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Abstract: Objective: To compare the performance of frequentist and Bayesian generalized additive
models (GAMs) in terms of accuracy and precision for assessing the association between daily
exposure to fine particles and respiratory mortality using simulated data based on a real time-series
study. Methods: In our study, we examined the estimates from a fully Bayesian GAM using simulated
data based on a genuine time-series study on fine particles with a diameter of 2.5 µm or less (PM2.5)
and respiratory deaths conducted in Shanghai, China. The simulation was performed by multiplying
the observed daily death with a random error. The underlying priors for Bayesian analysis are
estimated using the real world time-series data. We also examined the sensitivity of Bayesian
GAM to the choice of priors and to true parameter. Results: The frequentist GAM and Bayesian
GAM show similar means and variances of the estimates of the parameters of interest. However,
the estimates from Bayesian GAM show relatively more fluctuation, which to some extent reflects
the uncertainty inherent in Bayesian estimation. Conclusions: Although computationally intensive,
Bayesian GAM would be a better solution to avoid potentially over-confident inferences. With the
increasing computing power of computers and statistical packages available, fully Bayesian methods
for decision making may become more widely applied in the future.

Keywords: Bayesian statistics; generalized additive model; time-series analysis; fine particulate matter;
respiratory mortality

1. Introduction

With accelerated urban development and modernization, air pollution is worsening and its impact
on human health has been the main research topic in developing countries [1]. Air pollutants include
gaseous pollutants and particulate matter (PM). Studies have shown that PMs with an aerodynamic
diameter of 2.5 µm or less (referred to as PM2.5 or fine particles) have a greater impact on human
health [2,3]. The impact of both long term (chronic) and short term (acute) exposure to PMs has been
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widely studied, with the former being most often estimated from cohort studies [4] and the latter
from ecological time-series studies [5]. However, cohort studies are expensive and time-consuming
to implement due to the long follow-up period required for collecting individual-level pollution and
disease data [6]. This has led to the use of spatiotemporal ecological study design in this field [7,8],
which takes advantage of routinely collected data [5] such as data from the air quality monitoring
(AQM) stations in Beijing and the Causes of Death Registry (CDR) of the Chinese Centers for Disease
Control and Prevention [9]. Although causal inference is an important problem in time-series studies
due to the difficulty of selecting an appropriate regression model that can be well fitted to the data, they
contribute to and independently corroborate the body of evidence provided by cohort studies [10].

The semiparametric Poisson regression has been widely used for time-series analyses of air
pollution and health, which uses daily mortality or morbidity counts as the outcome, linear terms to
measure the percentage of increase in the outcome associated with elevations in air pollution levels,
and smooth functions of time and weather variables to adjust for time-varying confounders [11].
Generalized linear models (GLMs) with parametric splines (e.g., natural cubic splines) [12] or
generalized additive models (GAMs) with nonparametric splines (e.g., smoothing splines or locally
weighted smoothers or (LOESS) [13] are used to estimate effects associated with exposure to air
pollution while accounting for smooth fluctuations in outcome that confound the estimated effects
of pollution. GAM and GLM can be applied in similar situations, but they serve different analytic
purposes. GLM emphasizes estimation and inference for the parameters of the model, while GAM
focuses on exploring data non-parametrically. GAM is more suitable for exploring the data and
visualizing the relationship between the dependent variable and the independent variables [14].

The basic form of GAM applied in air pollution and health studies may be expressed using
Equation (1) [11]:

log(E(Yt)) = β0 + βlXt−l + S(t) + S(weather) + φ·DOWt (1)

where Yt is count of daily mortality or morbidity, β0 denotes the intercept, t indicates calendar day,
Xt are daily concentrations of the studied air pollutant, i.e., PM2.5 in our study, l is the lag time of the
pollution exposure (which is generally restricted to one to seven days for acute effects), S(t) denotes
a smooth function of a covariate (calendar day or meteorological variables such as temperature and
humidity). The smooth functions are usually constructed using LOESS, smoothing splines or natural
cubic splines. φ is the vector of the regression coefficients associated with vector DOWt (indicating
the 7 days of a week) for the tth day. βl is the parameter of interest describing the change in the
logarithm of the average mortality count over population per unit of change in Xt−l, which is generally
interpreted as the percentage of increase in mortality for every 10 units or a standard deviation (SD)
or interquartile range (IQR) of increase in ambient concentrations of the studied air pollutant at lag l.
The reason that the model is called semiparametric is that it assumes a linear relation with Xt−l and
unknown functional relations with time and weather variables.

The conventional algorithm for fitting GAM (hereinafter called frequentist GAM) is the backfitting
algorithm [15] and the corresponding robust estimation method has also been developed [16].
A disadvantage of backfitting is that it is difficult to integrate with the estimation of the degree
of smoothness of the model terms, so that in practice the user must set these, or select between a
modest set of pre-defined smoothing levels. Although the degree of smoothness can be estimated as
part of model fitting using generalized cross-validation or by restricted maximum likelihood when
the smooth components are represented using smoothing spline, it carries a computational cost [17].
The computationally efficient approaches such as fully Bayesian method have thus been developed in
recent years [18].

Although there are some applications [19–23] of Bayesian GAM analyses in recent years, few of
them compared the performance of frequentist and Bayesian GAMs in terms of accuracy and precision.
In our study, we examined the estimates from a fully Bayesian GAM using simulated data based
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on underlying ‘true’ parameters from a genuine time-series study on PM2.5 and respiratory deaths
conducted in Shanghai, China.

2. Methods

2.1. Real World Data

The data of our study were from the Swedish-Chinese joint project Assessing Variability in
the Short-term Impact of Air Pollution and Extreme Weather Conditions on Non-accidental Deaths
in Shanghai during 2012–2014. The study was approved by the Ethical Review Committee of the
Shanghai Municipal Center for Disease Control and Prevention (SCDC), China (approval number:
SCDC2016-08).

Briefly, daily average PM2.5 concentrations between 1 January 2012 and 31 December 2014
were obtained from one fixed air quality monitor of the Shanghai Meteorological Bureau and one
monitor from the U.S. Consulate General in Shanghai, China. Daily mortality data during the
corresponding time period for all the permanent residents in Shanghai were obtained from the
Causes of Death Registry of the SCDC. The causes of death were coded according to the International
Classification of Diseases Codes, version 10 (ICD-10). Deaths for respiratory diseases (ICD-10 codes
J00-J99) were retrieved. Citywide daily meteorological data including temperature, relative humidity,
barometric pressure, wind speed, precipitation, and sunshine time were retrieved from the Shanghai
Meteorological Bureau.

The distribution of the observed daily respiratory mortality and the theoretical quasi Poisson
distribution with the same mean and an overdispersion index = 1.3 are shown in Figure 1. The observed
data showed a few deviations from the theoretical distribution. Therefore, a Poisson regression model
is suitable for our data.
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Figure 1. Distribution of observed daily respiratory mortality (the red curve) and theoretical distribution
quasi-Poisson distribution (the black vertical lines, mean = 32, overdispersion index = 1.3).

To illustrate the relationship between respiratory mortality and PM2.5 pollution and meteorological
variables, we used the daily respiratory mortality and the corresponding average PM2.5 concentration
and the average temperature in lag 1 as an example (Figure 2). In general, daily respiratory mortality
was positively related to PM2.5 concentration and an approximately linear relationship was found.
A similar relationship was found for PM2.5 concentrations at other lags. However, an apparent reversed
sigmoid relationship was found between daily respiratory mortality and daily average temperature.
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A nonlinear relationship was also found for other meteorological variables. Therefore, a GAM with
linear components for PM2.5 concentrations and nonlinear components for weather conditions and
time trend is suitable for our study.Int. J. Environ. Res. Public Health 2019, 16, x 4 of 21 
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2.2. Fully Bayesian Generalized Additive Model

A fully Bayesian approach for modeling and inference within GAM requires prior assumption for
unknown function S(t). Several alternatives have been recently proposed to specify smoothness prior
for continuous covariates or time trends, such as random walk priors or more generally autoregressive
priors [18,24], Bayesian P(enalized)-splines [25], and Bayesian smoothing splines [26]. Bayesian
P-splines were used in our study because it has the advantage of allowing for simultaneous estimation
of smooth functions and smoothing parameters. Moreover, it can easily be extended to more complex
formulations [25]. The method assumes that an unknown smooth function Sj(xj) of a covariate xj
can be approximated by a polynomial spline of degree ν defined on a set of equally spaced knots
xmin

j = ζ0 < ζ1 < · · · < ζd−1 < ζd = xmax
j within the domain of xj. Such a spline can be written in

terms of a linear combination of Mj(= d + ν) B-spline basis functions Bm, i.e.,

Sj
(
xj
)
=

Mj

∑
m=1

β j,mBm
(
xj
)

(2)

and β j =
(

β j,1, · · · , β j,Mj

)′
corresponds to the vector of unknown regression coefficients. The functions

Bm are only positive with an area spanned by ν + 2 knots, which is essential for the construction of the
smoothness penalty for P-splines. The estimation of Sj(xj) is thus reduced to the estimation of the vector
of unknown regression coefficients βj from the data. To choose the number of knots, a moderately
large number of equally spaced knots (around 10 knots per time interval) as suggested by Eilers and
Marx [27] is flexible enough to capture the variability of the data. In the Bayesian approach, penalized
splines are introduced by replacing the different penalties with their stochastic analogues, i.e., the first
or second order random walk priors for the regression coefficients. First order random walk prior for
equidistant knots is given by [28]:

β j,m = β j,m−1 + uj,m, m = 2, · · · , Mj (3)
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and a second order random walk by:

β j,m = 2β j,m−1 − β j,m−2 + uj,m, m = 3, · · · , Mj (4)

with Gaussian errors uj,m ∼ N(0, τ2
j ) and diffuse priors p

(
β j,1
)

∝ const, or p
(

β j,1
)

and p
(

β j,2
)

∝
const, for initial values, respectively.

When we define the unknown function evaluation Sj as the matrix product of a design matrix ψj
and a vector of unknown parameters βj, i.e.,

Sj = ψjβ j, j = 1, · · · , p (5)

then we obtain the predictor in Equation (1) as

log(E(Yt)) = β0 + βlXt−l + ∑ p
j=1ψjβ j + φ·DOW. (6)

Depending on the above parameterization of the model, the posterior for fully Bayesian inference
is given by:

p(β0, βl , β1, · · · , βp, τ2
1 , · · · , τ2

p , φ|y) ∝ L
(
y, β0, βl , β1, · · · , βp, φ)

p

∏
j=1

(p(β j|τ2
j )p(τ2

j )) (7)

where L denotes the likelihood which is the product of individual likelihood contributions.
In the fully Bayesian approach, parameter estimates are obtained by drawing random samples

from the posterior Equation (7) via Markov Chain Monte Carlo (MCMC) simulation techniques. More
details about the fully Bayesian inference can be found in Fahrmeir and Lang [18] and Brezger and
Lang [29].

2.3. Estimation of True Parameters

Although we focused on the effect of PM2.5 concentrations in day lag 1 in the study, to exclude the
effects from other lag days, the ‘true’ parameters were estimated using the frequentist distributed lag
GAM instead of the basic model aforementioned. The distributed lag model associates health outcomes
in a given day with PM2.5 concentrations in several earlier days by replacing βlXt−l in (1) with:

∑ L
l=1βlXt−l or θ ∑ L

l=1ηlXt−l , ∑ L
l=1ηl = 1 (8)

where θ measures the cumulative effect of PM2.5 during the days, and ηl measures the contribution
of the lagged exposure Xt−l to θ [30,31]. To reduce the computational work, we introduced only one
smoothness term i.e., seasonal trend in the model. The nonlinear effects from meteorological variables
were examined using a categorical variable for six synoptic weather types (SWTs) [32]. The final model
may be expressed as:

log(E(Yt)) = β0+β1·lag1t+β2·lag2t + · · ·+β7·lag7t+S(t ) + φW ·Wt + φ·DOWt (9)

where βl (l = 1, . . . , 7) approximate to the percentage increase in deaths associated with the
corresponding explanatory variables, i.e., lag1t–lag7t, the daily PM2.5 concentrations of lag 1–7 days.
Frequentist S(t) was realized using cubic B-splines with in total 18 knots (6 knots per year). Wt denotes
the vector of the six SWTs, i.e., hot dry, warm humid, cold dry, moderately dry, moderately humid,
and cold humid weather types. The SWTs are defined using 15 routinely monitored meteorological
variables through principal component analysis and K-means clustering method. The details of the
methods were published elsewhere [33].

In total, 35,135 respiratory deaths occurred during the study period between 1 January 2012
and 31 December 2014 in Shanghai. Mean and median daily deaths were 32 and 30, respectively.
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The descriptive statistics of daily respiratory deaths, ambient PM2.5 concentrations, and major
meteorological variables are shown in Table 1.

The parametric coefficients of the covariates derived from the frequentist GAM are shown in
Table 2.

Table 1. Descriptive statistics of daily respiratory deaths, ambient PM2.5 concentrations, and major
meteorological variables.

Variable n Mean SD Min P25 P50 P75 Max

Respiratory deaths 1096 32 11 12 24 30 38 82
log(Respiratory deaths) 1096 3.41 0.34 2.48 3.18 3.40 3.64 4.41

PM2.5 (µg/m3) 1091 55.0 38.6 3.0 29.4 45.5 68.7 447.5
Temperature (◦C) 1096 17.2 9.0 −1.2 8.8 18.2 24.3 35.0

Barometric Pressure (kPa) 1096 101.6 0.9 99.5 100.8 101.6 102.3 103.8
Relative Humidity (%) 1096 70.3 12.6 30 62 72 80 98

Wind speed (m/s) 1096 2.8 1.0 0.6 2.1 2.7 3.4 8.6
Precipitation (mm) 1096 3.3 10.4 0 0 0 1.1 195.3

Sunshine (h) 1096 4.7 4.0 0 0 4.8 8.2 12.9

SD, standard deviation; Px, the xth percentile.

Table 2. Parametric coefficients of the covariates in Equation (9).

Coefficient Estimate Standard Error z Value Pr(>|z|)

β0 3.9666423 0.1214331 32.665 2e-16
β1 0.0049014 0.0016902 2.900 0.00373
β2 −0.0020338 0.0018396 −1.106 0.26892
β3 0.0024222 0.0018156 1.334 0.18219
β4 −0.0000745 0.0018219 −0.041 0.96738
β5 0.0004227 0.0018279 0.231 0.81712
β6 0.0006673 0.0018274 0.365 0.71500
β7 −0.0004166 0.0018230 −0.229 0.81922

φW1 Reference
φW2 −0.0612972 0.0220647 −2.778 0.00547
φW3 −0.0780534 0.0320905 −2.432 0.01500
φW4 −0.0494911 0.0267129 −1.853 0.06392
φW5 −0.0085775 0.0274555 −0.312 0.75473
φW6 −0.0603464 0.0319503 −1.889 0.05892
φ0 Reference
φ1 −0.0094768 0.0202340 −0.468 0.63953
φ2 0.0010382 0.0201531 0.052 0.95891
φ3 −0.0140684 0.0202318 −0.695 0.48683
φ4 −0.0144893 0.0203167 −0.713 0.47574
φ5 −0.0104156 0.0202757 −0.514 0.60746
φ6 −0.0186630 0.0203238 −0.918 0.35847

In our study, we focused on the acute effect of PM2.5 concentrations on respiratory mortality,
i.e., β1 of lag 1 day in Equation (9). It is 0.0049 and statistically significant (corresponding to 5.37
excessive deaths per day or 1960 excessive deaths per year). The standard error (SE) of β1 is 0.0017.
The unit of PM2.5 concentrations is 10 µg/m3 in the analysis, therefore β1 can be explained as that per
10 µg/m3 increase in PM2.5 concentration of lag 1 day is associated with approximately 0.49% increase
in daily respiratory deaths. The result is consistent with the findings from two meta-analyses [34,35]
and a large observational study performed in China [36], where the corresponding percent increase in
respiratory mortality ranged from 0.29% to 0.75%.

2.4. Simulation

To assess the estimation of the fully Bayesian GAM approach compared with the realistic
situations, we conducted a simulation study. In our simulation, the estimates in Table 2 derived
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from the real world data were used as ‘true’ parameters. We used the predicted daily deaths Ŷt based
on Equation (9) as the mean daily deaths, then simulated daily death Y′t by multiplying Ŷt by a random
error eε:

Y′t = Ŷt·eε, ε ∼ N
(

0, σ2
)

(10)

where ε follows a distribution from exponential family and we applied normal distribution here. The
simulation framework ensures that the same concurvity will exist between the simulated mortalities
and the observed ones. By changing σ we may introduce different ‘noise’ in mortality to simulate
the effects of unobserved confounders. In our simulation, the changing of the σ was achieved by
multiplying σ̂, the SD of logarithmic daily deaths, by a factor γ, i.e., σ = γσ̂. By selecting different
random seeds, we may generate different time-series using random number generator in any statistical
software. Figure 3 shows nine simulated time-series of daily respiratory deaths for γ = 0.1, 0.2, . . . , 0.9.
We can see when γ is equal to 0.4 or 0.5 the simulated data are most approximate to the real world data.
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3. Results

3.1. Comparison of the Results from Frequentist GAM and Bayesian GAM

First, we set γ = 0.5, 0.6, . . . , 1.0 to generate six sets of simulated respiratory mortality data, where
each set included 2000 time-series. Then we run the frequentist GAMs using simulated daily mortality
as the dependent variable. We set the degrees of freedom (df ) for S(t) from 1 to 20 per year in our
models. For each df, we ran the frequentist GAM using 100 simulated time-series. In total, 12,000 β̂1s
(from 6 γs × 20 df s × 100 time-series) were derived. Distributions of the estimated β̂1s against the true
β1 are shown using a violin plot combined with a box plot in Figure 5.
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Figure 5. Distributions of frequentist β̂1s for simulated data with different random noises
(σ = 0.5 − 1.0σ̂) and degrees of freedom (1–20 per year) for S(t); the true β1 = 0.0049.

In general, although the variance of β̂1s tends to increase as the df for S(t) is increased, the
decrease in bias is far more dramatic, i.e., the greater df the closer mean of β̂1s approach to the true
β1. The bias in the estimates is only serious for df ≤ 4 per year. With sufficient df to represent the
smoothness of the nonparametric nonlinear trend leads to an asymptotically unbiased estimate of
β̂1 [37]. The apparent decrease in the bias of β̂1s with increasing df is explained by Daniels et al. [38],
Rice [39] and Speckman [40]. As we expected, the increased noise in the simulated data results in a
larger variance of β̂1s (Figure 5 and Table 3), which is approximate to 2γ × SE(β1) or 2γ × 0.0018.
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Table 3. Mean (SD) of estimated β̂1s derived from frequentist GAMs.

df σ = 0.5σ̂ σ = 0.6σ̂ σ = 0.7σ̂ σ = 0.8σ̂ σ = 0.9σ̂ σ = σ̂

1 0.0095
(0.0018)

0.0095
(0.0022)

0.0094
(0.0026)

0.0094
(0.0029)

0.0094
(0.0033)

0.0094
(0.0037)

2 0.0091
(0.0018)

0.0091
(0.0022)

0.0091
(0.0025)

0.0091
(0.0029)

0.0091
(0.0033)

0.0090
(0.0037)

3 0.0068
(0.0019)

0.0068
(0.0022)

0.0068
(0.0026)

0.0067
(0.0030)

0.0067
(0.0034)

0.0067
(0.0038)

4 0.0056
(0.0019)

0.0056
(0.0023)

0.0056
(0.0026)

0.0056
(0.0030)

0.0056
(0.0034)

0.0055
(0.0038)

5 0.0064
(0.0019)

0.0064
(0.0022)

0.0064
(0.0026)

0.0064
(0.0030)

0.0064
(0.0034)

0.0064
(0.0038)

6 0.0065
(0.0019)

0.0065
(0.0023)

0.0065
(0.0027)

0.0065
(0.0031)

0.0065
(0.0034)

0.0064
(0.0038)

7 0.0059
(0.0019)

0.0059
(0.0023)

0.0058
(0.0027)

0.0058
(0.0031)

0.0058
(0.0035)

0.0058
(0.0039)

8 0.0051
(0.0020)

0.0051
(0.0023)

0.0050
(0.0027)

0.0050
(0.0032)

0.0050
(0.0035)

0.0050
(0.0040)

9 0.0049
(0.0020)

0.0049
(0.0024)

0.0049
(0.0028)

0.0049
(0.0032)

0.0049
(0.0036)

0.0048
(0.0040)

10 0.0049
(0.0020)

0.0049
(0.0024)

0.0048
(0.0028)

0.0048
(0.0032)

0.0048
(0.0036)

0.0048
(0.0040)

11 0.0049
(0.0020)

0.0048
(0.0024)

0.0048
(0.0028)

0.0048
(0.0032)

0.0048
(0.0036)

0.0048
(0.0040)

12 0.0048
(0.0020)

0.0048
(0.0024)

0.0048
(0.0028)

0.0048
(0.0032)

0.0047
(0.0036)

0.0047
(0.0041)

13 0.0048
(0.0020)

0.0048
(0.0024)

0.0048
(0.0028)

0.0048
(0.0032)

0.0047
(0.0036)

0.0047
(0.0040)

14 0.0049
(0.0020)

0.0048
(0.0024)

0.0048
(0.0028)

0.0048
(0.0032)

0.0048
(0.0036)

0.0047
(0.0041)

15 0.0049
(0.0020)

0.0049
(0.0024)

0.0048
(0.0028)

0.0048
(0.0032)

0.0048
(0.0036)

0.0048
(0.0041)

16 0.0049
(0.0020)

0.0049
(0.0024)

0.0048
(0.0028)

0.0048
(0.0032)

0.0048
(0.0036)

0.0048
(0.0041)

17 0.0049
(0.0020)

0.0049
(0.0024)

0.0048
(0.0028)

0.0048
(0.0032)

0.0048
(0.0036)

0.0048
(0.0041)

18 0.0049
(0.0020)

0.0048
(0.0024)

0.0048
(0.0028)

0.0048
(0.0033)

0.0048
(0.0037)

0.0047
(0.0041)

19 0.0049
(0.0020)

0.0048
(0.0024)

0.0048
(0.0028)

0.0048
(0.0033)

0.0048
(0.0037)

0.0047
(0.0041)

20 0.0049
(0.0020)

0.0048
(0.0025)

0.0048
(0.0029)

0.0048
(0.0033)

0.0048
(0.0037)

0.0047
(0.0042)

SD, standard deviation; GAM, generalized additive model.

The Bayesian GAM analyses were conducted in software SAS 9.4 and R version 3.41 with
MCMCpack package [41]. We used 1000 burn-in iterations and 2000 iterations after burn-in for
Markov chains. Although 10,000 iterations after burn-in are usually suggested, we did not find
noticeable differences in the estimates between 10,000 iterations and 2000 iterations. The latter reduced
however the computation time significantly. For comparison purpose, we also used df s ranged from 1
to 20 per year for the Bayesian P-splines to control for smoothness. By default we used non-informative
uniform priors for the coefficients and the derived estimates are quite similar to those derived from
frequentist GAMs. Although the Bayesian β̂1s appear more fluctuated around the true β1 (Figure 6),
their SDs are comparable to those of their frequentist counterparts (Table 4).
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Figure 6. Distributions of Bayesian β̂1s for simulated data with different noises (σ = 0.5 − 1.0σ̂) and
degrees of freedom (1–20 per year) for S(t); the true β1 = 0.0049.
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Table 4. Mean (SD) of estimated β̂1s derived from Bayesian GAMs.

df σ = 0.5σ̂ σ = 0.6σ̂ σ = 0.7σ̂ σ = 0.8σ̂ σ = 0.9σ̂ σ = σ̂

1 0.0091
(0.0019)

0.0090
(0.0023)

0.0090
(0.0027)

0.0089
(0.0031)

0.0088
(0.0035)

0.0087
(0.0039)

2 0.0093
(0.0019)

0.0094
(0.0022)

0.0094
(0.0026)

0.0094
(0.0030)

0.0095
(0.0034)

0.0095
(0.0038)

3 0.0069
(0.0016)

0.0069
(0.0020)

0.0069
(0.0023)

0.0070
(0.0027)

0.0070
(0.0031)

0.0070
(0.0034)

4 0.0059
(0.0019)

0.0059
(0.0023)

0.0060
(0.0026)

0.0060
(0.0030)

0.0060
(0.0034)

0.0061
(0.0038)

5 0.0062
(0.0018)

0.0062
(0.0021)

0.0062
(0.0025)

0.0061
(0.0028)

0.0061
(0.0032)

0.0060
(0.0036)

6 0.0066
(0.0019)

0.0067
(0.0023)

0.0067
(0.0027)

0.0067
(0.0031)

0.0068
(0.0035)

0.0068
(0.0039)

7 0.0062
(0.0017)

0.0062
(0.0021)

0.0063
(0.0024)

0.0064
(0.0028)

0.0064
(0.0032)

0.0065
(0.0036)

8 0.0053
(0.0018)

0.0054
(0.0021)

0.0054
(0.0025)

0.0055
(0.0029)

0.0056
(0.0032)

0.0056
(0.0036)

9 0.0054
(0.0020)

0.0055
(0.0024)

0.0056
(0.0028)

0.0057
(0.0031)

0.0058
(0.0035)

0.0058
(0.0039)

10 0.0049
(0.0019)

0.0049
(0.0023)

0.0049
(0.0028)

0.0050
(0.0032)

0.0050
(0.0036)

0.0050
(0.0040)

11 0.0046
(0.0018)

0.0045
(0.0022)

0.0045
(0.0026)

0.0044
(0.0029)

0.0043
(0.0033)

0.0043
(0.0037)

12 0.0049
(0.0018)

0.0049
(0.0022)

0.0049
(0.0026)

0.0049
(0.0030)

0.0049
(0.0034)

0.0049
(0.0038)

13 0.0051
(0.0018)

0.0052
(0.0022)

0.0052
(0.0025)

0.0053
(0.0029)

0.0053
(0.0032)

0.0054
(0.0036)

14 0.0047
(0.0017)

0.0047
(0.0021)

0.0047
(0.0024)

0.0047
(0.0028)

0.0046
(0.0032)

0.0046
(0.0036)

15 0.0050
(0.0019)

0.0050
(0.0023)

0.0050
(0.0027)

0.0051
(0.0031)

0.0051
(0.0035)

0.0051
(0.0039)

16 0.0047
(0.0021)

0.0047
(0.0025)

0.0046
(0.0030)

0.0046
(0.0034)

0.0045
(0.0039)

0.0045
(0.0044)

17 0.0048
(0.0020)

0.0048
(0.0025)

0.0048
(0.0029)

0.0048
(0.0033)

0.0048
(0.0037)

0.0047
(0.0042)

18 0.0048
(0.0017)

0.0048
(0.0020)

0.0048
(0.0024)

0.0048
(0.0027)

0.0047
(0.0031)

0.0048
(0.0034)

19 0.0052
(0.0023)

0.0052
(0.0028)

0.0053
(0.0032)

0.0054
(0.0037)

0.0054
(0.0042)

0.0055
(0.0047)

20 0.0049
(0.0018)

0.0049
(0.0021)

0.0049
(0.0025)

0.0049
(0.0028)

0.0049
(0.0032)

0.0049
(0.0036)

SD, standard deviation; GAM, generalized additive model.

3.2. Sensitivity of Bayesian GAM to Choice of Prior Mean and Variance

One of the most important (however also controversial) features of Bayesian method is that they
can integrate prior knowledge and observed data in their inference. The posterior is a compromise
between prior and likelihood. In the second simulation, we investigated the impact of informative
priors rather than non-informative uniform prior on the posterior β̂1. We simulated the time-series of
daily respiratory mortality with a fixed σ = 0.5σ̂ and true β1 = 0.0049. In total, 12,000 time-series were
generated. For Bayesian GAM analyses, we used a normal prior for β1, and set the varied prior mean
µ(β1) ranging from 0.001 to 0.020 by 0.001, and varied prior variance V(β1) equal to γβ1, where γ = 0.5,
0.6, . . . , 1.0. For each combination of µ(β1) and V(β1), we did 100 Bayesian analyses. To get unbiased
estimates with fewer computation task, we set the df for splines to eight per year. The distribution
of Bayesian estimates (β̂1s) are shown in Figure 7. The mean of β̂1s is fluctuated but closely around
the true β1 for different µ(β1). These is no noticeable difference among the means of β̂1s derived from
different V(β1) (Figure 7 and Table 5). The SD of β̂1s is not sensitive to the V(β1) (Table 5).
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Figure 7. Distributions of Bayesian β̂1s from simulated data with σ = 0.5σ̂, the true β1 = 0.0049; in
Bayesian GAM analyses df = 8 for S(t), V(β1) equal to γβ1, where γ = 0.5, 0.6, . . . , 1.0, and µ(β1) ranging
from 0.001 to 0.020 by 0.001.
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Table 5. Mean (SD) of estimated β̂1s derived from Bayesian GAMs with different priors.

µ(β1) Var(β1) = 0.5β1 Var(β1) = 0.6β1 Var(β1) = 0.7β1 Var(β1) = 0.8β1 Var(β1) = 0.9β1 Var(β1) = β1

0.001 0.0048 (0.0018) 0.0048 (0.0018) 0.0048 (0.0018) 0.0048 (0.0018) 0.0048 (0.0018) 0.0048 (0.0018)
0.002 0.0046 (0.0020) 0.0046 (0.0020) 0.0046 (0.0020) 0.0046 (0.0020) 0.0046 (0.0020) 0.0046 (0.0020)
0.003 0.0052 (0.0018) 0.0052 (0.0018) 0.0052 (0.0018) 0.0052 (0.0018) 0.0052 (0.0018) 0.0052 (0.0018)
0.004 0.0045 (0.0018) 0.0045 (0.0018) 0.0045 (0.0018) 0.0045 (0.0018) 0.0045 (0.0018) 0.0045 (0.0018)
0.005 0.0049 (0.0020) 0.0050 (0.0020) 0.0050 (0.0020) 0.0049 (0.0020) 0.0049 (0.0020) 0.0049 (0.0020)
0.006 0.0048 (0.0018) 0.0048 (0.0018) 0.0048 (0.0018) 0.0048 (0.0018) 0.0048 (0.0018) 0.0048 (0.0018)
0.007 0.0047 (0.0018) 0.0047 (0.0018) 0.0047 (0.0018) 0.0047 (0.0018) 0.0047 (0.0018) 0.0047 (0.0018)
0.008 0.0048 (0.0018) 0.0048 (0.0018) 0.0048 (0.0018) 0.0048 (0.0018) 0.0048 (0.0018) 0.0048 (0.0018)
0.009 0.0048 (0.0020) 0.0048 (0.0020) 0.0048 (0.0020) 0.0048 (0.0020) 0.0048 (0.0020) 0.0048 (0.0020)
0.010 0.0046 (0.0020) 0.0046 (0.0020) 0.0046 (0.0020) 0.0046 (0.0020) 0.0046 (0.0020) 0.0046 (0.0020)
0.011 0.0047 (0.0018) 0.0047 (0.0018) 0.0047 (0.0018) 0.0047 (0.0018) 0.0047 (0.0018) 0.0047 (0.0018)
0.012 0.0051 (0.0017) 0.0051 (0.0017) 0.0051 (0.0017) 0.0051 (0.0017) 0.0051 (0.0017) 0.0051 (0.0017)
0.013 0.0046 (0.0016) 0.0046 (0.0016) 0.0046 (0.0016) 0.0046 (0.0016) 0.0046 (0.0016) 0.0046 (0.0016)
0.014 0.0050 (0.0019) 0.0050 (0.0019) 0.0050 (0.0019) 0.0050 (0.0019) 0.0050 (0.0019) 0.0050 (0.0019)
0.015 0.0050 (0.0020) 0.0050 (0.0020) 0.0050 (0.0020) 0.0050 (0.0020) 0.0050 (0.0020) 0.0050 (0.0020)
0.016 0.0046 (0.0018) 0.0046 (0.0018) 0.0046 (0.0018) 0.0046 (0.0018) 0.0046 (0.0018) 0.0046 (0.0018)
0.017 0.0049 (0.0020) 0.0049 (0.0020) 0.0049 (0.0020) 0.0049 (0.0020) 0.0049 (0.0020) 0.0049 (0.0020)
0.018 0.0050 (0.0017) 0.0050 (0.0017) 0.0050 (0.0017) 0.0050 (0.0017) 0.0050 (0.0017) 0.0050 (0.0017)
0.019 0.0049 (0.0016) 0.0049 (0.0016) 0.0049 (0.0016) 0.0049 (0.0016) 0.0049 (0.0016) 0.0049 (0.0016)
0.020 0.0051 (0.0018) 0.0051 (0.0018) 0.0051 (0.0018) 0.0051 (0.0018) 0.0051 (0.0018) 0.0051 (0.0018)

SD, standard deviation; GAM, generalized additive model.

3.3. Sensitivity of Bayesian GAM to True Parameter

In our third simulation study, we artificially set the σ = 0.5σ̂ and ‘true’ β1 ranged from 0.001 to
0.020 to generate 20 sets of simulated daily respiratory deaths, while kept the other coefficients in
Equation (9) unchanged.

In Bayesian estimation, we used a normal prior for β1 with a fixed mean µ(β1) = 0.005 but varied
V(β1) = 0.5, 0.6, . . . , 1.0 times of µ(β1), i.e., 0.0025, 0.003, 0.0035, 0.004, 0.0045 and 0.005. For each
combination of β1 and V(β1), we generated 100 simulated time-series. Therefore, for each prior β1, we
did 600 Bayesian GAM analyses (100 × 6 variances). The estimates by the 20 true β1s and 6 varied
variances were shown in Figure 8 and Table 6.

Table 6. Mean (SD) of estimated β̂1s derived from Bayesian GAMs of different true β1s.

True β1 Var(β1) = 0.5β1 Var(β1) = 0.6β1 Var(β1) = 0.7β1 Var(β1) = 0.8β1 Var(β1) = 0.9β1 Var(β1) = β1

0.001 0.0008 (0.0018) 0.0008 (0.0018) 0.0008 (0.0018) 0.0008 (0.0018) 0.0008 (0.0018) 0.0008 (0.0018)
0.002 0.0016 (0.0020) 0.0016 (0.0020) 0.0016 (0.0020) 0.0016 (0.0020) 0.0016 (0.0020) 0.0016 (0.0020)
0.003 0.0032 (0.0018) 0.0032 (0.0018) 0.0032 (0.0018) 0.0032 (0.0018) 0.0032 (0.0018) 0.0032 (0.0018)
0.004 0.0035 (0.0018) 0.0035 (0.0018) 0.0035 (0.0018) 0.0035 (0.0018) 0.0035 (0.0018) 0.0035 (0.0018)
0.005 0.0049 (0.0020) 0.0050 (0.0020) 0.0050 (0.0020) 0.0049 (0.0020) 0.0049 (0.0020) 0.0049 (0.0020)
0.006 0.0058 (0.0018) 0.0058 (0.0018) 0.0058 (0.0018) 0.0058 (0.0018) 0.0058 (0.0018) 0.0058 (0.0018)
0.007 0.0067 (0.0018) 0.0067 (0.0018) 0.0067 (0.0018) 0.0067 (0.0018) 0.0067 (0.0018) 0.0067 (0.0018)
0.008 0.0078 (0.0018) 0.0078 (0.0018) 0.0078 (0.0018) 0.0078 (0.0018) 0.0078 (0.0018) 0.0078 (0.0018)
0.009 0.0088 (0.0020) 0.0088 (0.0020) 0.0088 (0.0020) 0.0088 (0.0020) 0.0088 (0.0020) 0.0088 (0.0020)
0.010 0.0096 (0.0020) 0.0096 (0.0020) 0.0096 (0.0020) 0.0096 (0.0020) 0.0096 (0.0020) 0.0096 (0.0020)
0.011 0.0107 (0.0018) 0.0107 (0.0018) 0.0107 (0.0018) 0.0107 (0.0018) 0.0107 (0.0018) 0.0107 (0.0018)
0.012 0.0121 (0.0017) 0.0121 (0.0017) 0.0121 (0.0017) 0.0121 (0.0017) 0.0121 (0.0017) 0.0121 (0.0017)
0.013 0.0125 (0.0016) 0.0125 (0.0016) 0.0126 (0.0016) 0.0126 (0.0016) 0.0126 (0.0016) 0.0126 (0.0016)
0.014 0.0140 (0.0019) 0.0140 (0.0019) 0.0140 (0.0019) 0.0140 (0.0019) 0.0140 (0.0019) 0.0140 (0.0019)
0.015 0.0150 (0.0020) 0.0150 (0.0020) 0.0150 (0.0020) 0.0150 (0.0020) 0.0150 (0.0020) 0.0150 (0.0020)
0.016 0.0156 (0.0019) 0.0156 (0.0019) 0.0156 (0.0019) 0.0156 (0.0019) 0.0156 (0.0019) 0.0156 (0.0019)
0.017 0.0170 (0.0020) 0.0170 (0.0020) 0.0170 (0.0020) 0.0170 (0.0020) 0.0170 (0.0020) 0.0170 (0.0020)
0.018 0.0180 (0.0017) 0.0180 (0.0017) 0.0180 (0.0017) 0.0180 (0.0017) 0.0180 (0.0017) 0.0180 (0.0017)
0.019 0.0189 (0.0017) 0.0189 (0.0017) 0.0189 (0.0017) 0.0189 (0.0017) 0.0189 (0.0017) 0.0190 (0.0017)
0.020 0.0201 (0.0019) 0.0201 (0.0019) 0.0202 (0.0019) 0.0202 (0.0019) 0.0202 (0.0019) 0.0202 (0.0019)

SD, standard deviation; GAM, generalized additive model.
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Figure 8. Distributions of Bayesian β̂1s from simulated data with σ = 0.5σ̂, true β1 = 0.001 to 0.02 by
0.001; in Bayesian GAM analyses df = 8 for S(t), µ(β1) = 0.005 and V(β1) = 0.0025, 0.003, 0.0035, 0.004,
0.0045 and 0.005.

We can see that the mean of the estimated β̂1s is only sensitive to the underlying true β1 and is
almost not affected by the prior µ(β1). Due to the small coefficients, the difference between means
and SDs of the estimated β̂1s can only be seen in the fifth or sixth decimal digit. The bivariate linear
regression analysis between the true β1s and the Bayesian β̂1s in Table 6 reveals that all the coefficients
are almost equal to 1 and all the R are larger than 0.99, which indicates the high precision and accuracy
of the Bayesian estimates.

4. Discussion

In the presented study, we evaluated the performance of frequentist and fully Bayesian GAM
approaches in a time-series study on the relationship between daily exposure to PM2.5 and respiratory
mortality. According to our estimates, per 10 µg/m3 increase in PM2.5 concentration of lag 1 day is
associated with an approximately 0.49% increase in daily respiratory deaths in Shanghai between
2012 and 2014, which is consistent with the results from other studies conducted in China [9,36].
Using the estimated effect as true parameter, we compared the frequentist GAM and Bayesian GAM
based on simulation. Both frequentist GAM and Bayesian GAM show the similar mean estimates
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of the interested parameters. However, the estimates from frequentist GAM showed relatively less
fluctuation (Figures 5 and 6), which to some extent reflects the over-confident inferences embedded in
this method. Regarding the accuracy and precision of the estimates, both methods gave mean estimates
close to the true parameter with comparable confidence intervals. It means that Bayesian GAM might
be an ideal alternative to the conventional frequentist GAM. Our simulation study also indicated that
when the underlying parameter was true, the informative normal priors had no noticeable influence on
the Bayesian estimate (Figure 7), which was only sensitive to the underlying true parameter (Figure 8).
The reason might be the large number of data that we have and the posterior is dominated by the data
rather than the prior.

As a flexible extension of GLM introduced by Hastie and Tibshirani [42], GAM can estimate
both linear trends from parametric components and nonlinear trend from any general nonparametric
components during the fitting. It has been widely used in time-series studies on air pollution and
health effects, controlling for daily variations in meteorological conditions and seasonal trends. The
original GAM fitting method estimated the smooth components of the model using non-parametric
smoothers, such as smoothing splines or LOESS, via the backfitting algorithm [42]. By iteratively
smoothing partial residuals, backfitting provides a general module to estimate the Sj terms that are
capable of using a wide variety of smoothing methods. The computational cost issue of full spline
method has been addressed recently by using Markov random fields to find sparse representations
of the smooths, which can be viewed as an empirical Bayesian method [43]. An alternative approach
with particular advantages in high dimensional settings is to use boosting, which typically requires
bootstrapping for uncertainty quantification [44,45].

Although frequentist GAM gives a rich family of models that have been widely applied, a crucial
problem with GAM is the choice of the number and the position of the knots, in terms of analytical
tractability. A small number of knots may result in insufficient flexibility to capture the variability of
the data while a large one may lead to overfitting. P-splines approach makes a more parsimonious
parameterization possible, which is of particular advantage in a Bayesian framework where inference
is based on MCMC techniques [25]. By taking into account the complete likelihood surface rather than
plugging in the maximum likelihood estimate of the covariance structure, the approach provides the
posterior distributions of the quantities of interest, such as ‘the true parameter has a probability of
0.95 of falling in a 95% credible interval (CI)’, which is more interpretable. Unlike frequentist methods,
which provided one estimate for each model parameter, Bayesian methods may provide, for each
parameter, a sample of thousands of MCMC estimates from the simulated posterior distribution of the
parameter. The reported posterior mean and posterior distribution are the corresponding summaries
of the marginal posterior distribution of the parameter.

Due to recent developments in MCMC algorithms, software, and hardware, we can now use
MCMC methods to analyze complex models that would have been impossible only a few decades
ago [46]. However, the Bayesian GAM is only available in a few R packages such as gammSlice [47],
R2BayesX [48], and spikeSlabGAM [49], which limits its application in a variety of scientific fields.
In gammSlice Pham et al. used the slicing sampling method [50] for GAM fitting and inference
within a Bayesian framework [47]. R2BayesX supports similar models to those in gammSlice. Scheipl
used spike-and-slab type prior distributions on the spline coefficients [49]. Especially, Klein et al.
proposed a general class of Bayesian GAM for count data within the GAM framework for location,
scale, and shape where semiparametric predictors can be specified for several parameters of a count
data distribution [21].

There are some limitations to our study. First, we did not impose any structure on the relationship
of the coefficients of the lagged PM2.5 concentrations with each other. However, multicollinearity
among the lagged independent variables often arises, leading to high variance of the coefficient
estimates. We plan to address this problem by constraining the βl to be a simple function of the lag
number using a structured finite distributed lag model in the future [51]. This problem can also be
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addressed by a time-scale model which estimates the association between daily smooth variations of
pollution and health outcomes by replacing βlXt−l in Equation (1) with:

∑ K
k=1βkWkt (11)

where W1t, . . . , Wkt, . . . , WKt is a set of predictors obtained by applying a wavelet analysis or Fourier
analysis to Xt to satisfy orthogonality, such that ∑K

k=1 Wkt = Xt [52–54]. The parameter βk measures the
logarithmic relative rate of the health outcome for increasing air pollution at time scale k. Time scales
of interest include short-term variations within several days and long-term variations within one to
two months because it is believed that any effects are dominated by seasonal confounding beyond
two months [54]. Other tools such as auto-regressive moving average model or vector auto-regressive
model could be also appropriate [55]. Second, our simulation framework did not address the issue of
measurement error in the covariates. Because such error can in some situations attenuate the estimated
effects, it may be useful in the future to employ a more elaborate simulation framework to incorporate
the measurement error. Third, our model did not model interaction between PM2.5 and other covariates
yet. The concentration-response relationship between PM2.5 and respiratory deaths was assumed to be
approximately linear, but this might not be true in very low or very high PM2.5 concentrations. The two
limitations can be addressed using varying coefficient model (VCM), where linear βlXt−l is replaced
by S(Xt−l)zl. Estimation of VCM poses no further difficulties since only the βl in Equation (7) has to be
redefined by S(Xt−l) multiplying with Zl. Furthermore, we acknowledge that our study is based on
simulated data, and the difference in the results between the frequentist and Bayesian methods is small
and might be biased towards a Bayesian approach because of the predefined parameters. Therefore,
the evidence to advocate the Bayesian approach over the frequentist one has yet been strong, and a
confirmation study using real-world data is needed to address these issues in the future.

5. Conclusions

Our simulation study indicates that fully Bayesian GAM may generate an accurate and
precise estimations as conventional frequentist GAM does while revealing potential uncertainty
that frequentist GAM could not detect. Although computationally intensive, Bayesian GAM would be
a better solution to avoid over-confident inferences potentially seen in a frequentist GAM. With the
increasing computing power and available statistical packages, fully Bayesian methods may see wider
applications in decision-making processes.
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Abbreviations

AQM Air quality monitoring
CDR Causes of Death Registry
CrI Credible interval
df Degrees of freedom
DOW Day of week
GAM Generalized additive model
GLM Generalized linear model
ICD-10 International Classification of Diseases Codes, version 10
IQR Interquartile range
LOESS locally weighted smoothers
MCMC Markov Chain Monte Carlo
PM Particulate matter
PM2.5 Fine particles with a diameter of 2.5 µm or less
SCDC Shanghai Municipal Center for Disease Control and Prevention
SD Standard deviation
SE Standard error
SWT Synoptic weather types
VCM Varying coefficient model
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