident, and a curve. A set of pre-defined obstacles on the roads were designed to maintain or increase
drivers’ anxiety level during driving.
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2.3.3. Experimental Procedure

The driving experiments include real vehicle experiment and driving simulation. Using real
driving experiments to collect data is time-consuming, expensive, and difficult to organize. Therefore,
it is difficult to obtain a large amount of real driving experimental data. Driving simulation can be used
as a supplement to real vehicle experiment, because it is safety, low-cost, and easy to control. Each
subject was involved in one real driving experiment and one driving simulation driving experiment
on different days. All the experiments were completed in one month.

• Preparation

Before each experiment, the IR-Markers of Tobii eye tracker were fixed on the front windshield
by a 4 × 6 matrix, and were also placed on the rearview mirror, steering wheel, and dashboard, in
accordance with the requirements. The IR-Marker distribution is shown in Figure 6. It can be noted
that the IR-Markers were placed to the left since drivers sat on the left side of vehicle. The wedge foam
was used to be an offset to the tilt angle of the front windshield in order to ensure that drivers were
directly in front of the IR-Markers. Researchers calibrated the eye tracker for each driver strictly before
experiment, to collect high-quality and accurate data.
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• Emotion induction and driving experiments

Anxiety is generally divided into two types: state anxiety and trait anxiety. State anxiety is a
temporary emotional response to exogenous stimuli. Trait anxiety is a relatively stable personality
feature, which has nothing to do with external stimuli. Anxiety in this study includes drivers’ state
anxiety induced in the experiments, and their own trait anxiety. The driving experiment process
involving calmness and anxiety is shown in Figure 7.
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• Assessing the level of induced anxiety

It is necessary to assess if subjects’ anxiety is induced to a certain level of arousal, because too little
or too much arousal can adversely affect subjects’ performance in experiments. During the driving
experiments, the facial expression, action, road conditions, driving speed, and pedal strength were
recorded in real time with the video monitoring system, speedometer, and pedal dynamics instrument.
Subjects were asked to describe their self-perception of emotion in the conversation with experimenters.
After the driving experiment, each subject was asked to watch the video immediately and report
his emotional experience. The data segments of subject’s anxiety were determined through the Beck
Anxiety Inventory, the Self-Rating Anxiety Scale, and subjects’ physiological characteristics such as
facial expressions, voice signals, and behavioral actions. The selected data segments were used for the
subsequent process and analysis. Table 2 shows the level of anxiety on the Beck Anxiety Inventory and
Self-Rating Anxiety Scale. The anxiety induction was considered successful if subjects had a score of
26 points or more on the Beck Anxiety Inventory, and a score of 60 points or more on the Self-Rating
Anxiety Scale for anxiety symptoms [45,46]. Therefore, only moderate and severe anxiety were selected
for analysis in this study.

Table 2. The levels of anxiety in the Baker Anxiety Inventory and Self-rating Anxiety Scale.

Inventory
Anxiety Level

No Anxiety Mild Anxiety Moderate Anxiety Severe Anxiety

Beck Anxiety Scale <15 15–25 26–35 >35
Self-Rating Anxiety Scale <50 50–59 60–69 >69

2.4. Eye Movement Feature Extraction

Subjects were involved in the experiments, in which they were induced to feel either calm or
anxious. The experimental data were divided into segments of 100 s each, and a total of 864 effective
segments were obtained. Parts of data segments are shown in Table 3.

Table 3. Parts of data segments.

Number Emotion Fixation Count (n) Fixation Duration (s) Visit Duration (s)

1
calmness 70 0.66 66.02
anxiety 60 0.92 89.87

2
calmness 85 0.63 72.81
anxiety 61 0.88 89.23

. . . . . . . . . . . . . . .

n − 1
calmness 87 0.69 74.26
anxiety 66 0.96 85.00

n calmness 85 0.63 66.64
anxiety 70 0.82 88.53

In this paper, statistical analysis was performed using SPSS Statistics 23.0 (IBM, NY, USA) where
the confidence interval was set at 95%. The paired t-test was used to determine whether there is
a difference between calm and anxiety in driver’s eye movement characteristics. The results are
demonstrated in Table 4.
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Table 4. Paired sample t-test for drivers’ eye movement characteristics.

Eye Movement
Index Emotion Mean Standard

Deviation
Correlation
Coefficient t p

Fixation count
Calmness 8.44 6.336

0.968 1.933 0.000Anxiety 7.00 7.730

Fixation duration
Calmness 0.66 0.174

0.688 −5.044 0.001Anxiety 0.92 0.214

Visit duration
Calmness 7.34 5.97

0.932 −2.015 0.079Anxiety 9.99 8.86

The results show that there is a significant difference in fixation count and fixation duration
between states of calmness and anxiety (p < 0.05). Drivers have a lower fixation count and a longer
fixation duration in a state of anxiety as compared to calmness. Therefore, the two indicators were
selected as input parameters in the model, which were used to analyze drivers’ eye movement
characteristics in a state of anxiety.

2.5. Data Selection and Analysis

To simplify analysis, only 100 segments of the drivers’ area of interest from the front window
were selected and analyzed in this paper. The fixation count and fixation duration for each segment
are shown in Figures 8 and 9.
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The least squares method of change-point analysis was used to quickly detect the time and
locations of change points to greatly reduce the effects of random interference on eye movement
characteristics, following the process shown in Figure 10.
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3. Results and Discussion

Tables 5 and 6 show the analysis results of the fixation count and fixation duration using the least
squares method. Because the algorithm yields a strong sensitivity for eye movement data, a significance
level of α = 0.001 was selected, and β = 1.01 was chosen to control the number of simulation cycles.

Table 5. The hypothesis test results by the least squares method.

Index Sig. Level α Variance S Variance S* Test Threshold C S − S* > C

Fixation count 0.001 11,286.24 10,475.24 770.72 Y
Fixation
duration 0.001 0.7242 0.6659 0.0486 Y

S: Variance; S∗ : Variance (minimum value); C : Threshold value; Y: Yes.

Combined with the heat map and gaze plot map of Tobii Studio (shown in Figure 11), drivers’
eye movement data in anxiety were analyzed. Heat maps use different colors to show participants’
attention areas in an image. Using colors on a scale from red to green, heat maps show the highest
number of gazes in red. Gaze plot maps show drivers’ eye movements towards the area of interest,
where the size of dot represents the duration of a fixation.

The least squares method was used to identify the change points, considering the features of
fixation count and fixation duration together. Big changes in eye-movement were found in the 10th,
59th, 65th, and 67th segments. To prevent premature convergence, β was calibrated as 1.01 and the
algorithm was repeatedly run. Finally, it was determined that the change points occurred in the 10th
and 65th segments, where the changes in both fixation count and fixation duration are significant.



Int. J. Environ. Res. Public Health 2019, 16, 1236 13 of 17

Table 6. The change-point search results by the least squares method.

Index
Total Number
of Change K

Initial Change
Position

Actual Change
Position

Jump
Degree

T (m1,· · · , mk)
(Tk)

β = 1.01

Tk-1/Tk

Fixation
count

1 19 10 97 10,024

2
7 10 102

7039 1.42475 65 −27

3
4 10 99

5746 1.22546 40 16
82 59 −29

4

4 10 104

5717 1.005
26 24 −15
40 51 18
77 65 −30

Fixation
duration

1 18 10 0.64 0.5201

2
7 10 0.67

0.2749 1.89275 67 0.23

3
6 10 0.80

0.1958 1.40445 24 0.12
82 65 0.22

4

4 10 0.79

0.1952 1.003
26 31 0.16
41 43 −0.18
83 65 0.23
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(a) Heat map of fixation count before the change-point occurs; (b) Heat map of fixation count before
the change-point occurs; (c) Heat map of fixation count after change-point 2 occurs; (d) Trajectory
map of fixation duration before the change-point occurs; (e) Trajectory map of fixation duration after
change-point 1 occurs; (f) Trajectory map of fixation duration after change-point 2 occurs.
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Combining with the heat map and gaze plot map, it was found that greater fixation count, higher
fixation duration, and greater attention bias appear in the 10th and 65th segments than in others. This
might be attributed to the changes in road environment. In the 10th segment, a road traffic accident
occurred. This made drivers feel more anxious and pay more attention to the accident scene, which
resulted in more gaze points and longer fixation duration. There was a sharp curve in the 65th segment.
Drivers had to pay more attention to the curved road, and hold their gaze for longer periods of time.
These findings are consistent with the results obtained by the above algorithm.

4. Limitations

Our findings of this study suggest that driver’s eye-movement features can be used to detect
unexpected events in road environment and improve the geometric design of curved roads. It
can also be used to develop active driving warning systems and intelligent human–machine
interactions in vehicles. This study would be of great theoretical significance and application value for
improving road traffic safety. Further studies are required to confirm the effectiveness of the change
point method in detecting changes in drivers’ eye movements, using more experimental data. In
addition, further studies are also needed to use more eye-movement metrics to explore drivers’ eye
movement characteristics.

5. Conclusions

This study used various materials to induce drivers’ anxiety, and then conducted real driving
experiments and driving simulations to collect drivers’ eye-movement data. We analyzed the
differences between calmness and anxiety in drivers’ eye movement characteristics, using the least
squares method of change point to detect eye movement changes of drivers with anxiety. The main
findings are demonstrated as follows.

(1) There are significant differences between calmness and anxiety in driver’s fixation count and
fixation duration. Female drivers have a lower fixation count and a longer fixation duration in anxiety
than in calmness.

(2) Female drivers show a greater fixation count, higher fixation duration, and greater attention
bias in scenes with traffic accidents or sharp curves, than in others.

(3) The least squares method of change point analysis is effective to detect eye movement changes
of female drivers in anxiety.
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Appendix A

Table A1. Company information for the experimental equipment.

Equipment Company City, Country

High-definition camera Shenzhen Dishijia Technology Co., Ltd. Shenzhen, China

Vehicle recorder Shenzhen Dazhi Innovation Technology
Co., Ltd. Shenzhen, China

Steering parameter speedometer Zibo Xiangan Electronic Technology
Co., Ltd. Zibo, China

SG299GPS non-contact
multi-function speedometer Beijing Haifuda Technology Co., Ltd. Beijing, China

CTM-8A non-contact
multi-function speedometer Zibo Aoke Electronics Co., Ltd. Zibo, China

Laptop Lenovo Group Limited Beijing, China

WTC-1 pedal power manipulator Zibo Chuangyu Electronics Co., Ltd. Zibo, China

Laser distance sensor Wuhan Jiguangsheng Measurement and
Control Co., Ltd. Wuhan, China

32-channel Lidar Beijing Dongrong Shengshi Technology
Co., Ltd. Beijing, China

Tobii eye tracker Beijing Jinfa Technology Co., Ltd. Sweden
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