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Abstract: Urban green spaces play a critical role in public health and human wellbeing for urban
residents. Due to the uneven spatial distribution of urban green spaces in most of cities, the issue of the
disparity between supply and demand has aroused public concern. In a case of Shenzhen, a modified
Gaussian-based two-step floating catchment area (2SFCA) method is adopted to evaluate the disparity
between park provision and the demanders in terms of accessibility at hierarchical levels under four
types of distance (e.g., Euclidean distance, walking distance, bicycling distance, and driving distance),
which is well aligned with hierarchical systems in urban green spaces in urban planning practice.
By contrast and correlation analysis, among the four types of distance, the statistical correlations are
relatively high between Euclidean distance and the other three. Nonetheless, the pattern of spatial
accessibility under different type of travel distance is apparently variant. Accessibility calculated
by Euclidean distance is overestimated relative to that of the other three, while the pattern of
walking distance and bicycling distance is similar to each other. The choice of type of distance
is worthy of caution when evaluating spatial accessibility by 2SFCA method. Results show that
the accessibility to parks at all hierarchical levels is high particularly, particularly at the natural
level. However, the disparity between the supply and demand is significant. The percentage of
communities that have high population density but low park accessibility is over 40% (equivalent
to approximately 55% of the population). The finding may provide implications on access to urban
greens paces for urban planners and authorities to develop effective planning strategies.

Keywords: urban green spaces; accessibility; spatial disparity; 2SFCA; Shenzhen

1. Introduction

Urban green spaces, such as parks, forests, greenbelts, and residential greenery, play a critical role in
the connection between human beings and the natural environment in urbanized areas, which provide
physical, psychological, environmental, economic, and social benefits for city dwellers [1–4]. Urban green
spaces covered with vegetation can contribute to improving air quality [5], alleviating urban heat island
effects [6,7], and offsetting carbon emission [8,9]. Urban green spaces, especially parks, are ideal places for
residents to relax, enjoy leisure activities, perform physical activity, and communicate. A large body of
literature explored the associations between green spaces and health (for example, [10–13]). Greener living
environments enhance human health, including reducing risk of chronic diseases (i.e., obesity,
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cardio-metabolic issues, and sedentary behavior) [13,14], alleviating stress-related psychosocial
symptoms [15,16], improving self-esteem and mood [17], and facilitating social interaction [18,19].
Generally, the spatial distribution of urban green spaces is not homogeneous within cities [20–22]. It has
stimulated concern among researchers and urban planners about social equity and environmental
justice regarding urban green spaces [23–26].

Access to green spaces as components of environmental justice has got much attention from
scholars and urban planners. Many studies have examined the disparity between the provision
of urban green spaces and demand populations from the perspective of socio-economic status and
demographics around the world [23,27–30]. For example, Boone et al. found that the whites are
provided with more park acreage within walking distance than the blacks in Baltimore, Maryland [23].
In contrast, Xiao et al. has stated that the vulnerable groups were not disadvantaged over the affluent
in Shanghai in terms of access to urban parks [28]. However, the results from empirical studies are
far from reaching a consensus [31]. In Macintyre’s review, it showed that low-income communities of
color in some instances have better access to health-promoting facilities than other groups, including
parks [32], while a review on access to green space by [33] found that low-income communities of
color experience lower park service than the white and affluent groups do. The measurement of access
to parks may have a crucial effect on their findings [31,33,34]. How to model the access to urban parks
is still a hot controversial topic in the study of urban planning and sustainability [21,27,35–37].

A growing body of literature has developed various indices and methods for assessing access
to urban green spaces [27,34,35,38]. Nevertheless, the green spaces classification systems in urban
planning practice were ignored. Urban planners and authorities categorized green spaces based on the
characteristics of size, function, and amenities [39]. Green spaces on different functional scales cannot
be substituted for each other. In evaluating access to urban green spaces, “functional levels” ranging
from the street to city level should be involved [40]. In addition, the available green space services
may vary due to the mode of transportation people choose to reach those spaces [41]. The manner in
which people visit urban parks is uncertain. In summary, to our knowledge, studies on access to urban
green spaces under multiple-types of distance has not been fully explored [35].

According to Penchansky and Thomas’s theory of access in 1981, the concept of access has
been widely accepted as a multidimensional notion and depicted in terms of availability, accessibility,
affordability, acceptability, and accommodation [42–45]. Several scholars have argued that the notion
can be categorized into spatial and aspatial dimensions, or potential and actual dimensions [44,46,47].
Spatial access highlights the separation between supply (i.e., urban green spaces) and demand
(i.e., population) and the way they connect in space [46], while aspatial access emphasizes nongeographic
barriers including demographic, socioeconomic, cultural, and management variables [45–47]. One of the
most common approaches to evaluating access to public and private facilities like health care, recreational
amenities, food outlets, and parks is by measuring spatial accessibility.

Various factors influence spatial accessibility to green spaces, such as the provision of green
spaces (i.e., locations, park numbers, size), the distribution of demand population (e.g., population
size, population composition, neighborhood attractiveness), the barriers between green spaces and the
demand population, and the metrics of access [24,48–50].

With respect to access measurement, diverse approaches, indicators, indices, metrics,
and standards have been proposed to assess accessibility to urban green spaces. According to the
review of Rigonlon [31], the measure of spatial access to parks can be categorized into three general
approaches: (1) the spatial proximity approach, which measures the travel cost of the demanded
population to the closest park, regardless of the park’s size and amenities; (2) the container approach,
which measures the number or size of parks within a geographic unit or a given distance of a geographic
unit; and (3) the coverage approach, which measures the ratio of demand to supply in a park’s supposed
service area by, for example, simple buffer analysis, the network constrained service areas, the Thiessen
polygon method, kernel density estimation, and gravity-based models. In particular, the gravity-based
models have been one of the most popular methods for measuring accessibility [4,27]. The basic
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gravity models, based on Newton’s Law of gravitation, defined the accessibility as “the potential of
opportunities for interaction” [51], which are conceptually more advanced in considering the distance
decay effect. However, it is difficult to select a fit decay function and an appropriate impedance
parameter β in the model [44]. Thus, an improved gravity model, the two-step floating catchment area
method (2SFCA), first proposed by [52] and modified by [47], was introduced.

In the 2SFCA method, the distance decay effect was defined via a dichotomous function,
which omits the distance decay within the catchment. Several scholars have attempted to compensate
for the shortcomings of this method by integrating different distance impedance functions into
the initial 2SFCA method, such as a kernel density (KD) function [44], discrete time zones with
constant weights in each zone [53,54], a constant and gradual mixed decay function [55], a Gaussian
function [27], or a logistic cumulative distribution function [56]. However, in all of these modified
2SFCA methods, a fixed catchment size was set for all facilities regardless of the characteristics of the
facilities (e.g., size, level of service in urban planning). By avoiding the fixed catchment size for all
supply and demand sites in 2SFCA, a few studies have improved upon the original 2SFCA based on
a variable or dynamic catchment size on either the supply or population side [41,57–59]. Dony et al.
divided park catchment size into five levels based on the attractiveness, which was defined as a
function of park size and the number of amenities [41]. While this approach may make a conceptual
improvement in assessing access to parks, determining an optimal attractiveness function is much
more complicated and less intuitive than park size.

Moreover, the original 2SFCA method was based on the inappropriate assumption that all
population travel to service sites by a single transportation mode [60]. In reality, the mode of
transportation may vary among individuals and may be associate with the location of destinations.
Thus far, only a few scholars have taken multiple transport modes into account on access to urban green
spaces [35,38,41]. Dony et al. developed a variable-width floating catchment area (VFCA) method to
assess accessibility to parks in Mecklenburg County, North Carolina and compared accessibility under
four modes of transportation (e.g., bicycling, public transit, and walking) [41].

Although access to urban green spaces has been examined in many studies, access to green spaces
in China’s megacities is little known [28,38]. In China, urban parks have been given priority in the
metropolises to improve the urban environment [61]. An empirical study by Xu et al. estimated park
accessibility by seven indicators derived from travel time under four transport modes, and stated that
social inequalities in park accessibility by walking and public transit were significant in Shenzhen [38].
However, the indicators of park accessibility neglected the distribution of the demanded population.
The implications for urban planners in figuring out the mismatch between the provision of urban
green spaces and demanding people may be limited.

As previously stated, our study attempts to introduce a modified Gaussian-2SFCA method
to evaluate spatial access to parks in Shenzhen, China. Taking the levels of parks and multiple
transportation networks into consideration, the paper aims to answer the following two questions: (1)
Do the metrics of distance under multiple modes of transportation affect park accessibility; (2) Does the
disparity between park provisions and the demanded population exist? Where are the communities
that have a shortage of green services in Shenzhen? More importantly, our analytical study contributes
to enriching the relevant theoretical foundation regarding park accessibility modelling and provides
some insights into green urban planning for local administrators and planners.

The remainder of this paper is structured as follows: Section 2 makes a brief introduction to the
city of Shenzhen and its park classification system. Section 3 depicts the modified Gaussian-based
2SFCA model, as well as the setting of parameters in detail. In Section 4, the correlations and variations
among four types of distance for measuring accessibility are systematically explained. Conclusions,
limitations, and future work are presented in the last section.
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2. Materials and Methods

2.1. Study Area

The study area is Shenzhen (22◦27′–22◦52′ N, 113◦46′–114◦37′ E), a major city in Guangdong
Province, China. Shenzhen is located within the Pearl River Delta, the southern of Guangdong
Province, neighboring Hong Kong. Due to the policy of ‘reform and opening’, Shenzhen was promoted
to the China First Special Economic Zone (SEZ) in the 1980s. Over 40 years, Shenzhen—once a tiny
town—has grown into a modern metropolis. To improve urban management, the local government
reorganizes the administrative structure for three levels: districts, sub-districts, and communities.
Shenzhen has 10 districts which have been traditionally divided into guannei (e.g., Futian, Luohu,
Yantian, and Nanshan), known as core distircts, and guanwai (i.e., Bao’An, Longgang, Longhua,
Pingshan, Guangming, and Dapeng). With a permanent population of 11.9 million, the city covers an
area of 1997.27 square kilometers. By the end of 2016, Shenzhen had the fourth-ranking GDP in China,
following Shanghai, Beijing and Guangzhou, and a GDP per capita of 167,411 CNY, which was the top
among Chinese cities [62].

Local governments have been pouring efforts into the economy and social benefits, as well as
into green benefits. Shenzhen was the first city in China to win the international awards for livable
communities (The LivCom Awards) in 2000. In a study of livable cities in China by the Chinese
Academy of Sciences, Shenzhen was the most suitable city with respect to natural environment among
40 cities in 2016 [63]. Currently, the green coverage rate has reached 45.08% in Shenzhen’s built-up
areas [64]. By the end of 2020, there will be more than one thousand parks in Shenzhen. According
to the local government’s policies and regulations on urban green space planning, urban parks are
subdivided into three levels: community/neighborhood parks, city parks, and natural (forest and
country) parks. Community parks with small size were designed for meeting the demand of
surrounding residents’ daily recreation, relaxation and physical exercise. City parks with acreage
over 0.05 km2 have functional zones, amusement areas and recreation facilities for residents’ cultural
and activities every week. Natural parks which are usually located at the suburbs, are full of forest
resources or natural landscapes to prevent disordered urban construction and maintain ecosystem
balance. They are good places for urban residents’ monthly outdoor activities. In this paper, all parks
considered are free to enter for residents. There are 745 community parks, 117 city parks, and 23 natural
parks. Table 1 presents descriptive statistics of parks in Shenzhen’s districts. At the city level, park area
per capita is 0.58 for community parks, 4.26 for city parks, and 22.44 for natural parks, respectively.
The value of park area per capita in Bao’an District, which has the largest population, is below the
average level at three levels of park. The level of natural park area per capita in Yantian District and
Dapeng District is far above the average. During the processing, we overlaid park polygons with
districts polygons and found nine parks cross several districts. If any parts of park polygon was inside,
the number of park in that district increased by 1. Thus, the total number of parks grouped by three
park levels at the district level is equal or greater than that grouped by the three levels of park at
city level.
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Table 1. Descriptive statistics of parks in Shenzhen’s districts.

District
Population
(Million)

Number of Park Total Park Area (km2) Park Area per Capita (m2)

Community
Park

City
Park

Natural
Park

Community
Park

City
Park

Natural
Park

Community
Park

City
Park

Natural
Park

Futian 0.76 147 12 2 0.60 7.24 7.35 0.79 9.57 9.72
Luohu 0.92 133 10 3 0.66 10.85 18.22 0.72 11.74 19.72
Yantian 0.17 32 8 2 0.27 5.86 44.67 1.61 35.13 267.97

Nanshan 1.17 65 28 1 0.94 12.23 9.91 0.80 10.45 8.47
Bao’an 4.56 142 15 4 2.71 6.30 34.51 0.59 1.38 7.56

Longgang 3.45 103 18 7 1.35 15.16 56.13 0.39 4.40 16.28
Longhua 2.29 46 5 5 0.86 0.87 43.44 0.37 0.38 18.97
Pingshan 0.46 28 6 3 0.14 2.22 38.14 0.31 4.84 83.31

Guangming 1.06 28 4 4 0.62 1.31 28.80 0.58 1.23 27.14
Dapeng 0.10 21 12 3 0.46 1.57 54.11 4.40 15.00 517.84

Note: park area per capita is the ratio of total park area to population.
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2.2. Data Source and Preprocessing

Data were obtained from Urban Planning, Land and Resources Commission of Shenzhen
Municipality, including the administrative boundaries, parks, and building population. Because the
community is the smallest geographical unit of administrative management in Shenzhen and is the
finest geographic resolution with demographics and socio-economic information, it was chosen as the
basic analysis scale. Shenzhen encompassed 639 communities under jurisdiction of 57 sub-districts
(Figure 1). As stated in Table 1, the polygon of parks were categorized into three levels: community
parks, city parks, and natural parks. In total, 885 parks were chosen into this study. The parks vary
in size, functions, amenities, and designed service radius. For the community parks and city parks,
the geometric centroids were used as the service sites location. While the entrances (n = 90) of natural
parks were digitalized from the document of Master Plans For Shenzhen Forest City (2016–2025) [65]
and georeferenced to the China Geodetic Coordinate System 2000 (CGCS2000). Some may argue
the entrances of community and city parks are better than geographic centroids. In fact, no reliable,
open data sources are available to collect over hundreds of parks entrances for research. In some cases,
any point along the perimeter of community parks can serve as the entry point [23,25]. Given these
facts, the geometric centroids were chosen as the proxy for community parks and city parks.

1 
 

 

 

 

 

Figure 1. Study area and the distribution of parks in 2014.
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The population-weighted centroids were calculated as Equations (1) and (2) to represent the
demand of community population [66,67].

xc =
∑mc

i xi ∗ pi

∑m
i pi

(1)

yc =
∑mc

i yi ∗ pi

∑m
i pi

(2)

where xc and yc are the coordinates of population-weighted centroid of community c, xi and yi indicate the
coordinates of the geometric centroid of the ith building within community c, pi denotes the population of
the building, and mc is the total number of buildings within community c. After overlay and aggregation
operation in ArcGIS 10.3 (Environmental Systems Research Institute, Inc., Redlands, CA, USA), there are
nine communities without building’s geometric centroid located inside. We highlighted the locations of
nine communities without population data by dark red polygons and slash patches. Two communities
were located in Nanshan District, the north one was a reservoir, while the south one was an island.
Two communities were in the middle of Luohu District. Two communities belonged to Futian District.
The community located in Pingshan District is named Maluan. Two communities were located at the
east corner of Dapeng District. Therefore, only 630 communities with population data were chosen as the
demand sites and analysis units.

2.3. Method

2.3.1. Modified Gaussian-Based 2SFCA

In this study, we followed the method proposed by Dai [27], a Gaussian-based 2SFCA method to
calibrate the potential accessibility to urban parks in Shenzhen. The Gaussian-based 2SFCA method is
an integration of 2SFCA and a Gaussian formed continuous decay function. The generalized 2SFCA
model involves two steps:

Step 1: Generating the service catchment with a threshold travel cost for each park j, searching all
populations within the catchment and computing the park area-to-population ratio Rj, as

Rj =
Sj

∑i∈{dij ≤ dm} Pi f
(
dij
) (3)

Step 2: Generating the population demand catchment with a threshold travel cost for each
population location i, searching all parks that are within the catchment, and summing up the park
area-to-population ratios as

Ai = ∑
k∈{dik ≤ dm}

Rk f (dik) (4)

where Rj is the park-to-population ratio in park j, Sj is the attractiveness of park j, Pi denotes the
population of community i within the catchment of park j, dij is the travel cost between community i
and park j, f(dij) is the generalized cost decay function, dm presents the catchment radius. Ai represents
the park accessibility of population at location i.
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As one of the most popular impedance functions [68], the Gaussian function discounts accessibility
with a low rate of declination, instead of dividing subzones within a catchment such as in the E2SFCA
method. In this study, the Gaussian function is formulated as

G
(
dij, d0, dm

)
=


1, i f dij ≤ do

e
−(1/2)×

(dij−do)
(dm−do) −e−(1/2)

1− e−(1/2)

0, i f dij > dm

, i f do < dij ≤ dm (5)

In Equation (5), dij is the travel cost between community i and park j, do is the start point of
accessibility discount, and dm is the threshold of travel cost. This Gaussian function, assumes that
within a certain range people do not care about the travel cost, which means that the probability that
people visit the parks equals 1. When the travel cost rises up to a certain limit, the probability is 0.
If the cost dij is between do and dm, the probability of visiting park j would be between 0 and 1. After
replacing f(dij) in Equation (4) with Equation (5), the index Ai is defined as

Ai = ∑
k∈{dik ≤dm}

RkG(dik, do, dm) = ∑
k∈{dik ≤dm}

SkG(dik, do, dm)

∑j∈{djk ≤dm} PjG
(

djk, do, dm

) (6)

2.3.2. Estimation of Travel Distance

In this study, the travel distance is chosen to calculate the accessibility. Some scholars have
argued that the travel time is the optimum measure of spatial impediment between demanders and
facilities [69,70]. In reality, the speed of travel varies with transport mode. It is difficult to attain the
actual speed of different transport modes in the entire city, instead of pre-defined speeds according to
road classifications [35,60,71]. The estimated travel time will vary along with the defaulted speed of
travel. While the travel distance is the length of the transport network from origins to destinations,
it is fixed for a longer time than the travel time.

To estimate the travel distance with diverse transport modes between 630 communities and 885
urban parks, we utilize the AutoNavi Maps API (http://lbs.amap.com/) from AutoNavi Software Co.,
Ltd., which is one of the leaders in providing web mapping, navigation, and location-based services in
China. The service provider collected independent network datasets for walking, driving, bicycling
and public transit. By spider crawling, we requested AutoNavi Maps API about 599,760 (630 × 952)
times to obtained four types of distance for modelling in August 2018, including Euclidian distance,
walking distance, bicycling distance, and driving distance (Figure 2). Particularly, 56,700 (630 × 90)
calculation times were completed for the distance between natural entrances and communities.

http://lbs.amap.com/
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Figure 2. Screenshot of road network in Shenzhen and an example of four types of distance: (a) the
Euclidian distance; (b) the walking distance; (c) the riding distance; (d) the driving distance. Datasource:
Amap from AutoNavi Software Co., Ltd. (Beijing, China) Origin (blue marker) = (114.070173, 22.546626),
Destination (red marker) = (113.948956, 22.582773).

2.3.3. Parameters

Potential accessibility to parks is influenced by various factors, such as location, quality of park
facilities, landscape, surrounding environment, and travel cost between the demand populations and
park provision. In this study, a modified Gaussian-based 2SFCA method (MG2SFCA) is adopted
to assess the accessibility to parks. The attractiveness Sj of park j pertains to many factors, such as
park size, landscape, number of amenities and park safety [33,41]. open-access data about parks’
characteristics throughout the entire city are unavailable. Moreover, the location and size are usually
fixed, while other characteristics can be changed easily [48]. Larger parks which offer more amenities
can attract residents from further away have are positively associated with higher rates of park
access [41]. Many guidelines and regulations in urban planning defined open space standards related
to the size of open space [72]. For example, the standards under The Act on Urban Parks, Greenbelt,
etc. is 6 m2 per person. Compared to the subjective attractiveness from park quality, which is usually
based on questionnaire or field survey [38], size is unbiased [38]. Thus, the size of parks is used as the
attractiveness. In the MG2SFCA model, the parameters dm and do are crucial because they influence
the catchment size and decay rate. The choice of catchment size dm usually varies among authors.
For park service catchment size, the standards from acts and regulations pertaining to urban parks are
indicative references for researchers [34,37,73]. In Shenzhen, the local government has set a green goal
for 2020: citizens can access a community park within 0.5 km, a city park within 2 km, and a natural
park within 5 km. According to the document of Outline of Urban Greening Planning in Shenzhen
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2012–2020, all citizens could access a community park within 2 km, a city park within 5 km, and a
natural park within 10 km in 2015. For population catchment size, some scholars have argued that
people in metropolitan or rural setting can vary [57–59]. After readjusting administrative divisions
for several times, the extent of Shenzhen Special Economic Zones has covered the entire city since
2010. In this study, the catchment sizes of park service and population are set to the same value.
The parameter do is based on the assumption that within a certain range of travel costs, the probability
that people visit parks is always 1. However, empirical data on the distance at which people’s interest
in visiting parks do not decrease are scarce. We adopted the standards from the Outline of Urban
Greening Planning in Shenzhen. The low standards in 2015 were adopted as the parameter dm, and the
2020 goal as the parameter do. Details about do and dm for the three levels of park were shown in
Table 1.

2.3.4. Measurement of Spatial Disparity

In essence, the metric of MG2SFCA is still the ratio of service-to-demand, similarly to 2SFCA.
In this case, the value is the average park area per capita, and the population-weighted MG2SFCA of all
communities is equal to the ratio of total park area to total population. In a community, the higher Ai is,
the better park accessibility becomes. If a high accessibility community has a high population density,
the underlying utilization of park services is likely to be higher. If residents of a low population density
area are provided with high park accessibility, there will be a surplus of park service. To determine the
areas with a shortage of park services using the degree of supply-to-demand match, accessibility and
population density in communities are standardized as

zAi =
Ai − A

σA
(7)

zPopDi =
PopDi − PopD

σPopD
(8)

where ZAi is the Z-score of Ai and A denotes the ratio of total park area to total population. PopDi is
the population density of community i, ZPopDi is the Z-score of PopDi, PopD is the population density
in the study area, and δPopD is the standard deviation of the population density. The combination
of ZAi and ZPopDi can be utilized to calibrate the match degree between park provision and demand
population in community i:

(1) If ZAi > 0 and ZPopDi > 0, community i has high accessibility and high population density.

(2) If ZAi < 0 and ZPopDi < 0, community i has low accessibility and low population density.

(3) If ZAi > 0 and ZPopDi < 0, community i has high accessibility and low population density.

(4) If ZAi < 0 and ZPopDi > 0, community i has low accessibility and high population density.

3. Results

3.1. Proximity between Communities and Urban Parks under Four Types of Distance

3.1.1. Proximity without Distance Threshold

Travel distance is an effective measure of proximity between origins and destinations. Table 2
shows variations in proximity among four distance types. Statistically, the mean value of all routes for
Euclidean distance was 23.52 km, followed by the values for walking (mean = 29.96 km), bicycling
(mean = 31.74 km), and driving (mean = 32.02 km). The Euclidean distance was the shortest, and the
driving distance was the longest. The difference between the Euclidean distance and driving distance
is significant, i.e., a difference of 8.5 km. There were no significant differences between bicycling and
driving distance.
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Table 2. Univariate statistics for the distances calculated between communities and parks.

Distance Type (km) Mean P10 Q1 Q2 Q3 P90

Euclidean distance 23.52 6.30 12.57 21.63 32.31 42.65
Walking distance 29.96 8.17 16.52 27.44 40.61 54.01
Bicycling distance 31.74 8.85 17.69 29.19 42.85 57.12
Driving distance 32.02 9.1 17.37 29.39 43.82 57.57

Note: P10 10th percentile, Q1 lower quartile, Q2 median, Q3 upper quartile, P90 90th percentile.

In order to estimate the degree correlation among the four distance types, a global correlation
analysis was performed. From the correlation matrix in Table 3, the four types of distance were strongly
correlated with each other, with high correlation coefficient values over 0.95. Second, Euclidean
distance was most strongly correlated with the other three types of distance (>0.98), but the correlations
of driving distance with other types of distance were the weakest. The correlation between walking
distance and bicycling distance was nearly 1. Thus, if it is impossible to obtain the bicycling network
dataset in the whole city, the walking network can be a valid alternative.

Table 3. Global Pearson correlations between alternative types of distance.

Distance Euclidean Walking Bicycling Driving

Distances between
communities and parks (N) 599,760 599,760 599,760 599,760

Euclidean distance 1 0.986 ** 0.985 ** 0.981 **
Walking distance 0.986 ** 1 0.997 ** 0.973 **
Bicycling distance 0.985 ** 0.997 ** 1 0.972 **
Driving distance 0.981 ** 0.973 ** 0.972 ** 1

Note: ** indicates significance at the 1% level.

3.1.2. Proximity under Fixed Distance Threshold

Although the proximity results without tolerance thresholds indicated high correlations among
the four types of distance, the local variations at three levels of parks are still unknown. Taking the
service threshold of different level parks into account, we summarized four types of mean travel
distance within catchment thresholds for three levels of parks and divided the mean distance into
five groups, as shown in Figure 3 (community parks, 2 km), Figure 4 (city parks, 5 km), Figure 5
(natural parks, 10 km). As T the mean travel distance increases, the color gradually changes to yellow.
A community filled with yellow indicated that no parks are available within the catchment threshold.
For three levels of parks, Figure 3a, Figure 4a, and Figure 5a are greener than the other three distance
modes. Euclidean distance returns a larger number of communities within the distance threshold
than walking distance, bicycling distance, F and driving distance do. Interestingly, in according with
the global correlation analysis, the patterns of walking distance and bicycling distance are similar
with each other among the three levels, e.g., Figure 3b,c, Figure 4b,c, and Figure 5b,c. If a bicycle
network is unavailable, the walk network can be a suitable substitute. The average shortest network
distance by car within the threshold was the longest, and the number of yellow communities was
greater than that for other types of distance. Therefore, the metric of distance is vital to the assessment
of potential accessibility.
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Figure 3. Proximity to community parks in threshold of 2 km by four types of distance: (a) Euclidean
distance; (b) walking distance; (c) bicycling distance; (d) driving distance. 
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Figure 4. Proximity to city parks in threshold of 5 km by four types of distance: (a) Euclidean distance;
(b) walking distance; (c) bicycling distance; (d) driving distance.
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Figure 5. Proximity to natural parks in threshold of 10 km by four types of distance: (a) Euclidean
distance; (b) walking distance; (c) bicycling distance; (d) driving distance.

3.2. Results of MG2SFCA at Three Levels of Parks

3.2.1. Statistical Analysis of Park Accessibility

As stated in Section 3.1.2, the threshold for catchment size was 2 km for community parks, 5 km
for city parks, and 10 km for natural parks. Table 4 shows the statistical accessibilities for three levels of
parks under four types of distance. The results suggest that (1) In general, the average and standard
deviation of park accessibility at natural level are much higher than those at the community level and
city level. This finding may be related to the large area of natural parks in Shenzhen. (2) Regardless of
the metric of travel distance used, the accessibility at the natural park level is better than that at the other
two levels of parks. The number of underserved communities, the area of underserved communities,
and the underserved population are lowest. (3) With respect to transportation mode, the number of
underserved communities, the area of unserved communities and the unserved population are the
lowest for Euclidean distance, but the largest for driving distance. This finding indicates that the park
accessibility assessed by MG2SFCAwithin a fixed catchment size is easy to overestimate by the metric of
Euclidean distance. People who opt to drive to parks may travel farther than those who walk or cycle.
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Table 4. Statistical comparison of the different levels of park accessibility under four types of
travel distance.

Level of
Parks

Travel
Distance

Threshold

Distance
Mode Mean Standard

Deviation

Underserved
Community
(Numbers)

Underserved
Areas (km2)

Underserved
Population

Community
park 2 km

Euclidean 0.82 1.85 79 328.38 2,336,132
Walking 0.79 1.90 126 471.72 3,723,610
Bicycling 0.78 1.89 137 541.78 4,125,854
Driving 0.77 1.98 181 675.48 5,487,025

City park 5 km

Euclidean 9.98 28.90 35 165.08 1,515,039
Walking 13.28 79.68 97 545.06 3,620,555
Bicycling 11.70 49.19 100 566.75 3,766,218
Driving 11.17 44.51 148 716.66 5,395,964

Natural
park 10 km

Euclidean 54.82 211.38 5 24.59 77,714
Walking 52.47 214.58 45 66.23 781,082
Bicycling 52.27 215.24 59 88.92 1,092,732
Driving 54.34 225.48 74 121.67 1,288,487

Note: The underserved is defined as the score of accessibility lower than 0.1 calculated byMG2SFCA.

3.2.2. Spatial Analysis of Park Accessibility

The statistical differences in park accessibility under the four metrics of travel distance were
analyzed as indicated above, but the spatial distribution and patterns of park accessibility are still
unclear. Figures 6–9 show the accessibility of the 639 communities to urban parks for Euclidean
distance, walking distance, bicycling distance, and driving distance, respectively. Dark color
indicates high accessibility. In particular, the white denotes that a community is underserved; that is,
the accessibility value is less than 0.1. At first glance, the park accessibility at three levels under any
metric of travel distance is better in the central city, such as in Futian and Luohu Districts. because the
reason is that the number of underserved communities is less than that of other districts. By comparison
with Figure 6, the accessibility measured by Euclidean distance is better than that measured by the other
types of travel distance (e.g., walking distance (Figure 7), bicycling distance (Figure 8), and driving
distance (Figure 9). This finding reminds us that the metric of distance deserves attention when
calculating accessibility byMG2SFCA. The number of darker communities is greater, while the white
communities is lower. The spatial patterns of accessibility in Figures 7–9 are similar. A comparison in
Figures 7–9 shows that regardless of the metric of travel distance is used, apparent variations in spatial
accessibility exist among the three level of parks. For instance, in Figure 7 (walking distance), the
spatial distribution of underserved communities at the community park level is discrete in throughout
the whole city, while at the city park level the underserved communities cluster together. For natural
parks, most of the underserved communities are at edge of the administrative territory. Generally,
the spatial accessibility at natural park level is higher than that at the community and city levels, i.e.,
Figure 7c is greyer than Figure 7a,b. Notably, the darkest communities at the natural park level is at
the south of Dapeng, while the communities are white at the community level.
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Figure 6. Park accessibility by Euclidean distance at three levels: (a) community park level; (b) city park level; (c) natural park level.
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Figure 7. Park accessibility by walking distance at three park levels: (a) community park level; (b) city park level; (c) natural park level.
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Figure 8. Park accessibility by bicycling distance at three park levels: (a) community park level; (b) city park level; (c) natural park level.
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Figure 9. Park accessibility by driving distance at three park levels: (a) community park level; (b) city park level; (c) natural park level.
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3.3. Disparity Analysis of the Supply-to-Demand

The ratio of park acreage to population at the three levels of park is 0.58 for community parks,
4.26 for city parks, and 22.44 for natural parks, respectively. Generally, the distribution of natural parks
has a significant effect on the total park accessibility such that most communities with high accessibility
are surrounded by natural parks. It should be noted that the size of natural parks are larger than most
of city parks and communities parks. Meanwhile, the accessibility values positively correlated with
park area and negatively with population. Taking all parks into calculation, the accessibility at the
natural park level accounts for over 80% of the total. By summing the park accessibility at three levels,
the total accessibility (Ai) values are standardized by Equation (7) to conduct a joint analysis with
the standardized population density by Equation (8). The spatial patterns of the association between
total park accessibility and population density is shown in Figure 10. Under four types of distance,
communities with high accessibility but low population density are mainly distributed in the western
and southern sub-districts, including Pingshan, Dapeng, and Nan’ao. However, communities with
low accessibility and high population density, which show a severe mismatch between park provision
and demand population, are located in Songgang, Shajing, Fuyong, Xixiang, and Xin’an in Bao’an
District; Gongming in Guangming District; Guanlan and Longhua in Longhua District; and Pinghu,
Bantian, and Buji in Longgang District. Migrant workers live in those deprived communities where an
abundance of factories have opened and low living costs are needed.
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Figure 10. Park accessibility and its associations with population density under four types of travel
distance: (a) Euclidean distance; (b) walking distance; (c) bicycling distance; (d) driving distance.

From a statistical perspective (Table 5), the variation of the associations between total park
accessibility and population density under different types of transportation distance excluding
Euclidean distance is relatively unobvious with respect to the number of communities. Some 18% of
the communities have high population density and high park accessibility, while less than 17% of the
communities are low-density areas with low park accessibility. That is, over half of the communities
have an accessibility level inappropriate for their population density. The percentage of communities
that have high population density but low park accessibility is over 40% (equivalent to approximately
55% of the population).
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Table 5. Summary of the associations between park accessibility (Ai) and population density (PopDi).

Type of
Distance

High Ai—High
PopDi

High Ai—Low
PopDi

Low Ai—Low
PopDi

Low Ai—High
PopDi

Count

Euclidean 151
23.97%

158
25.08%

71
11.27%

250
39.68%

Walking 114
18.10%

138
21.90%

91
14.44%

287
45.56%

Bicycling 113
17.94%

136
21.59%

93
14.76%

288
45.71%

Driving 114
18.10%

125
19.84%

104
16.51%

287
45.56%

Population

Euclidean 4,246,057
28.42%

2,014,124
13.48%

1,380,564
9.24%

7,300,112
48.86%

Walking 3,383,533
22.65%

1,520,657
10.18%

1,874,031
12.54%

8,162,636
54.63%

Bicycling 3,435,872
23.00%

1,699,450
11.37%

1,695,238
11.35%

8,110,297
54.28%

Driving 3,038,667
20.34%

1,512,910
10.13%

1,881,778
12.59%

8,507,502
56.94%

Note: The total number of communities = 630, excluding 9 communities without population data; the total
population in the study area = 14.94 million.

4. Conclusions

This study introduced an innovative model, named as modified Gaussian-based 2SFCA
(MG2SFCA), to explore the disparity between park provision and the demand population in terms
of potential spatial accessibility. Unlike previous studies that used a dichotomous function or a
continuous decay function in 2SFCA or Gaussian-based 2SFCA model [27,52], a constant and gradual
mixed impedance function was adopted to delineate the interactions between park provision and
the demander, and differentiate spatial variation within catchment areas. The modified Gaussian
function was based on rational assumption that within a limited amount of travel distance, visitors’
willingness to go to a park is not diminished. In a defaulted range of distance, the possibility decrease
between 1 and 0. Additionally, the result of MG2SFCA is the ratio of park acreage to population, a
intuitive reflection of the availability of green space resources [74]. As one member of the 2SFCA
family, this method can be easily extended to evaluate accessibility of facilities such as health care,
food outlets, and amenities.

Distance is a key parameter to calibrate the spatial separation between the supply and the
demand in spatial accessibility modeling. In this paper, we constructively explore the influence of
the metric of travel distance on spatial accessibility. In a case of Shenzhen, China, four types of travel
distance between communities and urban parks was requested by online map API service. By contrast
and correlation analysis among four types of distance (e.g., Euclidean distance, walking distance,
bicycling distance, and driving distance), the correlations were shown to be relatively high between
alternative types of distance, which are aligned with prior study [75]. Under the method of MG2SFCA,
the accessibility calculated by Euclidean distance was overestimated relative to that calculated by
the other three types of distance. Notably, the patterns of proximity and accessibility in Shenzhen
under walking and bicycling distance were similar. It implied that a network dataset by walking is
an alternative to a detailed, unavailable network dataset that includes bike lanes and cycle tracks.
This study should encourage urban planners to consider the metric of distance on the evaluation of
green spaces provision and environmental justice from perspective of spatial accessibility.

Taking urban parks’ function, size, and location into account, we evaluated the disparity between
park provision and the demanders in terms of accessibility at hierarchical levels (e.g., community
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park, city park, and natural park) under four types of distance. The statistical and spatial variation
of park accessibility at three levels is apparent. In general, at the natural park level, accessibility is
better, and the number of underserved communities and the underserved population is the smallest.
The underserved communities are distributed at the edge of the administrative boundary. At the
community park level, the distribution of underserved communities is scattered throughout the whole
city, but clustered at the city park level. The disparity analysis showed that the mismatch between park
provision and demand population is better in core districts (Luohu, Futian, Nanshan, and Yantian)
than that in non-core districts [76]. Communities, which suffer from a severe shortage of park service
provision due to the high population density as well as the low spatial accessibility, were located in
Songgang, Shajing, Fuyong, Xixiang, and Xin’an in Bao’an District; Gongming in Guangming District;
Guanlan and Longhua in Longhua District; and Pinghu, Bantian, and Buji in Longgang District.
The findings can give some implications for urban planners and policy-makers on delineating shortage
areas and where to locate additional parks to meet residents’ fundamental physical and psychical
demands from visiting urban green spaces.

Several limitations are worth addressing and of improvement. First, although the population
data at the building level is available, a population-weighted centroid was used as a proxy for the
demand population in a community. It was based on the assumption that all populations within
the community have uniform park accessibility. Actually, the number of buildings in Shenzhen was
over 0.6 million. It is time-consuming to harvest the four types of distance of building-to- park in the
whole city by AutoNavi Maps API for individual users. Second, the catchment size was the same for
both the supply and demand side by consulting urban planning regulations and acts. It remained
unidirectional without reference to park visitors’ preference. Third, only urban parks and population in
Shenzhen are considered to assess accessibility. Without available data in neighboring cities, this study
cannot account for the edge effect of park accessibility. Although the distance between origins and
destinations was considered, we neglected the influence of routes which people go to parks through
on the park accessibility [49]. In the future, we will attempt to eliminate aforementioned limitations to
offer more practical evaluation of park accessibility.
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