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Abstract: Obesity is a chronic condition whose incidence is growing due to lack of exercise and
frequent nutrition disorders. Childhood obesity has reached epidemic proportions worldwide. One
of the best treatment methods is physical training. However, conflicting results have been reported
regarding its clinical effectiveness. These contrasting findings may be due to the type and intensity of
the adopted physical training program. Therefore, the purpose of the current study was to investigate
the effect of an 8-week individualized physical training program on endothelial function, blood
biomarkers and adipokine levels in obese adolescents with and without metabolic syndrome (MS).
One-hundred-and-twenty-two obese adolescents (71 obese without MS and 51 obese with MS) aged 14
± 2 years were included in this study. The 8-week individualized training program decreased glucose,
triglycerides, total cholesterol, low-density lipoprotein cholesterol and leptin in obese subjects with
and without MS. However, adiponectin and endothelial-dependent vasodilatation increased in the
follow-up study in both groups. Taken together, the findings suggest that individualized training
program is an effective means for the treatment of obesity and MS in pediatric populations.

Keywords: individualized training program; diabetes and metabolic syndrome; obesity; blood
biomarkers; adipokines; endothelial function

1. Introduction

Obesity is a chronic condition whose incidence is growing mostly due to lack of exercise and
frequent nutrition disorders [1]. Childhood obesity has reached epidemic proportions worldwide.

In Tunisia, the prevalence of obesity increased more than twofold during the last two decades
to reach 22.7% in women, but only 6.4% in men [2]. In addition, cardiovascular risk is frequently
associated with obesity in adults and children as well [3] through risk factors, such as increased
blood glucose, fasting plasma triglycerides (TG), insulin levels, leptin concentration, low-density
lipoprotein (LDL) cholesterol, and high-density lipoprotein (HDL) cholesterol [4,5]. Other risk factors,
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such as endothelial dysfunction and greater arterial stiffness, can also explain the development of
cardiovascular risk [6,7].

In recent decades, new knowledge and new insights have been obtained on the mechanistic basis
of endothelial homeostasis. Endothelial progenitor cells (EPCs) have been recognized as important
factors of endothelial repair because they replace lost endothelial cells [5].

In this sense, Bruyndonckx et al. [8–10] reported an imbalance between endothelial damage and
repair in obese adolescents. Second, brachial artery flow-mediated dilation (FMD) has been used
extensively in clinical studies as a non-invasive assessment of endothelial function of large vessels,
and it has been found to be particularly useful for pediatric cardiovascular risk evaluation since the
last decades. Hence, acetylcholine (ACh) is the most common endothelial-dependent vasodilator used
in this setting for performing endothelium-dependent and independent vasodilation.

Metabolic syndrome (MS) has become one of the most important global public health problems,
worldwide [11], together with diabetes and cardiovascular disease [12,13]. The prevalence of MS
among obese children and adolescents is approximately 30% [14]. In addition, the risk for developing
all of the features of MS during adult life is four times increased in children who were obese at seven
years [15].

MS was first identified by Reaven as syndrome X and described as the coexistence of multiple
metabolic derangements that included hyperinsulinemia, glucose intolerance, hypertension, decreased
HDL cholesterol, and elevated TG. MS can be diagnosed when three or more of the following risk
factors coexist: central obesity, elevated blood pressure, elevated fasting glucose, elevated TG and
reduced HDL [16–19].

A better understanding of mechanisms underlying these health problems would facilitate the
development and discovery of new methods/therapies for the proper treatment and management of
obesity-associated MS.

In this sense, one of the best treatment methods is physical training. However, conflicting results
have been reported in the literature regarding its clinical effectiveness. Some studies showed a
beneficial effect of physical training for the treatment of obesity and MS by decreasing glucose level,
total cholesterol (TC) and LDL cholesterol [20–23]. In contrast, other studies found that physical
training increased glucose level and LDL [24].

These contrasting findings may be due to the type and intensity of the adopted physical training
program. Therefore, the purpose of the current study was to investigate the effect of an eight-week
individualized physical training program on endothelial function, blood biomarkers and adipokine
levels in obese adolescents with and without MS.

2. Materials and Methods

2.1. Participants

One-hundred-and-twenty-two obese adolescents (71 obese without MS (Ob), and 51 obese with
MS (ObWMS)) aged 14 ± 2 years were included in this study. All studied groups consisted of college
and secondary school students.

The study population was stratified according to the body mass index (BMI) as follows: obesity
was defined in the case of a BMI ≥ 97th age- and gender-specific percentiles for adolescents younger
than 16 years and BMI ≥ 35 for adolescents older than 16 years.

History of familial or individual cardiovascular disease and treatments was collected for each
participant. Subjects with a history of cardiovascular disease, hypercholesterolemia, liver disease,
renal disease, or a current smoking habit were excluded. None of the subjects were using drugs or
other therapy for obesity, and none had prior history of injury that would prevent daily exercise.
Only adolescents motivated for the training were selected.
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Subjects were classified as having the metabolic syndrome if they met the following pediatric
criteria: (i) serum triglycerides ≥110 mg/dL; (ii) fasting glucose concentration ≥110 mg/dL; (iii) waist
circumference ≥90th percentile (sex- and age-specific) or ≥94 cm for males and ≥80 cm for females [25,26].

Participants, as well as their respective parents or legal guardians, were informed about the
experimental procedures and their possible risks and benefits before the start of the study. Written,
informed consent from legal representatives and/or participants was obtained before the beginning of
the study.

The study protocol was approved by the ethical committee of the Farhat Hached Hospital, Sousse,
Tunisia (protocol number IRB00008931). This study was performed in accordance with the latest
version of the Declaration of Helsinki.

2.2. Experimental Design

The testing period was divided into two visits: before and after training. The first visit served
to complete a questionnaire (socio-demographic characteristics such as age, sex, diet, and physical
activity). Anthropometric parameters and laboratory tests were also performed in fasting state. More
specifically, the assessment of blood biomarkers, adipokines, and endothelial function were scheduled
≥72 h before each trial.

Furthermore, participants also performed a six-minute walk test to assess their aerobic fitness.
The same tests were performed ≥72 h after the trial.

2.3. Biochemical Assays

Blood samples were collected and drawn into ethylenediaminetetraacetic acid (EDTA)-containing
tubes, chilled promptly in ice. Plasma and serum were separated immediately by centrifugation at
3100 rpm at 4 ◦C, and at 1000 rpm at room temperature for 10 min, respectively. Samples were stored
at −80 ◦C until assay.

At the time of analysis, routine chemical methods were used to determine serum concentrations
of TC, HDL, TG, and glucose. The serum concentration of LDL was estimated using the Friedewald’s
method [27].

2.4. Laser Doppler Flowmetry Combined with Iontophoresis of Ach and Temperature Elevation

Endothelium-dependent and independent vasodilation of the forearm skin microcirculation was
quantitatively assessed by performing iontophoresis and skin heating combined with laser Doppler
flowmetry (LDF) before and after a maximal test. More in detail, a laser beam penetrates the skin
and a fraction of the light is backscattered by moving blood cells, undergoing a frequency shift
according to the well-known Doppler principle. This results in the generation of a signal proportional
to tissue perfusion.

Forearm skin blood perfusion was measured by means of a LDF apparatus (Periflux PF5001,
Perimed, Stockholm, Sweden). The skin temperature was monitored throughout the trial and
maintained constant at 32 ◦C, by the same LDF heating probe. The basal perfusion index was
measured during the first five minutes at rest, without infusion of ACh and without heating the skin
(skin temperature = 32 ◦C). Baseline skin blood perfusion was defined as the mean value recorded
during 4 minutes.

In order to investigate the endothelium-dependent vasodilation, iontophoresis of graduated doses
of ACh was undertaken [28,29]. Iontophoresis is a noninvasive standard method of drug application
that allows the local transfer of electrically charged substances across the skin by using a small electric
current. The electrical potential difference actively causes ions in the solution to migrate according to
their electrical charge. ACh (diluted at 2% solution) was used to fill the chamber of the electrode.

In the present investigation, we used a delivery current of 10 mA and administered three
successive doses of ACh for ten seconds with an interval of two minutes between each dose in
order to achieve a plateau of the response following each delivery of ACh. Lastly, the laser probe
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was heated to 44 ◦C for five minutes, and we recorded the maximal response to local skin heating,
i.e., the endothelium-independent maximal vasodilation. In order to eliminate baseline variability,
the maximum skin perfusion value following iontophoresis was expressed as the maximum percent
change from the baseline [28].

Perfusion index after the third dose of ACh iontophoresis was considered the maximal endothelial
response (expressed in arbitrary units). Maximum perfusion index was measured after heat
hyperhemia and without ACh infusion (skin temperature = 44 ◦C, arbitrary units) [28].

Results were computed and expressed as ACh-induced percentage changes in perfusion index
versus basal values.

ACh chloride (Sigma-Aldrich, St Gallen, Switzerland) was obtained from a commercially available
source, dissolved in deionized sterile water to 2% solution before the start of the experimental protocol
and kept on ice at −4 ◦C.

2.5. Ventilatory Parameters and Lipid Oxidation Assay

Participants performed a five six-minute stage exercise at 20%, 30%, 40%, 50%, and 60% of their
maximum theoretical workload (Wmax) [30].

We calculated the following theoretical values for each participant using the equations of
Wasserman [31]:

Maximum oxygen consumption (VO2max) = (52.8 × M) − 303.4 × Wmax= (VO2max − 10(×M)) ×
(10.3) − 1 (M: body mass in kg).

An electromagnetically-braked cycle ergometer (Ergoline, Bitz, Germany) was used for all tests.
VO2 and VCO2 were measured breath-by-breath through a mask connected to O2 and CO2 analyzers
(ZAN 600, Megeräte, Selb, Germany).

Ventilatory parameters were averaged every 30 s during sub-maximal exercise testing.
We calculated the maximum lipid-oxidation point (Lipoxmax), expressed in watts (W), which

corresponds to the exercise intensity at which the highest rate of lipid oxidation is achieved (lipid
oxidation at Lipoxmax, expressed in mg/min), according to the following equation [32,33]:

Lipid oxidation (mg/min) = 1.6946 × VO2 − 1.7012 × VCO2, with VO2 and VCO2 expressed in
mL/min.

2.6. Training Program

The training program was completed during the second trimester of the school year (from January
to February 2012). The design of the individualized training intervention was based on our previous
studies [32–35].

Briefly, the individualized training intervention was performed within the usual 90-min of
supervised activity per day at a heart rate that corresponded to Lipoxmax, 3 days per week, during
the 8-week intervention period. Exercise training intensity based on the participant’s heart rate
corresponding to Lipoxmax was assessed at the first visit and was controlled by monitoring the heart
rate with a sport-tester device (Vantage NV, Polar Electron, Kempele, Finland).

2.7. Statistical Analysis

Data were presented as mean values ± standard deviation (SD). Shapiro-Wilk’s test was used to
determine the data’s normal distribution. This test was preferred to other tests for normality of data
distribution given the small sample size of our population.

Two-way repeated measures analysis of variance (ANOVA) (2 (group) × 2 (time)) was applied
to test the main effects between pre- and post-test (time) and between the two groups (Ob versus
ObWMS). The Bonferroni test was used as a post-hoc test correcting for multiple comparisons. Effect
sizes (ES) were interpreted using the Hopkins’ rule of thumb: ES < 0.2 = trivial; ES in the range 0.2–0.6
= small; ES in the range 0.6–1.2 = moderate; ES in the range 1.2–2.0 = large; ES in the range 2.0–4.0
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= very large; and ES > 4.0 = extremely large. Global ES (concerning the overall effect of the pre- and
post-test control design) was also computed and interpreted accordingly.

All statistical analyses were carried out using the “Statistical Package for the Social Sciences” for
Windows (SPSS Inc., Chicago, IL, USA, version 16.0).

All figures with P-values less than 0.05 were considered to be statistically significant, except where
the Bonferroni test was applied, for ensuring protection against multiple testing.

3. Results

Before the training program, there were significant differences between Ob and ObWMS groups
in terms of body mass, BMI and waist circumference (all, P < 0.001).

3.1. Effect of Training on Anthropometric Characteristics and Aerobic Capacity

Body mass (P = 0.02) and waist circumference (P < 0.0001) decreased in Ob group in the follow-up
study. However, only waist circumference (P = 0.003) decreased in ObWMS group after training
program (Table 1).

Table 1. Participants’ characteristics.

Parameter
Ob ObWMS

Before After Before After

Age (years) 13.3 ± 1.5 13.6 ± 1.2
Body mass (kg) 71.1 ± 7.6 68.2 ± 7.7 * 90.1 ± 16.1 # 86.7 ± 16.5

Height (m) 1.63 ± 0.06 1.64 ± 0.05
BMI (kg·m−2) 27.8 ± 2.1 27.2 ± 2.2 32.8 ± 5 # 31 ± 5.1

WC (cm) 93.7 ± 5.6 89.7 ± 5.8 ** 106.5 ± 5.2 # 103.4 ± 5.3 *

Abbreviations: BMI: body mass index, Ob: obese without metabolic syndrome, ObWMS: obese with metabolic
syndrome, WC: waist circumference, * pre vs. post training at P < 0.05, ** pre vs. post training at P < 0.0001, # Ob vs.
ObWMS at P < 0.0001.

Lipoxmax and rate of fat oxidation at Lipoxmax increased significantly in Ob (ES, 1.64, P < 0.0001;
ES = 4.28, P < 0.0001, respectively) and ObWMS group (ES = 1.65, P < 0.0001; ES = 4.16, P < 0.0001,
respectively), with greater improvements in Ob group (All, P < 0.001) (Figure 1).

Int. J. Environ. Res. Public Health 2019, 16, 751 5 of 12 

 

All statistical analyses were carried out using the “Statistical Package for the Social Sciences” for 

Windows (SPSS Inc., Chicago, IL, USA, version 16.0). 

All figures with P-values less than 0.05 were considered to be statistically significant, except 

where the Bonferroni test was applied, for ensuring protection against multiple testing. 

3. Results 

Before the training program, there were significant differences between Ob and ObWMS 

groups in terms of body mass, BMI and waist circumference (all, P < 0.001). 

3.1. Effect of Training on Anthropometric Characteristics and Aerobic Capacity 

Body mass (P = 0.02) and waist circumference (P < 0.0001) decreased in Ob group in the 

follow-up study. However, only waist circumference (P = 0.003) decreased in ObWMS group after 

training program (Table 1).  

Table 1. Participants’ characteristics. 

Parameter 
Ob ObWMS 

Before After Before After 

Age (years) 13.3 ± 1.5  13.6 ± 1.2  

Body mass (kg) 71.1 ± 7.6 68.2 ± 7.7 * 90.1 ± 16.1 # 86.7 ± 16.5 

Height (m) 1.63 ± 0.06  1.64 ± 0.05  

BMI (kg·m−2) 27.8 ± 2.1 27.2 ± 2.2 32.8 ± 5 # 31 ± 5.1 

WC (cm) 93.7 ± 5.6 89.7 ± 5.8 ** 106.5 ± 5.2 # 103.4 ± 5.3 * 

Abbreviations: BMI: body mass index, Ob: obese without metabolic syndrome, ObWMS: obese with 

metabolic syndrome, WC: waist circumference, * pre vs. post training at P < 0.05, ** pre vs. post 

training at P < 0.0001, # Ob vs. ObWMS at P < 0.0001. 

Lipoxmax and rate of fat oxidation at Lipoxmax increased significantly in Ob (ES, 1.64, P < 

0.0001; ES = 4.28, P < 0.0001, respectively) and ObWMS group (ES = 1.65, P < 0.0001; ES = 4.16, P < 

0.0001, respectively), with greater improvements in Ob group (All, P < 0.001) (Figure 1). 

 

Figure 1. Cont.



Int. J. Environ. Res. Public Health 2019, 16, 751 6 of 12
Int. J. Environ. Res. Public Health 2019, 16, 751 6 of 12 

 

 

Figure 1. Effect of physical training on maximal lipid oxidation (Lipoxmax) during exercise: (A) 

Lipoxmax expressed in watts. (B) Rate of fat oxidation at Lipoxmax, expressed in mg/min. * pre vs. 

post training at P < 0.001, Ob: obese without metabolic syndrome, ObWMS: obese with metabolic 

syndrome. 

3.2. Effect of Training on Blood Biomarkers and Adipokines 

The 8-week individualized training program decreased blood glucose (7.4%, 4.4%), TG (11.8%, 

9.7%), TC (15.1%, 9.7%), LDL (12.5%, 12.8%), and leptin levels (5.1%, 3.3%) in both Ob and ObWMS 

(all, P < 0.05), respectively. However, when considering the overall ES and taking into account the 

pre and post-test control-design, no significant differences between the Ob and ObWMS groups 

could be found for all measures (namely, glucose: ES = 0.35, P = 0.058, 95% CI −0.0027 to 0.1427; TG: 

ES = 0.17, P = 0.34, 95% CI −0.03310 to 0.09310; TC: ES = 0.08, P = 0.65, 95% CI −0.1694 to 0.2694; LDL: 

ES = 0.27, P = 0.14, 95% CI −0.0338 to 0.2338; and leptin: ES = −0.14, P = 0.44, 95% CI −2.3563 to 1.0363).  

Furthermore, the Ob group showed a significantly greater improvement in the adiponectin 

level (ES = 1.05, P < 0.0001, 95% CI 0.78 to 1.60) when compared with the ObWMS group (Table 2). 

Table 2. Mean values and standard deviations (SD) of blood biomarkers and adipokines before and 

after the training program. 

Parameter 
Ob (n = 71) ObWMS (n = 51) Overall 

P Before After ES P Before After ES P 

Glucose 

(mmol/L) 

4.74 ± 

0.22 

4.50 ± 

0.18 
−1.20 <0.0001 

5.11 ± 

0.15 

4.94 ± 

0.26 
−0.80 0.0001 0.058 

TG (mmol/L) 
1.41 ± 

0.16 

1.30 ± 

0.17 
−0.67 0.0001 

1.79 ± 

0.25 

1.71 ± 

0.12 
−0.42 0.040 0.34 

TC (mmol/L) 
4.09 ± 

0.52 

3.61 ± 

0.61 
−0.85 <0.0001 

4.42 ± 

0.55 

3.99 ± 

0.78 
−0.64 0.001 0.65 

LDL (mmol/L) 2.35 ± 0.5 
1.99 ± 

0.32 
−0.86 <0.0001 2.67 ± 0.4 

2.41 ± 

0.2 
−0.83 <0.0001 0.14 

Adiponectin 

(µg/mL) 

2.25 ± 

0.95 

4.43 ± 

1.48 
1.76 <0.0001 2.56 ± 0.9 

3.55 ± 

1.14 
0.97 <0.0001 <0.0001 

Leptin (ng/mL) 
21.99 ± 

5.15 

19.23 ± 

3.3 
−0.64 0.0002 

26.51 ± 

4.92 

23.09 ± 

5.54 
−0.65 0.001 0.44 

ES: effect size, Ob: obese without metabolic syndrome, ObWMS: obese with metabolic syndrome. 

3.3. Effect of Training on Endothelial Function 

Forearm skin blood flow (FSBF) response to Ach-induced endothelium-dependent relaxation 

increased significantly in the Ob and OBWMS groups (all, P < 0.001; ES = 4.49, ES = 0.92, 

Figure 1. Effect of physical training on maximal lipid oxidation (Lipoxmax) during exercise:
(A) Lipoxmax expressed in watts. (B) Rate of fat oxidation at Lipoxmax, expressed in mg/min.
* pre vs. post training at P < 0.001, Ob: obese without metabolic syndrome, ObWMS: obese with
metabolic syndrome.

3.2. Effect of Training on Blood Biomarkers and Adipokines

The 8-week individualized training program decreased blood glucose (7.4%, 4.4%), TG (11.8%,
9.7%), TC (15.1%, 9.7%), LDL (12.5%, 12.8%), and leptin levels (5.1%, 3.3%) in both Ob and ObWMS
(all, P < 0.05), respectively. However, when considering the overall ES and taking into account the pre
and post-test control-design, no significant differences between the Ob and ObWMS groups could be
found for all measures (namely, glucose: ES = 0.35, P = 0.058, 95% CI −0.0027 to 0.1427; TG: ES = 0.17,
P = 0.34, 95% CI −0.03310 to 0.09310; TC: ES = 0.08, P = 0.65, 95% CI −0.1694 to 0.2694; LDL: ES = 0.27,
P = 0.14, 95% CI −0.0338 to 0.2338; and leptin: ES = −0.14, P = 0.44, 95% CI −2.3563 to 1.0363).

Furthermore, the Ob group showed a significantly greater improvement in the adiponectin level
(ES = 1.05, P < 0.0001, 95% CI 0.78 to 1.60) when compared with the ObWMS group (Table 2).

Table 2. Mean values and standard deviations (SD) of blood biomarkers and adipokines before and
after the training program.

Parameter
Ob (n = 71) ObWMS (n = 51) Overall

PBefore After ES P Before After ES P

Glucose
(mmol/L) 4.74 ± 0.22 4.50 ± 0.18 −1.20 <0.0001 5.11 ± 0.15 4.94 ± 0.26 −0.80 0.0001 0.058

TG (mmol/L) 1.41 ± 0.16 1.30 ± 0.17 −0.67 0.0001 1.79 ± 0.25 1.71 ± 0.12 −0.42 0.040 0.34
TC (mmol/L) 4.09 ± 0.52 3.61 ± 0.61 −0.85 <0.0001 4.42 ± 0.55 3.99 ± 0.78 −0.64 0.001 0.65

LDL (mmol/L) 2.35 ± 0.5 1.99 ± 0.32 −0.86 <0.0001 2.67 ± 0.4 2.41 ± 0.2 −0.83 <0.0001 0.14
Adiponectin

(µg/mL) 2.25 ± 0.95 4.43 ± 1.48 1.76 <0.0001 2.56 ± 0.9 3.55 ± 1.14 0.97 <0.0001 <0.0001

Leptin (ng/mL) 21.99 ± 5.15 19.23 ± 3.3 −0.64 0.0002 26.51 ± 4.92 23.09 ± 5.54 −0.65 0.001 0.44

ES: effect size, Ob: obese without metabolic syndrome, ObWMS: obese with metabolic syndrome.

3.3. Effect of Training on Endothelial Function

Forearm skin blood flow (FSBF) response to Ach-induced endothelium-dependent relaxation
increased significantly in the Ob and OBWMS groups (all, P < 0.001; ES = 4.49, ES = 0.92, respectively),
with greater improvement in the Ob group when compared with the ObWMS group (ES = 4.05,
P < 0.0001, 95% CI 249.412 to 298.588) in the follow-up study (Figure 2).
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Figure 3. Forearm skin blood flow (FSBF) response to heating the skin at 44 ◦C (expressed as arbitrary
units) observed before and after physical training in obese with and without metabolic syndrome.
Elevation of the skin temperature at 44 ◦C, an endothelium-independent vasodilator, did not affect the
forearm skin blood flow response of the groups significantly. Ob: obese without metabolic syndrome,
ObWMS: obese with metabolic syndrome.

4. Discussion

This study examined the effect of an individualized training program on blood biomarkers,
adipokines and endothelial function in obese adolescents with and without MS. The findings showed
that an 8-week individualized training program was able to decrease blood biomarkers and increase
adiponectin and endothelial function in both obese adolescents with and without metabolic syndrome.
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4.1. Effect of Training on Blood Biomarkers

The present findings showed that an eight-week individualized training program may induce
small to moderate effect on blood biomarkers, in terms of glucose, TG, TC, and LDL in obese with and
without metabolic syndrome.

These findings are in line with the existing scholarly literature, namely with the results of
Kim et al. [20], who reported that a six-week power training program decreased glucose level in
obese Korean male adolescents. Meyer et al. [21] showed that six months of aerobic training reduced
glucose, TC and LDL cholesterol in obese children. In contrast, other studies reported that glucose
level and LDL increased [24] and remained unchanged [36–40] after physical training.

As previously mentioned, this controversy between findings may be due to the mode, intensity,
and volume of physical training involved. In this sense, a previous systematic review reported
that physical training may induce beneficial effects on LDL cholesterol and TC, as well as with
non-significant changes in glucose in adolescents who are overweight or obese [41].

In addition, a previous study showed that one-year aerobic plus resistance training was
more effective in controlling metabolic syndrome, by improving TC, waist circumference, glucose,
and adiponectin than aerobic training alone in obese adolescents [42]. However, regarding the
difference between obese with and without MS groups follow-up study, similar results were reported.
This suggests that an individualized training program is effective to the control and treatment of
obesity and metabolic syndrome in pediatric populations.

4.2. Effect of Training on Adipokines

Individualized training program increased adiponectin level in both obese with and without
metabolic syndrome, with greater improvement in the obese group. However, conflicting results have
been reported in the literature. Some studies showed a significant increase of plasma adiponectin after
exercise training. Balagopal et al. [43] investigated the effect of three months of aerobic exercise on
adiponectin levels on obese adolescents. The authors reported a positive effect of aerobic exercise on
plasma adiponectin, by showing its increment from 4.44 ± 0.47 to 5.95 ± 0.49 µg/mL.

Another study reported that 6 weeks of jump rope exercise training, five days per week, increased
adiponectin levels in obese Korean male adolescents [20]. In this sense, Tjønna et al. [44] showed that
three months of twice weekly high-intensity exercise sessions increased adiponectin level in overweight
adolescents. On the other hand, Nassis et al. [36] reported no significant change in adiponectin level
following 12 weeks of aerobic training in obese girls.

Regarding the leptin level after physical training, some studies showed that long-term exercise
training (i.e., 12 weeks, 7 months) decreased blood levels of leptin in obese individuals [45–47].
Accordingly, Gutin et al. [48] studied the effect of four months of aerobic training on leptin level in
obese children. They showed the reduction of leptin concentrations, which subsequently increased
following four months of training and detraining, respectively. This reduction may be due to the
decrement of body fat and negative energy balance resulting from exercise training. In contrast, other
studies reported no significant changes in leptin concentration after nine weeks of aerobic training in
obese women [49], which is in line with the present findings.

4.3. Effect of Training on Endothelial Function

Concerning the endothelial function, FSBF response to ACh-induced endothelium-dependent
relaxation increased significantly following eight weeks of the individualized training program in both
obese with and without metabolic syndrome groups with greater improvement in the obese group.
Accordingly, Cohen et al. [50] reported that 14 months of a resistance training program improves
endothelial dependent vasodilation in adults with type 2 diabetes. However, several mechanisms may
explain the improvement of endothelial function or markers of endothelial function. First, vascular
improvement was associated with improvement in blood glucose control. Second, the repetitive
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exposure to exercise may lead to provoke blood flow through the vessels supplying oxygen to the
working muscles, which, in turn, increases shear stress [51]. In this sense, increased shear stress results
in up-regulation of the nitric oxide (NO) and bioavailability [52] that may improve vasomotor function
as well as inhibit atherogenesis [53,54]. In addition, exercise training improved endothelial function
with an increase of NO biodisponibility and/or release, an increased functional capacity of circulating
angiogenic cells and a decreased oxidant stress [40]. In contrast, Middlebrooke et al. [55] reported that
six months of aerobic training have no effect on endothelial function in individuals with type 2 diabetes.
Hence, a number of variables, such as training duration, intensity, and frequency, may account for the
beneficial effect of physical training on endothelial function in individuals who are obese.

5. Conclusions

The present study showed that an eight-week individualized training program decreased
glucose, TG, TC, LDL and leptin in obese with and without MS. However, adiponectin and
endothelial dependent vasodilator increased in the follow-up study in both groups. This suggests that
individualized training program is an effective means for the treatment of obesity and MS in pediatric
populations. On the other hand, BMI did not decrease significantly in the study in one of the groups.
Given this limitation, further studies, using larger sample sizes, are warranted.
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