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Abstract: There is an increasing body of evidence showing the impact of air pollutants on human
health such as on the respiratory, and cardio- and cerebrovascular systems. In China, as people
begin to pay more attention to air quality, recent research focused on the quantitative assessment
of the effects of air pollutants on human health. To assess the health effects of air pollutants
and to construct an indicator placing emphasis on health impact, a generalized additive model
was selected to assess the health burden caused by air pollution. We obtained Baidu indices (an
evaluation indicator launched by Baidu Corporation to reflect the search popularity of keywords
from its search engine) to assess daily query frequencies of 25 keywords considered associated with
air pollution-related diseases. Moreover, we also calculated the daily concentrations of major air
pollutants (including PM10, PM2.5, SO2, O3, NO2, and CO) and the daily air quality index (AQI)
values, and three meteorological factors: daily mean wind level, daily mean air temperature, and
daily mean relative humidity. These data cover the area of Beijing from 1 March 2015 to 30 April 2017.
Through the analysis, we produced the relative risks (RRs) of the six main air pollutants for respiratory,
and cardio- and cerebrovascular diseases. The results showed that O3 and NO2 have the highest
health impact, followed by PM10 and PM2.5. The effects of any pollutant on cardiovascular diseases
was consistently higher than on respiratory diseases. Furthermore, we evaluated the currently used
AQI in China and proposed an RR-based index (health AQI, HAQI) that is intended for better
indicating the effects of air pollutants on respiratory, and cardio- and cerebrovascular diseases than
AQI. A higher Pearson correlation coefficient between HAQI and RRTotal than that between AQI and
RRTotal endorsed our efforts.

Keywords: air pollution; air quality index; generalized additive model; Baidu index; cardio- and
cerebrovascular disease; respiratory disease

1. Introduction

Respiratory, and cardio- and cerebrovascular diseases are generally considered associated with air
pollution. According to some studies [1–6], short-term exposures are the main hazards that exacerbate
symptoms or cause acute forms of diseases, while long-term exposures are probably the main hazards
that cause this type of diseases. These studies show that the increase in air particulate matter, SO2, NO2,
CO, O3, and other pollutants can worsen respiratory, and cardio- and cerebrovascular diseases [7–15].
An increasing body of evidence shows that air pollutants can significantly reduce lung functions and
human body immune function and increase the prevalence of malignant tumors [16–20].

The acute health effects of short-term exposure to air pollutants were mainly studied using
time-series studies, case-crossover studies, and panel studies [21]. There are some approaches to the
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assessment of health risk caused by air pollution. Risk-based approaches [22] and epidemiological
approaches [23] are commonly applied. The risk-based approaches examine the way in which
pollutants enter the body to estimate the exposure dose and risk. The routine epidemiological
approaches evaluate the impact of exposure to air pollution based on the regressed relative risk
(morbidity or mortality) with time series from hospital clinic data, pollutant concentration data,
meteorological data, and other data sources. One of the widely used methods in time-series studies
is based on the generalized additive model (GAM) with Poisson regression. Klot [24] found that an
increase by 10 µg/m3 in the particulate matter smaller than 10 micrometers (PM10) led to a risk of
1.021 (95% confidence intervals (CIs): 1.004–1.039) in heart diseases such as acute myocardial infarction
in cities throughout Europe from 1992 to 2000. Villeneuve [25] confirmed that, in April–September, the
risk of acute ischemic stroke was 1.11 (95% CIs: 1.01–1.22) caused by the increase in SO2 concentration,
and the risk of acute ischemic stroke caused by NO2 was 1.17 (95% CIs: 1.05–1.31) in Edmonton,
Canada. Huang et al. [26] studied the relative risk (RR) values of cardiovascular and respiratory
mortality caused by air pollution and visibility in Shanghai, China. In a recent systematic review and
meta-regression analysis, Achilleos et al. found a 0.89% (95% CIs: 0.68, 1.10%) increase in all-cause,
a 0.80% (95% CIs: 0.41, 1.20%) increase in cardiovascular, and a 1.10% (95% CIs: 0.59, 1.62%) increase
in respiratory mortality per 10µg/m3 increase in the particulate matter smaller than 2.5 micrometers
(PM2.5) [27].

Although the hospital outpatient records present detailed information such as age, sex, and
disease history, thus representing good data sources for health impact analysis, these data have
some disadvantages, including high difficulty of data acquisition, small sampling range, and uneven
sampling. The Baidu index (BI) is an evaluation of keyword search popularity launched by Baidu
Corporation (www.baidu.com). With a daily average search volume of up to six billion, the Baidu index
has several advantages over hospital outpatient data: a wide range of sampling, uniform sampling,
and easy to obtain. However, there is a basic assumption for using internet searches as surrogates of
diseases, i.e., the search frequency simultaneously increases with cases in the study area increasing,
even though there are some exceptional factors. For example, people may search for diseases or
symptoms of friends or relatives that do not live in the search area or because they are only curious.
Also, some people with disease will not make searches during symptoms. Under this assumption, the
more significant the linear correlation is between increase in search volumes and increase in cases, the
better the Baidu index is taken as a surrogate of disease occurrences. This assumption is not uncommon
in some studies based on internet searches [28–35]. Reference [29] confirmed that an increase in Baidu
index positively predicted the increase in HIV/AIDS (Human Immunodeficiency Virus that can cause
Acquired Immune Deficiency Syndrome) incidence, even though the increase percentages were not
different. Reference [32] showed that the Baidu index had a positive linear relationship with the
local dengue fever occurrence. Reference [34] found a positive correlation between the volume of
H7N9-related “cyber user awareness” and the epidemic situation.

In this study, the Baidu index, deemed as representing symptom searches of respiratory, and
cerebro- and cardiovascular diseases, was exploited in the place of hospital outpatient data to model
the impact of air pollutants on human health. We also proposed a relative risk (RR)-based index that is
supposed to better indicate the health risk of air pollution (specifically respiratory, and cerebro- and
cardiovascular diseases), and compared it with China’s current air quality index (AQI) adopted by the
Ministry of Environmental Protection. This new index can be used for health risk evaluation in our
future mapping of the effect of air pollution on health in Beijing and the Chinese populations.

www.baidu.com
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2. Methods

2.1. Study Area

This study was conducted in Beijing, the capital of China, where air pollution is severe. This area
covers 16,410 km2, with a residential population of 21.7 million in 2016. The Gross Domestic Product
(GDP) of the study area amounts to 3.35% of the whole country.

Unlike other cities where PM2.5 is high only in the winter, in Beijing, air pollution is high in
both the autumn and winter [36]. According to the long-term observations performed by the Chinese
Academy of Sciences [37], the average annual value of PM2.5 in Beijing was 92.7 µg/m3 during
2006–2017, reaching 110.7 µg/m3 in 2006, the historical maximum. Since 2006, the concentration of
PM2.5 decreased by 3.36 µg/m3 each year. In 2013–2015, the concentration of PM2.5 in 74 cities in China
showed a decreasing trend, and the concentration of PM2.5 in the Beijing–Tianjin–Hebei region overall
decreased by 27.4%; however, the decrease was only 9.9% in Beijing.

There are 1436 monitoring stations of air quality in total all over China with data available
from the Ministry of Environmental Protection of the People’s Republic of China (MEP) website
(http://datacenter.mep.gov.cn/). Twelve of these stations are located in Beijing. The study area, its
location in China, and the monitoring stations that provided pollutant data for our study are shown in
Figure 1.
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Figure 1. Locations of the study areas within China and the air quality monitoring stations.

2.2. Data

There were three main types of data collected and preprocessed in our study: the AQI was
considered as the causing factor, the Baidu index was taken as the effect factor, and meteorological
observations were used as measures of condition factors.

2.2.1. Meteorological Observations

We obtained hourly series of three meteorological factors (mean wind level, mean air temperature,
and mean relative humidity) during 1 March 2015–30 April 2017 from meteorological stations located in
Beijing City. These meteorological factors are presumed to have control over the effects of air pollution
on health. The missing data were filled with interpolated values from their neighbor observations
(if any) on the same day through linear interpolation.

http://datacenter.mep.gov.cn/
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2.2.2. Air Quality Data

We downloaded hourly records of AQI and six individual pollutant concentrations: PM10, PM2.5,
SO2, O3, NO2, and CO during 1 March 2015–30 April 2017 from the MEP website. The missing data
were filled with interpolated values from their neighbor observations (if any) on the same day through
linear interpolation.

According to the algorithm provided by the MEP Data Center, the AQI takes the maximum of the
six individual air quality index (IAQI) values (SO2, NO2, PM10, PM2.5, O3, and CO). The IAQI was
calculated as follows [38]:

IAQIi =
IAQIHi − IAQILi

BPHi − BPLi
(Ci − BPLi) + IAQILi, (1)

where IAQIi represents the individual air quality index of the i-th pollutant; Ci is the concentration of
the i-th pollutant; BPHi and BPLi are the high and low values of the pollutant concentration limits closest
to Ci; and IAQIHi and IAQILi are the individual air quality indices corresponding to BPHi and BPLi.
Table 1, which is from the Chinese government’s Ambient Air Quality Standard (GB3095-2012) [39],
can be used to look up the values of IAQIHi, IAQILi, BPHi, and BPLi.

Table 1. Breakpoints for the individual air quality index (IAQI) according to the standard of the
Ministry of Environmental Protection (MEP).

IAQI SO2 (µg/m3)
24 h

NO2 (µg/m3)
24 h

PM10 (µg/m3)
24 h

CO (mg/m3)
24 h

O3 (µg/m3)
8 h

PM2.5 (µg/m3)
24 h

0 0 0 0 0 0 0
50 50 40 50 2 100 35

100 150 80 150 4 160 75
150 475 180 250 14 215 115
200 800 280 350 24 265 150
300 1600 565 420 36 800 250
400 2100 750 500 48 1000 350
500 2620 940 600 60 1200 500

2.2.3. Baidu Indices

Baidu is the largest search engine portal in China with a daily search volume up to six billion.
The Baidu index is an evaluation indicator launched by Baidu Corporation (www.baidu.com) to reflect
the search popularity of keywords from the search engine. It analyzes and calculates the weighted
sum of the search times of keywords of interest by the network users from the Baidu Portal. Many
researchers in China used Baidu index data in their studies [28–35,40]. Based on the results of the
literature survey, we present 37 keywords that are assumed to be associated with air pollution-related
diseases [17–19]. We obtained their Baidu indices from https://index.baidu.com/, where the search
area was set to “Beijing all cities”, the time period was set to 1 March 1 2015–30 April 2017, and the
type was the overall trend. As some of the keywords were not included in Baidu index, we ultimately
obtained the Baidu indices for 25 keywords (Table 2). The Baidu index only includes the keywords that
have a relatively high search volume, and 12 keywords (the English counterparts of the 12 Chinese
keywords not included were ischemic heart disease, hypertensive heart disease, shortness of breath,
myocardial disease, pericardial disease, stridor, whistle, acute and chronic rheumatic heart disease,
cerebral atherosclerotic infarction, low-birth-weight baby, pulmonary failure, and other types of heart
disease) were not included in the Baidu index, indicating that they are rarely entered due to very little
use. These keywords are either statistically insignificantly correlated with short-term air pollution, or
they have more commonly used alternatives in the 25 keywords. In summary, not including the 12
keywords had little effect on our study and was statistically negligible.

www.baidu.com
https://index.baidu.com/
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We divided the 25 keywords into two categories: “respiratory system” and “cardio- and
cerebrovascular”, and then we added all the indices of each category together and obtained the
respiratory total index and cardio- and cerebrovascular total index.

Table 2. The selected keywords for the Baidu indices.

Category Keywords

RTI (respiratory total index)
respiratory system, pulmonary disease, lung cancer, pneumonia,
asthma, bronchitis, rheum, cough, sputum, respite, shortness of
breath, nasal, congestion, sore throat

CTI (cardio- and cerebrovascular total
index)

cardiovascular, cerebrovascular, cardio- and cerebrovascular,
rheumatic, heart disease, coronary heart disease, myocardial
infarction, myocardial, ischemia, arrhythmia, heart failure, ischemic
stroke, heart valve disease, subarachnoid hemorrhage

2.3. Correlation Analysis

Pearson correlation and coplot were used to measure the association between air quality data and
the Baidu search indices. Pearson correlation is the most commonly used statistic to depict the linear
relationship between two variables [41], while coplot is an exploratory graphical method to investigate
the relationship between a pair of variables (Y1 and Y2) conditioned on a third variable (X) [42,43].
Here, it was used in the exploration of how the relationship between AQIs and Baidu index varied
across meteorological factors.

2.3.1. Pearson Correlation

For two variables, say, X and Y, which have observations [xn] and [yn], respectively, the Pearson
correlation coefficient is defined as

rX,Y =
Cov(X, Y)

σXσY
=

E[(X − µX)(Y − µY)]

σXσY
, (2)

where Cov(X, Y) represents the covariance of X,Y; µX and µY represent the means of X and Y;
E[·] expresses a mathematical expectation; and σX and σY are the standard deviations of X and Y,
respectively.

In practical use, the formula for calculating the Pearson correlation coefficient using the
observations is

rxy =
∑ xiyi − nxy
(n − 1)sxsy

=
n ∑ xiyi − ∑ xi ∑ yi√

n ∑ x2
i − (∑ xi)

2
√

n ∑ y2
i − (∑ yi)

2
, (3)

where x(y) and sx(sy) are the mean and variance of [xn]([yn]), respectively; rxy is in the range of [−1, 1].

2.3.2. Coplot

A coplot is essentially a composition of multiple scatterplots of two variables Y1 and Y2 conditional
on a third variable X. The observations of Y1 and Y2 are divided into multiple groups according to the
value intervals of X and scatterplotted. The value intervals can overlap. There are identical numbers
of observations for each scatterplot. Generally, the scatterplots are arranged in a matrix from left to
right and from bottom to top, corresponding to the ordering of the value intervals, and there is an
additional component that is called the “Given” panel, which shows the value intervals of X. Since
each scatterplot has the same number of observation samples, the sampling errors are homogeneous
for each scatterplot. Thus, conditional correlation analysis between two variables can be visualized
clearly with a coplot.
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2.4. Exposure Assessment

2.4.1. Statistical Modeling

The impact of air pollution on health is complex (nonlinear) and there may be cross effects
between different pollutants. Pollutant concentration is also closely associated with weather factors
and time. Considering these situations, we selected a GAM approach to study the relationship between
air pollution and the Baidu index. The GAM is a semiparametric expansion of the generalized linear
model (GLM) [44], which assumes that the functions are additive and that the composition of the
functions is smooth. The GAM can better analyze this relationship because it can use the nonparametric
smooth spline functions to fit the curve flexibly [45–48]. The basic formula of GAM is as follows:

G(E(Y)) = Intercept + f 1(x1) + . . . + fm(xm), (4)

where E(Y) is the expectation of the response variable Y, and G(•) is the link function, the selection
of which depends on the probability distribution of the response variable. Gaussian distribution and
Poisson distribution are the most commonly used link functions in real-world applications, while fi(xi),
i = 1, 2, 3, . . . , m represents the smooth functions of the m explanatory variables. More complex forms
of GAM models also incorporate additional linear variables or dummy variables.

Considering the adjustment of meteorological factors for the effects of air pollution on morbidity
as done in some studies [3,5,26,48,49], we incorporated wind, temperature, and humidity into the
exploratory variables. For time-series observations, it is common practice to extract long-term trends
and changes in the cycle of working days. Because daily search counts typically follow a Poisson
distribution, a GAM with log link and Poisson error, combined with the basic assumption that an
increase in symptoms of the concerned diseases leads to a simultaneous increase in internet searches, is
expected to reasonably associate air quality with smooth fluctuations in daily morbidity. This treatment
is also consistent with several other time-series studies [50–52]. We specified the following GAM
model formula:

Yt ~ Poisson(λt)
logλt = Intercept + βAQIt + DOW + WIND + S(Time,k1) + S(Temp,k2) + S(Humi,k3)

(5)

where Yt denotes the individual or total Baidu index; AQIt represents the air quality index and β

is the corresponding regression coefficient; S(•) represents the smoothing splines, while k1, k2, and
k3 are the degrees of freedom of smoothing splines; Time is the calendar time; DOW is the day of
the week representing the dummy variable of Monday to Sunday; WIND is the daily mean wind
speed level (also a dummy variable); Temp is the daily mean temperature; and Humi is the daily mean
relative humidity.

We mainly optimized the model from two aspects: (1) identification of time lags, and (2) removal
of the indices with weak correlations. On one hand, although we were examining the short-time effects
of air pollutants, the effects may not appear simultaneously, instead showing a lag effect. We used the
AQI to represent the total condition of air pollution, and took RTI and CTI as the response variables.
We changed the delay of the time series of the two indices, and found time lags with the highest
value of β. On the other hand, respiratory, and cardio- and cerebrovascular diseases are generally
inextricably linked to air pollution, but each sub-index cannot be significantly associated with air
pollution. We took 25 sub-indices as the response variables, and we fit each one to the exploratory
variables; then, we eliminated those indices with low correlations (judged by β, R2, and deviance
explained). As a result, we recalculated RTI and CTI.

In summary, we specified and fitted a GAM to obtain the estimated log-relative βs of AQI
following the basic steps of GAM: (1) determining the explanatory variables, (2) determining the link
function, (3) optimizing the model, and (4) evaluating the results.
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We selected the open-source software R (x64 Ver3.4.0) to carry out the GAM analysis (mainly
using the “mgcv” package) [53,54]. To facilitate the comparison with existing studies, the results were
presented as the percent change in daily searches per 10 ug/m3 increase in AQI (or IAQIs).

2.4.2. Relative Risk (RR)

In epidemiology, relative risk (RR) is expressed as the ratio of risk of the outcome in one group
compared with another group. It is worth noting that the risk ratio is different from the odds ratio,
even though the latter is often interpreted as if it were the risk ratio [55]. In this study, based on the
exposure–response coefficient β obtained from the GAM model, we calculated the logarithm of relative
risk change (LRR, the natural logarithm of the RR) when the pollutant concentration changed by one
unit. The LRR was then used to quantitatively measure the risk. Furthermore, the inter-quartile range
(IQR) of the pollutant concentration was defined as the unit concentration. According to the above
definition, the calculation formula of RR was RR = exp(β × IQR); correspondingly, the 95% CIs of RR
were calculated as exp((β ± 1.96 SE) × IQR) [56]. This implies that the percentage change in the Baidu
index was (RR − 1) × 100% for an increase of one IQR unit in pollutant concentration. Therefore,
when the pollutant concentration changed by 10%, the percentage of the change in Baidu index was
((10/IQR) × (RR − 1)) × 100%.

2.5. Health AQI

We assumed that there was a regressed RR for each pollutant according to the GAM. Referring to
the work of References [57–60], the short-term total exposure risk of the day can be defined as

(RR − 1)total = max((ci/IQRi) × (RRi − 1)), (6)

where i = 1, . . . , 6 (the number of pollutants under consideration), RRi and IQRi represent the relative
risk and inter-quartile range for pollutant I, respectively, and ci is the corresponding day-averaged
concentration.

For convenience, we defined a pollutant sub-index (PSI) to reflect the contribution of individual
pollutants to the overall risk.

PSIj = cj × aj, (7)

where the subscript j refers to the j-th pollutant, cj refers to the corresponding day-averaged
concentration, and aj is directly proportional to the incremental risk values (RRi − 1). We then
defined a new AQI as

HAQI = max(PSIj). (8)

This new AQI focuses on effects of air pollution on health; thus, we called it the health AQI
(HAQI).

3. Results

3.1. Data Exploration

The hourly meteorological observations and pollutant concentration records from 1 March 2015,
12:00 a.m. to 30 April 2017, 11:00 p.m. were obtained. The number of missing data points for hourly air
quality indices and meteorological observations was 535 (accounting for 2.8%) and 2819 (accounting
for 14.8%). Figure 2 shows the numbers of valid observations every day during the study period. It is
shown that AQIs had at least six records on any day for all days, and meteorological observations
had no records for a few days (four days). Figure 3 shows the daily series of air quality indices and
meteorological factors. During the study period, there was a summation of 4,314,272 Baidu indices
of the selected 25 keywords. The RTI was 2,781,456 and the CTI was 1,532,816. There were about
5447 Baidu indices per day on average during the 792 days. Approximately, the RTI accounted for
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64.5%. Figure 4 shows the daily series of RTI and CTI. As seen, there were obvious outliers in the
beginning of June 2016. After checking the original data, we found that the outliers were during 6–11
June 2016. Since we did not know what caused these outliers, we excluded these outliers. We linearly
interpolated these hourly data for missing points on the same day, and then integrated them into
daily series through averaging the observations and interpolated values of all days. If there were no
observations in a day (12:00 a.m. to 11:00 p.m.), the day was marked as having no data.Int. J. Environ. Res. Public Health 2019, 16, 8 of 19 
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Figure 3. The time series of daily meteorological factors (mean temperature, mean relative humidity,
and mean wind level), pollutant concentrations, and the Ministry of Environmental Protection (MEP)
air quality index (AQI).
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Figure 4. The time series of daily respiratory total index (RTI) and cardio- and cerebrovascular total
index (CTI).

Table 3 shows the summary statistics of the obtained daily AQIs and meteorological observations.
We dropped the data of the four days and finally took the time series with 788 daily data points to
build the GAM.

Table 3. Summary statistics of air pollution data, meteorological observations, and Baidu searches in
Beijing (1 March 2015–30 April 2017).

Data Days Mean ± SE Min P25 Median P75 Max IQR

Air pollution
AQI 792 105.5 ± 2.72 15.0 50.5 83.7 135.9 475.2 85.4

PM2.5 (µg/m3) 792 74.8 ± 2.45 6.7 26.9 54.2 98.6 477.5 71.7
PM10 (µg/m3) 792 97.1 ± 2.70 0.0 41.6 79.7 129.2 518.3 87.6
CO (mg/m3) 792 1.2 ± 0.038 0.23 0.59 0.89 1.32 8.14 0.73
O3 (µg/m3) 792 57.5 ± 1.31 2.1 28.9 53.3 79.5 168.0 50.6

NO2 (µg/m3) 792 48.5 ± 0.87 10.4 31.6 42.8 59.8 153.5 28.2
SO2 (µg/m3) 792 10.3 ± 0.37 1.8 3.1 6.4 14.0 85.2 10.9

Meteorological observations
a Wind level 788 1.84 ± 0.021 0.75 1.43 1.72 2.09 4.67 0.66

Temperature (◦C) 788 13.5 ± 0.37 -14.5 3.6 14.9 23.1 32.4 19.5
Relative humidity (%) 788 52.1 ± 0.73 8.0 35.8 52.7 68.5 98.6 32.7

Baidu indices
RTI 792 3511.9 ± 17.79 2336.0 3144.0 3460.5 3837.5 5800.0 693.5
CTI 792 1935.4 ± 12.30 928.0 1792.5 1948.5 2071.0 8750.0 278.5

a Wind level was determined according to the wind speed ranges defined in the standard “Wind Power Level”
issued by the Chinese Meteorological Administration.

The monthly total search index of 25 selected keywords, the monthly AQI and six pollutant
concentrations, and the monthly meteorological observations (obtained through averaging the daily
data) are plotted in Figure 5. Figure 5a shows that almost all the trends of AQIs were similar except
for O3. The curves approximately indicate high values in the winter and low values in the summer
(except for O3, which had the inverse change). Figure 5b shows that temperature, relative humidity,
and wind level had trends with one-year cycles. Figure 5c shows the respiratory-related search indices
and indicates that all curves could be clearly divided into two groups. Among them, “bronchitis”,
“asthma”, “lung cancer”, “pneumonia”, “rheum”, and “cough” had a higher search volume, and
almost all of their curves had peaks in the winter and valleys in the summer except asthma, which had
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no clear cycle. Figure 5d shows the cardio- and cerebrovascular-related search indices. “Coronary”
and “myocardial” had the highest search volume.
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Figure 5. (a) AQI and six major air pollutants, where CO is shown on the right side of the vertical
axis; (b) meteorological factors, where wind level is shown on the right side of the vertical axis; (c)
respiratory-related Baidu indices; and (d) cardio- and cerebrovascular-related Baidu indices.

From the Pearson correlation coefficients shown in Table 4, the air quality indices and RTI had
relatively high values of r, and the corresponding p-values were less than 0.01, which indicates
significant correlation. In contrast, a correlation between pollution indices and CTI was not obvious in
terms of the values of r and p-values. In all air quality indices, O3, NO2, CO, and RTI had the highest
correlations. It is worth noting that O3 had a significant negative correlation with RTI.

Table 4. The results of the Pearson correlation analysis (RTI: respiratory total index, CTI: cardio- and
cerebrovascular total index).

Pollutant RTI CTI

r (95% CIs) p−value r (95% CIs) p-value
AQI 0.21 (0.14,0.28) 9.84 ×10−10 0.05(−0.02, 0.12) 0.1288

PM2.5 0.23 (0.16,0.30) 1.57 ×10−11 0.05(−0.02, 0.12) 0.1781
PM10 0.23 (0.16, 0.29) 3.212 ×10−11 0.07(−0.00, 0.14) 0.0589
CO 0.33 (0.26,0.39) <2.2 ×10−16 0.05 (−0.02, 0.12) 0.1683
O3 −0.40(−0.45, −0.33) <2.2 ×10−16 0.07 (0.00,0.14) 0.03644

NO2 0.35 (0.29,0.41) <2.2 ×10−16 0.04 (−0.03, 0.11) 0.2233
SO2 0.28 (0.21,0.34) 1.485 ×10−15 0.08 (0.01, 0.14) 0.03383
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Figure 6 shows scatter plots of AQI and RTI conditional on several meteorological factors, showing
which curves were fitted to indicate the trends more clearly. The individual panels should be viewed
from left to right, and bottom to top. Taking Figure 6c as an example, the lower left is the AQI and
RTI scatter plot corresponding to the wind level ranging from 0.5–2.5, while the lower right is that
from 1.5–2.5, and the upper left is that from 1.5–5.5. Meteorological factors were segmented based
on the same number of samples per segment. Figure 6a shows that, when there is a higher humidity
(Humi), RTI increases with AQI increasing. Figure 6b shows that the lower the temperature (Temp) is,
the greater the impact is of AQI on the RTI. Figure 6c shows that the smaller the wind level is, the
greater the impact is of AQI on the RTI. Synthetically, Humi had the greatest impact on AQI and RTI.
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Figure 6. Coplot showing the relationship between the variables air quality index (AQI) and RTI
conditioned on meteorological factors (humidity, temperature, and wind level): (a) the relationship
between RTI and AQI conditioned on humidity; (b) the relationship between RTI and AQI conditioned
on temperature; and (c) the relationship between RTI and AQI conditioned on wind speed.

According to the coplot graphs, the same air quality index had a much higher correlation with RTI
than with CTI given the same meteorological factors. The results were consistent with the results of the
Pearson correlation coefficient. In addition, all groups generally showed similar trends: (1) when Humi
increased, RTI increased faster with AQI increasing; (2) the lower the temperature was, the clearer the
impact was of AQI on RTI; and (3) the smaller the wind level was, the greater the impact was of AQI
on RTI. Among the three meteorological factors, the impact of Humi was the greatest.

3.2. Health Impact Evaluation

Because time itself has a high correlation with air quality, the time smoothing functions with
a high degree of freedom are sensitive to the short-term air quality changes and may lead to
overfitting. In order to explore the long-term trend of effects of time on Baidu indices, in this study, we
confined the degree of freedom of time smoothing functions to 1–4, as commonly proposed in some
studies [26,48,50,52]. Through graphically analyzing the time smoothing functions with those different
degrees of freedom, we found that the time smoothing function with three degrees of freedom had the
best consistency with the observation series. Furthermore, based on published literature [4,61], three
degrees of freedom (whole period of study) for mean air temperature and mean relative humidity
could control well for the meteorological effects on mortality and, thus, it was chosen to be used in our
models. In summary, we finally took k1 = k2 = k3 = 3 in Equation (3) to obtain the estimated log-relative
rate β.
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Many researchers found that the health effects of air pollution on respiratory and cardiovascular
diseases have a hysteresis of 0–6-day lags [25,48]. Therefore, we delayed the time series of the RTI and
CTI and then carried out GAM regression analysis. The results are shown in Table 5. We can see that
the βs of AQI varied significantly with the different lag periods. The regression coefficients reached a
maximum when the time lag was three days. This lag is also consistent with the results obtained by
other studies through hospital cases [25,48]. Therefore, the GAM analysis was performed with a time
lag of three days.

Table 5. The results with the generalized additive model (GAM) taking into account different time lags.
Lags of 0–5 days were considered and the corresponding βs for RTI and CTI were calculated.

Lag (Day) 0 1 2 3 4 5

β for RTI (10−4) 2.178 2.489 2.835 3.05 3.073 2.468
β for CTI (10−4) 1.151 1.867 2.496 3.157 2.991 2.408

Comparing the results of GAM regressing the RTI and CTI on the AQI, we can see that the R2 and
the explained level of the RTI were much higher than those of the CTI, indicating that the effects of
air pollution on respiratory diseases are more significant than those on cardio- and cerebrovascular
diseases. Air pollution, in contrast, can only statistically explain a lesser part of the change in cardio-
and cerebrovascular incidences.

We also regressed the sub-indices with GAM and the results are shown in Table 6. We observed
the regression curves of the AQI, meteorological factors, and time, and compared the contributions
between them, so as to determine whether to retain the index. Eventually, 13 indices were retained,
including seven respiratory indices, and six cardio- and cerebrovascular indices. Specifically, when β

was larger than that of the total index, meaning that the influence of the sub-index was significant,
the sub-index was retained. When β was small, and the R2 and explained deviance was also small, it
meant that, although the impact of the sub-index was smaller, it was more significant compared with
meteorological factors and time and, thus, the sub-index should also be retained. The sub-index was
removed when β was small, and the R2 and explained deviance were less than 0.1, indicating that AQI,
meteorological factors, and time were not significant. The sub-index was removed when β was small,
and R2 and explained deviance were high, indicating that meteorological factors and time were more
significant than the sub-index.

Table 6. Results with GAM considering a three-day lag, with AQI (and IAQI) as explanatory variables
and Baidu indices (BIs) as response variables. The indices marked by “-“ indicate insignificance and
were removed; the number of asterisks indicates how well the index is explained by AQI (IAQI).

BI β R2 Deviance Explained Reserved

respiratory system 3.204 ×10−4 0.0845 8.27 *
pulmonary disease 5.437 ×10−4 0.0847 8.04 **

lung cancer 6.017 ×10−4 0.267 30.8 ***
pneumonia 3.385 ×10−4 0.694 71 -

asthma 0.773 ×10−4 0.226 26 -
bronchitis 3.181 ×10−4 0.631 65.1 *

rheum 3.350 ×10−4 0.386 42.7 *
cough 1.942 ×10−4 0.737 75.8 -

sputum 0.142 ×10−4 0.037 5.06 -
respite −3.04 ×10−4 0.0197 3.2 -

shortness of breath 0.819 ×10−4 0.0863 9.6 -
nasal congestion 3.927 ×10−4 0.384 40 ***

sore throat 1.618 ×10−4 0.318 33.2 *
cardiovascular 3.277 ×10−4 0.11 10.2 **
cerebrovascular 4.877 ×10−4 0.216 19.7 **
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Table 6. Cont.

BI β R2 Deviance Explained Reserved

cardio- and cerebrovascular 1.621 ×10−4 0.0975 9.37 -
rheumatic heart disease 0.932 ×10−4 0.0432 5.05 -
coronary heart disease 2.844 ×10−4 0.438 45.8 *
myocardial infarction 0.43 ×10−4 0.105 12.4 -
myocardial ischemia 1.332 ×10−4 0.285 30 -

arrhythmia 0.368 ×10−4 0.0883 9.96 -
heart failure 1.8 ×10−4 0.0815 9.1 *

ischemic stroke −2.56 ×10−4 0.0765 7.09 -
heart valve disease 5.455 ×10−4 0.109 10.1 **

subarachnoid hemorrhage 6.747 ×10−4 0.0179 13.6 **

3.3. RR of Air Pollutants

Taking RTI and CTI as the response variables, and the concentrations of the six pollutants as
explanatory variables, and considering meteorological factors and time, we carried out a GAM Poisson
regression analysis with three-day lag. The p-values of the explanatory variables for each model were
all less than 0.001, indicating significant contributions of these pollutants to total indices. The results
are shown in Table 7, indicating that the RR values of the six pollutants for cardio- and cerebrovascular
diseases were higher than those for respiratory diseases. However, the differences were not great; NO2

and O3 had the highest RR values, followed by PM10 and PM2.5.

Table 7. Exposure–response assessment of the six pollutants. While the unit of CO concentration
is mg/m3, the units of the other pollutant concentrations are µg/m3. The fifth column shows
relative risks when pollutant concentrations change by one unit of IQR. The sixth column shows
the increases of relative risks of the health outcome per 10 µg/m3 (per 1 mg/m3 for CO) increase in
pollutant concentrations.

Total Index Pollutant IQR β
RR

(95% CIs)
(RR − 1) × 100%

(95% CIs)

RTI

PM2.5 71.7 0.00044 1.0317 (1.0297–1.0338) 0.45% (0.42%–0.48%)

PM10 87.6 0.000389 1.0353 (1.0332–1.0374) 0.40% (0.37%–0.42%)

CO 0.7 0.0320 1.0227 (1.0212–1.0241) 3.24% (3.03%–3.44%)

O3 50.6 0.000721 1.0375 (1.0333–1.0417) 0.73% (0.65%–0.82%)

NO2 28.2 0.00135 1.0388 (1.0362–1.0414) 1.37% (1.28%–1.46%)

SO2 10.9 0.00141 1.0156 (1.0135–1.0176) 1.42% (1.23%–1.61%)

CTI

PM2.5 71.7 0.000522 1.0378 (1.0351–1.0405) 0.53% (0.49%–0.57%)

PM10 87.6 0.000393 1.0356 (1.0329–1.0384) 0.40% (0.37%–0.43%)

CO 0.7 0.0373 1.0265 (1.0246–1.0284) 3.78% (3.51%–4.05%)

O3 50.6 0.00197 1.1056 (1.0999–1.1113) 2.07% (1.96%–2.18%)

NO2 28.2 0.00135 1.0390 (1.0355–1.0424) 1.38% (1.26%–1.50%)

SO2 10.9 0.00312 1.0349 (1.0322–1.0376) 3.17% (2.93%–3.41%)

3.4. Performance of HAQI

Next, we compared HAQI with AQI in terms of their capability of indicating health effects.
We took PM2.5 as a benchmark and selected the closest limit of 500 µg/m3 (the maximum daily
concentration of PM2.5 during the study period was 478 µg/m3); then, IAQI = PSI = 500, RRTotal =
(500/IQRPM2.5) × (RRPM2.5 − 1) + 1 = 1.223. Thus, we further established the relationship between
RRTotal and IAQI and PSI. If pollutants have the same RRtotal values at different concentrations, they
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have the same PSI values. The pollutant concentrations corresponding to different PSI values could
be calculated through linearly interpolating RRtotal. The concentration values of the six pollutants
corresponding to PSI and RRTotal were calculated and they are shown in Table 8. It is worth noting
that the breakpoints of PSI and RRTotal were somehow a little arbitrary. We calculated pollutant
concentrations at evenly spaced breakpoints for PSI and RRTotal. Since the concentrations were
calculated based on relative risk of individual pollutants, they should be different from the currently
used AQI that reflects the comprehensive effects of air pollution on environment, ecology, and
buildings, as opposed to health.

Table 8. The calculated concentrations for the six pollutants at evenly spaced breakpoints of pollutant
sub-index (PSI) ranging from 0 to 500, given that PSI = 500 corresponds to the PM2.5 concentration of
500. aj was calculated according to Equation (7), which was used to calculate daily health AQI (HAQI)
with Equation (8).

RRTotal PSI SO2 (µg/m3)
24 h

NO2 (µg/m3)
24 h

PM10 (µg/m3)
24 h

CO (mg/m3)
24 h

O3 (µg/m3)
8 h

PM2.5 (µg/m3)
24 h

1.0000 0 0 0 0 0 0 0
1.0223 50 15.74 16.25 56.40 0.44 30.36 50
1.0446 100 31.48 32.50 112.80 0.89 60.71 100
1.0670 150 47.22 48.75 169.20 1.33 91.07 150
1.0893 200 62.95 65.00 225.60 1.77 121.42 200
1.1116 250 78.69 81.26 282.00 2.21 151.78 250
1.1339 300 94.43 97.51 338.40 2.66 182.13 300
1.1562 350 110.17 113.76 394.80 3.10 212.49 350
1.1786 400 125.91 130.01 451.21 3.54 242.84 400
1.2009 450 141.65 146.26 507.61 3.98 273.20 450
1.2232 500 157.38 162.51 564.01 4.43 303.55 500

aj 3.18 3.08 0.89 112.97 1.65 1.00

To evaluate the effects of the currently used AQI and the HAQI in expressing health outcome,
we plotted the three curves of AQI, HAQI, and the daily exposure risk RRTotal, as shown in Figure 7,
showing that the overall changes of the three curves were similar, but there were obvious differences
in local places. For quantitative comparison, the Pearson correlations between AQI, HAQI, and RR
were calculated. The correlation coefficient between AQI and RR was 0.86, with a p-value < 0.001.
The correlation coefficient between HAQI and RR was 0.95, with a p-value <0.001. In this sense, the
HAQI was a little better for representing the short-term risk of air pollution.
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Figure 7. Curves of AQI, HAQI, and relative risk (RRTotal) according to their daily data during the
study period.
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4. Discussion

In this paper, we focused on the evaluation of the short-term effect of air pollution on human
health. An assumption was made that the internet searches of keywords of air pollution-related
diseases was positively correlated with some symptoms of diseases including respiratory, and cardio-
and cerebrovascular ones. The search data were used as indicators of the disease outcome instead of
hospital outpatient data. These search data are supposed to avoid some disadvantages from hospital
outpatient data such as high difficulty in data acquisition, small sampling range, and uneven sampling.

A GAM was employed to model the association between internet search and air pollution.
Specifically, a log form of response variable with Poisson distribution was used, and we improved
the model mainly in two aspects: (1) the time lag was explored and incorporated into the regression
form, and (2) some non-significant indices were eliminated according to several evaluation indices
(r, R2, p-value, and deviance explained). Through the analysis, we obtained the RRs of the six air
pollutants for respiratory, and cardio- and cerebrovascular diseases. The results show that the risk of
O3 and NO2 for all the concerned diseases in this study was higher than other pollutants. The risk of
a certain pollutant was higher for cardio- and cerebrovascular diseases than for respiratory diseases.
Furthermore, we proposed a RR-based health air quality index (HAQI), which is intended to provide
an indicator for assessing the impact of air pollutants on human health. The comparison between the
currently used Chinese AQI and the HAQI was made, showing HAQI to be a little better than AQI.

Pearson correlation coefficients between RTI and every air quality index except O3 showed
significant positive correlations. O3 had a significant negative correlation with RTI, which can be easily
confirmed from the curves of their daily series in Figures 2 and 3, since the curves of RTI and O3

had approximately opposite changes. However, we found that the RR of O3 for RTI was still greater
than 1 when we examined the RRs of individual air pollutants. Pearson correlation only calculates r
between two variables regardless of the effect of other variables; as a result, it cannot accurately depict
a multi-variate relationship. In fact, when we regressed RTI on O3 and took meteorological factors as
control variables, the adverse effect of O3 on health was presented.

The Baidu index only represents samples from the population since it is calculated according to
the overall searches from regional netizens. It may have a bias because of some exceptional searching
behaviors. It also cannot differentiate according to different age groups and sexes and, therefore,
it is difficult to establish a direct link between the health loss and the index. We were, therefore,
unable to evaluate the health loss in detail, which is useful for health risk assessment. On the other
hand, our study required the keywords used for estimating search volume of the concerned diseases:
respiratory and cerebro- and cardiovascular diseases were reasonably selected. We assured this as
much as possible by duly and carefully picking the most frequently used Chinese words in depicting
symptoms of these diseases through a literature survey. Nonetheless, our study was a statistical
analysis of several sets of time series (air pollution, weather, and morbidity represented by internet
search frequency); the qualitative and quantitative relationships between them were only data-driven
and cannot be pronouncedly confirmed as causal evidences.

Some studies reported little or no acute effects of air pollution on cerebrovascular diseases,
whereas others showed that the acute effects of air pollution caused myocardial infarction, ischemic
stroke, ischemic heart disease, and cardio- and cerebrovascular diseases, resulting in an increase in
emergencies, outpatient intake, and death [62]. The reasons for the differences in these findings may be
(1) cardio- and cerebrovascular diseases are a large class of diseases and air pollution may be associated
with the morbidity of certain subtypes but not with another subclass of diseases, and (2) when these
diseases are summed up to the major categories of cardio- and cerebrovascular disease, it may lead to
no statistically significant result.

The RR values of respiratory, and cardio- and cerebrovascular diseases associated with NO2, SO2,
and O3 in our study are both larger than those reported on health impact assessment in the WHO
European region [63]. However, the RR values associated with PM2.5 and PM10 are smaller than those
reported by the WHO (PM2.5 and PM10) and several studies of air pollution in Europe [3,64] (PM10).
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We also compared the results with three studies for cities in China [65–67]. The first investigated the
associations between ambient air pollution and adult respiratory mortality in 32 major Chinese cities,
and the RR values of respiratory diseases associated with PM10 were greater than ours. The second and
third studies performed a nationwide analysis of associations between PM2.5 and SO2 concentrations
and daily cause-specific mortality in 272 Chinese cities respectively, indicating that the RR values of
cardiovascular and respiratory diseases associated with SO2 and PM2.5 were also greater than ours.
A relative overall survey of effects of air pollution on health in Chinese populations was made by
Reference [68], which also showed RR values of respiratory and cardiovascular diseases associated
with NO2 and PM10 higher than ours, while those associated with O3 and SO2 were lower than ours.
The RRs in those studies were derived from medical records of mortality or morbidity, whereas our
study was based on an internet search of keywords representing disease symptoms, which may be
quite different from each other. Next, because of the different physical characteristics of each person,
the threshold of response to physical abnormalities is also different, along with their internet habits.
Furthermore, people living in different regional environments (e.g., high-pollution environments like
some Chinese cities) may have different response characteristics. As a result, a simple comparison
between the results of this study and those of other studies is unreasonable. The benefit of our study is
its incorporation of those who feel physical discomfort and mild symptoms, but choose not to seek
medical advice. Our analysis is not subject to the specific criteria for morbidity or death and, thus,
it was intended to provide a broader assessment of the risk of air pollution.

In our next study, we plan to obtain a more complete table of air pollution-related keywords
through network opinion analysis and big data mining or to investigate the search intention in case of
air pollution through a questionnaire survey. These data will be incorporated into the analysis process
(e.g., by weighting the keywords). While it may be true that there are some disadvantages, hospital
data do directly measure health, unlike the Baidu index. Internet search data and outpatient data are
two important data sources for studying the impact of air pollutants on diseases and we should make
comparisons between them and take their advantages together to get insight into the relationship
between environment and diseases. For example, we can evaluate the validity of using the Baidu index
to indicate the presence of disease through exploring the linear correlation between Baidu index and
contemporaneous outpatient data. This will also be included in our future studies on inter-validation
of the Baidu index and outpatient data as predictive of actual health outcomes.
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