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Abstract: Landscape change is an important aspect of coastal ecological conservation and has an
essential influence on the sustainable development of the coastal economy. With remoting-sensing (RS)
images between 2000, 2005, 2010, and 2015, using geographic information system (GIS) technologies,
we examined ecosystem spatial changes in the Bohai coastal zone. Results showed that wetlands,
mainly constituted by reservoirs/ponds, were the dominant landscape types. The urban ecosystem
has the largest area increment and the fastest growth rate from 2000 to 2015. The quantification of
landscape metrics revealed that spatial patterns have changed significantly, and the change direction
of these ecosystems had moved toward increased heterogeneity and fragmentation. In addition,
natural and socio-economic data were used to analyze the major driving forces triggering ecosystem
spatial changes through redundancy analysis (RDA). The results revealed that the output of aquatic
products (AQ) and population (Pop) were the main factors related to wetland ecosystem change.
Pop and gross domestic product per capita (GDPpc) were closely related to the urban ecosystem
change. Annual mean temperature (ATm), crop acreage (CA), and grain yield (GY) had positive
correlations with the agriculture ecosystem changes.

Keywords: ecosystem spatial changes; land use transition matrix; landscape metrics; driving forces

1. Introduction

Coastal zones are significant ecological boundaries, forming the transition area between terrestrial
and marine ecosystems [1]. Coastal ecosystems provide easily accessible goods and services to
humankind and play a significant role in coastal economic development and political interactions
between countries [2]. One third of the world’s population living within 100 km of a coast [3],
and coastal communities are nearly three times more densely populated than inland areas [4].
The coastal region of China is comprised of an area of more than 3 million km2 and possesses an
18,000 km coastline stretching across tropical, subtropical, and temperate zones [5]. It is estimated
that more than 70% of large Chinese cities are located in coastal zones, and coastal development
plays a dominant role in the national economy. The value of coastal ecosystems accounts for
more than 50% of its gross domestic product (GDP) [6]. The long-term sustainable development
of coastal communities and the quality of human life closely depend on coastal ecosystems and
the crucial services they generate, such as fishery production, climate mitigation, storm buffering
and waste treatment [4]. The quality and quantity of ecosystem services are directly affected by
coastal land cover/use change [7–9]. However, as the most densely populated area, Bohai coastal
regions have experienced continuous alteration and transformation over the past decades, from
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wetland, forest and grassland to farmland and urban. These changes have negatively affected the
ecosystem composition and structure, altered the production capacity and transformed the ecological
attributes of the ecosystems, and influenced the nutritional transport between soil and vegetation [10].
Some natural coastal ecosystems are being continuously altered, transformed or destroyed which
has resulted in the degraded function of ecosystem services, including ecosystem goods and services
provision, environmental pollution control, biodiversity conservation, and human vulnerability to
changing ecosystems [11,12]. Quantitative information on the historic change of landscape structure
and composition was helpful for understanding the consequences of landscape changes [13,14].
Landscape pattern change analysis is increasingly considered an effective way for facilitating better
policy decision-making in the sustainable development of coastal management. Landscape pattern
change is usually quantified by landscape metrics [15–17]. Landscape pattern metrics are simple
quantitative indices that concentrate landscape information and reflect the change characteristics of the
ecosystem structure and spatial configuration. In recent decades, numerous researchers have focused
on landscape status, landscape evolution, forecasting future landscape change, etc. [18–20]. Based on
the reconstruction of historical landscape information, long-term human-environment interactions can
be analyzed to develop a comprehensive understanding of these changes [21].

Driven by endogenous and exogenous factors in different spatial and temporal scales,
the landscape is always in a state of dynamic change. Recent research has focused on the reasons behind
the landscape changes and the “driving forces” have been developed into a fundamental concept [22],
which is now used as a framework for identifying the causes, processes and consequences of landscape
changes and has become indispensable for the assessment of policy decisions [23]. The definition of
driving forces is the forces that cause observed landscape changes [24]. There are five major types
of driving forces: socioeconomic, political, technological, natural and cultural driving forces [24].
These driving forces are not independent, and they influence the landscape change through non-linear
interactions. The analysis on the driving forces of landscape change is a sort of directional research, and
therefore there is no specific method or framework. However, statistical analysis is helpful to identify
correlations between landscape changes and driving forces. Many studies analyzed the driving forces
from the perspective of nature and socio-economic development [25,26]. The analysis of landscape
spatial changes and its driving forces in different periods has become the latest trend. Although most
current achievements have not explained fully the casual relationship and driving mechanism between
factors and changes, they lay a good foundation for the further research in this field.

This study evaluated landscape changes of the coastal ecosystems in Bohai Bay from 2000 to 2015.
With landscape pattern changes in Bohai Bay, especially the urban expansion and shrinkage of wetland
ecosystems, certain ecological problems have emerged, such as wetland degradation and habitat loss
and fragmentation. The quantitative analysis of landscape changes is necessary for the settlement of
ecological problems resulting from landscape changes. The main goals of this study are: (1) to analyze
the landscape changes of ecosystems in the Bohai coastal zone from 2000 to 2015 and (2) to identify the
main driving forces of these changes during the past 15 years.

2. Study Area

The Bohai Sea is a “C”-shaped nearly enclosed sea. The scope of the coastal zone is a buffer
zone, which is based on the coastline, and extends to a certain range across land and sea. There is no
uniform standard for the division of the coastal zone at present, therefore, different researchers employ
different definitions of coastal zones [27]. From the perspective of geomorphology, the coastal belt is a
tideland zone between low and high tide. The widely accepted view is that the coastal zone is the area
where the land interacts with the ocean. The coastal zone in this study is defined as the geographical
area within the mainland with a distance of 10 km to the coastline, which is proposed as the basic
unit in coastal zone evaluation. The coastal zone of the Bohai region spans three provinces and one
municipality: Liaoning, Hebei, Shandong, and Tianjin, including 13 coastal cities: Dalian, Yingkou,
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Panjin, Jinzhou, Huludao, Qinhuangdao, Tangshan, Tianjin, Cangzhou, Binzhou, Dongying, Weifang,
and Yantai from north to south, respectively (Figure 1).

Bohai bay plays an important role in national economic development. Administrations
have proposed the conception of “Bohai Economic Rim” and distinctive development planning
is implemented to boost coastal economy of Bohai bay. Driven by national policy, coastal landscapes
are always under high development intensity and are being transformed at an unprecedent high rate
in Bohai Bay. Coastal wetlands were reclaimed to meet the land needs for the construction of coastal
ports, industrial parks, and coastal engineering projects. The construction scales of the Caofeidian
industrial zone, Binhai new area of Tianjin, Huanghua port, and Dongying port have been gradually
expanding since the implementation of the tenth “five-year plan,” inevitably changing the coastal
ecosystem structure and spatial configuration.
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Figure 1. Location of the study area in China.

3. Data and Methods

3.1. Data

Based on geographic information system (GIS) (ArcGIS 10.3) (ESRI, Redlands, CA, USA)
technology, we have processed Landsat Thematic Mapper (TM) remote-sensing images of four typical
periods in 2000, 2005, 2010 and 2015. The main data sources are Landsat TM images with 30 m spatial
resolution during June to October. The ecosystem classification data came from the project “Survey
and Assessment of National Ecosystem Changes between 2000 and 2010,” supported by the Ministry of
Environmental Protection (MEP) of China and Chinese Academy of Sciences (CAS) [28], and the project
“Survey and Assessment of National Ecosystem Changes between 2010 and 2015.” The research region
is divided into seven categories: forest ecosystem (FE), shrub ecosystem (SE), grassland ecosystem
(GL), wetland ecosystem (WE), farmland ecosystem (FL), urban ecosystem (UE), and bare land (BL).
These ecosystems were subdivided into 24 classes.
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3.2. Methods

3.2.1. Landscape Changes

Changes in area, landscape dynamic degree, landscape change index, and the transition matrix of
landscape types are four main indicators to depict landscape dynamics.

To quantitatively depict the range and speed of the ecosystems, the dynamic degree (K) was
adopted and calculated. K refers to the percentage of ecosystem area changes per year within the
initial ecosystem area, which can quantitatively reveal the ecosystem area change rate. The equation to
calculate K is as follows [25,29]:

K =
At+1 − At

At
× 1

∆t
× 100% (1)

K refers to the dynamic degree of land use for a specific ecosystem, defined as the percent of land
use change per year, and At and At+1 represent the area of the coastal landscape for times t and t+1,
∆t means the duration of a certain period.

The landscape change index (LCI) is a good index to depict the overall landscape changes.
The definition of the LCI is the absolute values of change in ecosystem types that have greatest impact
on the formation of the landscape [30]. The LCI was calculated for each time interval by multiplying a
factor of one-half by the sum of the absolute values of change in area proportion of each ecosystem type
in relation to the total analyzed area, a constant of one-half was adopted to reflect the actual change
level because summing the absolute values of change of each ecosystem type essentially doubled the
index. The Equation for calculating LCI is:

LCIti =
1
2
×

n

∑
i=1
|CAi| (2)

where LCIti represents the landscape change index in each time interval; |CAi| represents the absolute
value of change in area proportion of each ecosystem type in relation to the total analyzed area, it was
calculated with the following equation:

CAi = (St+1/St)/TA (3)

where CAi represents the changes in area proportion of each ecosystem type in relation to the total
area of research (%), St+1 and St represents the area of each ecosystem type during the time interval t+1
(km2) and t (km2); TA represents the total research area (km2).

The cross-tabulation matrix method [31] was used to analyze the landscape changes in three-time
intervals (2000–2005, 2005–2010, 2010–2015). Table 1 showed the format of transition matrix.
The columns display the categories of time 1 and the rows display the categories of time 2; Pij represents
the proportion of the landscape that experiences a transition from category i to j; Pii represents the
proportion of the landscape that shows persistence of category i; Pi+ and P+j represent the proportion
of the landscape in category i in time 2 and category j in time 1 respectively. The column of gain and
net change indicate the proportion of landscape that experiences gross gain and net change of each
landscape type between time 1 and 2.

Table 1. Transition matrix for comparing landscape changes in time [31].

Time 2
Time 1 Category 1 Category 2 Category 3 Category 4 Total Time 2 Gain Net Change

Category 1 P11 P21 P31 P41 P+1 P+1 − P11 P+1 − P1+
Category 2 P12 P22 P32 P42 P+2 P+2 − P22 P+2 − P2+
Category 3 P13 P23 P33 P43 P+3 P+3 − P33 P+3 − P3+
Category 4 P14 P24 P34 P44 P+4 P+4 − P44 P+4 − P4+
Total time 1 P1+ P2+ P3+ P4+ 1

Loss P1+ − P11 P2+ − P22 P3+ − P33 P4+ − P44
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3.2.2. Landscape Metrics

The spatial configuration of coastal landscapes is as much a reflection of the past as it is an
indicator of the current socioeconomic processes and interactions [32]. Commonly, landscape metrics
can be used to conduct empirical analysis of landscape pattern changes. A wide variety of metrics for
characterizing landscapes have been proposed [33]. In view of numerous landscape metrics, we chose
appropriate metrics based on four criteria: (1) comparability with previous research on landscape
pattern changes; (2) ability to indicate ecological conditions of ecosystems; (3) low redundancy among
landscape indices; and 4) ability to reflect the landscape pattern characteristics within the study
area [34]. Based on the objectives of this paper and the general situation of the study area, four metrics
at class level (NP, PD, MPS, and LPI) and five metrics at landscape level (NP, PD, MPS, LPI, and SHDI)
were chosen to illustrate landscape pattern changes. Fragstats 4.2.1, developed by the Forest Science
Department, Orgen State University, USA, is a program for quantifying landscape metrics for each
period and analyzing the ecosystem spatial changes of the Bohai coastal region [35]. The definition
and description of the landscape metrics are given in the Fragstats user’s guide [35]. The formulas [35]
are as follows:

1. NP: Number of patches NP = ni; n: the number of patches, NP ≥ 1, without limit.
2. PD: Patch density PD = N/A; N: number of patches; A: total landscape area, PD > 0, without limit.
3. MPS: Mean patch size MPS = A/N; N: number of patches; A: total landscape area, MPS > 0,

without limit.
4. LPI: Largest patch index LPI = Max(a1, . . . an)/A×100; ai: area of patch i; A: total landscape area,

0 < LPI ≤ 100.

5. SHDI: Shannon–Weaver diversity index SHDI = −
m
∑

i = 1
[Pi ln(Pi)]; Pi: the proportion of landscape

occupied by patch type i; m: number of patch types present in the landscape. SHDI ≥ 0.

3.2.3. Driving Forces Analysis

Ordination is a widely used method which attempts to reveal the relationships between ecological
landscapes and environmental variables [36]. Detrended correspondence analysis (DCA) was firstly
performed to test the length of environmental gradients of the axes. The length of environmental
gradient is 0.67, thus redundancy analysis (RDA) was used to analyze the relationships between
landscape changes and environmental variables.

The relative socio-economic data in this study mostly came from the public statistical yearbook
of history (2015). The driving force of ecosystem pattern change in the Bohai coastal zone includes
seven factors: annual mean precipitation (APm, mm), annual mean temperature (ATm, °C), population
(Pop, person), GDP per capita (GDPpc, yuan/per capita), crop acreage (CA, 103 hm2), grain yield (GY,
104 tons), and output of aquatic products (AQ, 104 tons). In consideration of different dimensions of
driving factors, the deviation normalization method was adopted to preprocess the data. Then DCA
and RDA were performed with Canoco 4.5 (Microcomputer Power, Ithaca, NY, USA) for Windows.

4. Results

4.1. Characteristics of Ecosystem Spatial Changes

4.1.1. Spatial Distribution Characteristics of Ecosystems

Many ecosystems constitute the complex landscape pattern of the Bohai coastal zone. The total
area and proportions of different ecosystems were shown in Table 2 and Figures 2 and 3.



Int. J. Environ. Res. Public Health 2019, 16, 536 6 of 17

Int. J. Environ. Res. Public Health 2019, 16 x 6 

4. Results 

4.1. Characteristics of Ecosystem Spatial Changes 

4.1.1. Spatial Distribution Characteristics of Ecosystems 

Many ecosystems constitute the complex landscape pattern of the Bohai coastal zone. The total 
area and proportions of different ecosystems were shown in Table 2 and Figures 2 and 3.  

  

(a) 2000 (b) 2005 

  

(c) 2010 (d) 2015 

Figure 2. Cont.



Int. J. Environ. Res. Public Health 2019, 16, 536 7 of 17Int. J. Environ. Res. Public Health 2019, 16 x 7 

Figure 2. Landscape changes of Bohai coastal zone between 2000 and 2015: (a) map of ecosystems in 
2000; (b) map of ecosystems in 2005; (c) map of ecosystems in 2010; (d) map of ecosystems in 2015. 

From 2000 to 2015, the wetland ecosystem had the largest area, accounting for about 39% of the 
total area, followed by farmland, urban ecosystem, and forest ecosystem. The area of these four 
ecosystems accounts for 90% of the total coastal zone (Figure 3). 

Reservoir/pond was the main landscape type of the wetland ecosystem, accounting for 84.53% 
of the total wetland area; dry land was the predominant landscape type of the farmland ecosystem, 
accounting for 90.44% of the total farmland area; residential land accounted for 92.02% of the total 
urban area and was the dominant urban ecosystem type; broad-leaved forest has the largest area, 
accounting for 86.64% of the total forest area (Table 2). 

Table 2. Area and proportion of ecosystems from 2000 to 2015. 

Ecosystem Types 
2000 2005 2010 2015 

Area 
(km2) 

Proportion 
(%) 

Area 
(km2) 

Proportion 
(%) 

Area 
(km2) 

Proportion 
(%) 

Area 
(km2) 

Proportion 
(%) 

WE 1 

Marsh land 1113.5 7.5 1022.0 6.9 804.1 5.4 599.6 4.0 
Lake 7.0 0.0 8.1 0.1 5.0 0.0 5.1 0.0 

Reservoir/Pond 4515.9 30.5 4640.3 31.3 4757.7 32.1 4653.8 31.4 
River 208.2 1.4 213.4 1.4 233.5 1.6 247.2 1.7 

FL 2 
Paddy field 409.6 2.8 348.6 2.4 363.2 2.4 378.1 2.6 

Dry land 4206.1 28.4 4054.3 27.3 3904.3 26.3 3966.9 26.8 
Garden plot 36.1 0.2 40.7 0.3 41.9 0.3 41.4 0.3 

UE 3 

Residential land 1520.0 10.3 1717.8 11.6 2270.0 15.3 2549.9 17.2 
Urban green land 75.6 0.5 78.7 0.5 82.1 0.6 88.7 0.6 

Transportation 
land 

73.7 0.5 89.1 0.6 104.3 0.7 118.6 0.8 

Mining area 9.0 0.1 10.4 0.1 9.3 0.1 13.8 0.1 
Industrial land 198.5 1.3 290.5 2.0 0.0 0.0 0.0 0.0 

FE 4 

Broad-leaved 
forest 

1006.5 6.8 1029.1 6.9 1038.9 7.0 1026.0 6.9 

Coniferous forest 66.2 0.4 71.6 0.5 68.9 0.5 70.3 0.5 
Mixed broadleaf-

conifer forest 
85.9 0.6 89.0 0.6 89.6 0.6 87.4 0.6 

Sparse forest 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 
BL 5 Bare land 925.7 6.2 814.4 5.5 749.5 5.1 646.4 4.4 

SE 6 
Broadleaf shrub 206.4 1.4 214.5 1.4 215.3 1.5 208.2 1.4 
Acerola shrub 0.1 0.0 0.1 0.0 0.2 0.0 0.2 0.0 
Sparse shrub 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 

GL 7 

Meadow 0.0 0.0 0.0 0.0 1.5 0.0 0.2 0.0 
Prairie 77.2 0.5 7.9 0.1 0.0 0.0 0.6 0.0 

Tussock 44.3 0.3 58.4 0.4 55.2 0.4 49.0 0.3 
Sparse grassland 43.6 0.3 29.0 0.2 31.4 0.2 73.2 0.5 

1 Wetland ecosystems; 2 farmland ecosystems; 3 urban ecosystems; 4 forest ecosystems; 5 bare land; 6 
shrub ecosystems; 7 grassland ecosystems. 

Figure 2. Landscape changes of Bohai coastal zone between 2000 and 2015: (a) map of ecosystems in
2000; (b) map of ecosystems in 2005; (c) map of ecosystems in 2010; (d) map of ecosystems in 2015.

From 2000 to 2015, the wetland ecosystem had the largest area, accounting for about 39% of
the total area, followed by farmland, urban ecosystem, and forest ecosystem. The area of these four
ecosystems accounts for 90% of the total coastal zone (Figure 3).

Reservoir/pond was the main landscape type of the wetland ecosystem, accounting for 84.53%
of the total wetland area; dry land was the predominant landscape type of the farmland ecosystem,
accounting for 90.44% of the total farmland area; residential land accounted for 92.02% of the total
urban area and was the dominant urban ecosystem type; broad-leaved forest has the largest area,
accounting for 86.64% of the total forest area (Table 2).

Table 2. Area and proportion of ecosystems from 2000 to 2015.

Ecosystem Types
2000 2005 2010 2015

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

WE 1

Marsh land 1113.5 7.5 1022.0 6.9 804.1 5.4 599.6 4.0
Lake 7.0 0.0 8.1 0.1 5.0 0.0 5.1 0.0

Reservoir/Pond 4515.9 30.5 4640.3 31.3 4757.7 32.1 4653.8 31.4
River 208.2 1.4 213.4 1.4 233.5 1.6 247.2 1.7

FL 2
Paddy field 409.6 2.8 348.6 2.4 363.2 2.4 378.1 2.6

Dry land 4206.1 28.4 4054.3 27.3 3904.3 26.3 3966.9 26.8
Garden plot 36.1 0.2 40.7 0.3 41.9 0.3 41.4 0.3

UE 3

Residential land 1520.0 10.3 1717.8 11.6 2270.0 15.3 2549.9 17.2
Urban green land 75.6 0.5 78.7 0.5 82.1 0.6 88.7 0.6

Transportation land 73.7 0.5 89.1 0.6 104.3 0.7 118.6 0.8
Mining area 9.0 0.1 10.4 0.1 9.3 0.1 13.8 0.1

Industrial land 198.5 1.3 290.5 2.0 0.0 0.0 0.0 0.0

FE 4

Broad-leaved forest 1006.5 6.8 1029.1 6.9 1038.9 7.0 1026.0 6.9
Coniferous forest 66.2 0.4 71.6 0.5 68.9 0.5 70.3 0.5

Mixed broadleaf-conifer
forest 85.9 0.6 89.0 0.6 89.6 0.6 87.4 0.6

Sparse forest 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0

BL 5 Bare land 925.7 6.2 814.4 5.5 749.5 5.1 646.4 4.4

SE 6
Broadleaf shrub 206.4 1.4 214.5 1.4 215.3 1.5 208.2 1.4
Acerola shrub 0.1 0.0 0.1 0.0 0.2 0.0 0.2 0.0
Sparse shrub 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0

GL 7

Meadow 0.0 0.0 0.0 0.0 1.5 0.0 0.2 0.0
Prairie 77.2 0.5 7.9 0.1 0.0 0.0 0.6 0.0

Tussock 44.3 0.3 58.4 0.4 55.2 0.4 49.0 0.3
Sparse grassland 43.6 0.3 29.0 0.2 31.4 0.2 73.2 0.5

1 Wetland ecosystems; 2 farmland ecosystems; 3 urban ecosystems; 4 forest ecosystems; 5 bare land; 6 shrub
ecosystems; 7 grassland ecosystems.
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4.1.2. Characteristics of Ecosystem Spatial Changes

The statistics show that the areas of the observed ecosystems have all changed from 2000 to 2015
(Figure 4). Significant changes mainly occurred in urban, farmland, wetland and bare land ecosystems.
The trend of landscape changes is characterized by the expansion of urban and the shrinkage of
farmland, wetland and bare land. The urban ecosystems exhibited the largest area increment in these
three time intervals. The largest decrease occurred in farmland ecosystems during 2000–2005 and
2005–2010. The area of wetland ecosystems showed the largest decrease during 2010–2015. The area of
bare land continuously decreased from 2000–2015.

The dynamic degree (K) of all ecosystem types in the study area were calculated using Equation
(1) (Table 3). During 2000–2005, the K value of grassland ecosystems was the largest, accounting for
−8.46% of the change in total landscape, which indicated that the change amplitude of grassland was
the biggest, followed by those of urban and bare land, accounting for 3.3% and −2.4% of the change
in total landscape, respectively. From 2005 to 2010, the K value of urban ecosystems was the highest,
accounting for 2.56% of the change in total landscape, followed by bare land and grassland, accounting
for −1.59% and −1.51% of the change in total landscape. In the period 2010–2015, the K value of
grassland ecosystems was the largest, accounting for 7.93% of the change in total landscape, followed
by urban and bare land; the change of other ecosystems was comparatively small.

The landscape change index level (LCI) in the period 2000–2005 and 2010–2015 was relatively
higher than the index for the period 2005–2010 (Table 3), indicating that the largest changes of the
landscape occurred in the first and the third time interval.
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Figure 4. Area changes of ecosystems from 2000 to 2015.

Table 3. Dynamics of landscape changes in ecosystems in the research area during 2000–2015.

Time Interval Indicator
Ecosystem Types

WE 1 FL 2 UE 3 FE 4 BL 5 SE 6 GL 7

2000–2005
K/% +0.13 −0.89 +3.30 +0.54 −2.40 +0.79 −8.46

CA/% 0.26 −1.40 2.09 0.21 −0.75 0.05 −0.47
LCI 2.62

2005–2010
K/% −0.28 −0.60 +2.56 +0.13 −1.59 0.08 −1.51

CA/% −0.56 −0.91 1.88 0.05 −0.44 0.01 −0.05
LCI 1.95

2010–2015
K/% −1.02 +0.36 +2.48 −0.22 −2.75 −0.61 +7.93

CA/% −1.99 0.52 2.06 −0.09 −0.69 −0.04 0.24
LCI 2.81

1 Wetland ecosystems; 2 farmland ecosystems; 3 urban ecosystems; 4 forest ecosystems; 5 bare land; 6 shrub
ecosystems; 7 grassland ecosystems; “+K” indicates the increase; “−K” indicates the decrease.

In the period 2000–2005, farmland (FL) showed the largest loss, 2.24% of the entire coastal zone,
and urban (UE) showed the largest gain, 2.64% of the coastal zone (Table 4). Most of the lost farmland
converted into urban (UE). From 2000–2005, the largest net loss is farmland (FL) (−1.4%), and the
largest net gain is urban (UE) (2.09%). The main contributor for the increment of urban was farmland
(1.28%) and wetland (0.71%).

Table 4. Landscape transition matrix between 2000 (columns) and 2005 (rows).

2005
2000

GL UE SE BL FL FE WE Total Gain Net Change

GL 0.41 0.01 0.00 0.01 0.05 0.00 0.17 0.64 0.23 −0.47
UE 0.30 12.10 0.00 0.15 1.28 0.20 0.71 14.74 2.64 2.09
SE 0.00 0.00 1.38 0.00 0.04 0.01 0.01 1.45 0.07 0.05
BL 0.02 0.01 0.00 4.69 0.03 0.00 0.73 5.49 0.80 −0.75
FL 0.08 0.38 0.01 0.03 29.14 0.09 0.26 29.98 0.84 −1.40
FE 0.17 0.02 0.00 0.01 0.27 7.49 0.05 8.02 0.53 0.21
WE 0.13 0.13 0.00 1.35 0.57 0.02 37.47 39.68 2.20 0.27

Total 1.11 12.65 1.39 6.24 31.38 7.81 39.41 100.00
Loss 0.70 0.55 0.02 1.55 2.24 0.32 1.94

In the period of 2005–2010, wetland (WE) showed the largest loss, accounting for 3.23% of the
entire coastal zone, and urban (UE) showed the largest gain, 3.46% of the coastal zone (Table 5).
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Most of the lost wetland converted to urban and farmland or degraded to bare land (BL). During this
time interval, the largest net loss is FL (0.91%), and the largest net gain is urban (1.87%). The largest
contributor for the increment of urban was farmland and wetland.

Table 5. Landscape transition matrix between 2005 (columns) and 2010 (rows).

2010
2005

GL UE SE BL FL FE WE Total Gain Net Change

GL 0.38 0.02 0.00 0.01 0.02 0.00 0.14 0.58 0.20 −0.43
UE 0.05 13.14 0.07 0.07 1.81 0.25 1.21 16.61 3.46 1.87
SE 0.00 0.07 1.21 0.00 0.09 0.07 0.01 1.45 0.24 0.01
BL 0.02 0.01 0.00 3.52 0.03 0.02 1.40 5.01 1.49 −0.39
FL 0.05 0.97 0.08 0.06 27.14 0.40 0.42 29.12 1.98 −0.91
FE 0.01 0.24 0.07 0.01 0.47 7.24 0.05 8.09 0.84 0.05
WE 0.12 0.28 0.01 1.72 0.47 0.05 36.48 39.14 2.65 −0.57

Total 0.64 14.74 1.45 5.40 30.03 8.03 39.71 100.00
Loss 0.26 1.60 0.24 1.88 2.88 0.79 3.23

During 2010–2015, the largest loss occurred in wetland ecosystems (WE), accounting for 3.70% of
the total coastal zone, and urban (UE) showed the largest gain, 2.38% of the total coastal zone (Table 6).
Most of the lost wetland was converted to farmland or degraded to bare land. The largest net loss is
wetland (1.98%) and the largest net gain is urban (2.06%). Wetland was the largest contributor for the
increment of the urban area.

Table 6. Landscape transition matrix between 2010 (columns) and 2015 (rows).

2015
2010

GL UE SE BL FL FE WE Total Gain Net Change

GL 0.52 0.02 0.00 0.00 0.00 0.00 0.28 0.83 0.31 0.24
UE 0.04 16.31 0.04 0.05 0.81 0.18 1.25 18.69 2.38 2.06
SE 0.00 0.01 1.39 0.00 0.01 0.01 0.00 1.41 0.02 −0.04
BL 0.01 0.01 0.00 3.66 0.01 0.01 0.65 4.36 0.70 −0.70
FL 0.00 0.15 0.01 0.02 27.86 0.05 1.51 29.59 1.74 0.52
FE 0.00 0.04 0.01 0.00 0.13 7.80 0.02 7.99 0.19 −0.09
WE 0.02 0.09 0.00 1.32 0.26 0.03 35.42 37.14 1.72 −1.98

Total 0.59 16.63 1.45 5.05 29.07 8.08 39.12 100.00
Loss 0.07 0.32 0.07 1.39 1.22 0.27 3.70

4.2. Quantification of Landscape Metrics

The quantification of landscape pattern through landscape metrics is an effective way to analyze
landscape pattern changes [33,37]. Table 7 compares changes in the landscape metrics at the class level
in 2000, 2005, 2010 and 2015. Grasslands were the only decreasing landscape patch type: NP decreased
from 606 in 2000 to 494 in 2015. The wetland NP increased the most, from 2070 in 2000 to 3053 in 2015,
while MPS decreased from 282.35 km2 to 180.33 km2, which indicated that the wetland ecosystem had
become more fragmented. The NP and MPS of forest, shrub, farmland, and bare land ecosystems had
the same changing trend as the wetlands. Therefore, the fragmentation of these ecosystems increased.
Both urban NP and MPS exhibited an increasing trend. The LPI for the wetland was the largest in 2000,
2005, 2010 and 2015, indicating that the wetland ecosystem was the dominant landscape type in the
Bohai coastal zone. The results revealed that spatial patterns have changed significantly; the change
direction of these ecosystems has been toward increased heterogeneity and fragmentation.
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Table 7. Landscape pattern metrics of ecosystems at the class level.

Metrics at Class Level Wetland Farmland Urban Forest Bare Land Shrub Grassland

NP

2000 2070 2230 5974 2016 750 1017 606
2005 2267 2478 6019 1002 2198 702 536
2010 2676 2760 6436 2457 788 1058 461
2015 3053 3028 6619 2534 919 1085 494

PD

2000 0.14 0.15 0.40 0.14 0.05 0.07 0.04
2005 0.15 0.17 0.41 0.07 0.15 0.05 0.04
2010 0.18 0.19 0.43 0.17 0.05 0.07 0.03
2015 0.21 0.20 0.45 0.17 0.06 0.07 0.03

MPS

2000 282.35 208.56 31.43 57.48 123.43 20.32 27.26
2005 259.55 179.29 36.34 21.43 54.14 116.01 17.80
2010 216.74 156.14 38.31 48.73 95.11 20.37 19.13
2015 180.33 144.87 41.87 46.72 70.31 19.25 24.92

LPI

2000 18.86 6.06 2.33 1.52 0.93 0.16 0.24
2005 14.13 4.01 2.61 0.16 1.49 1.26 0.07
2010 13.84 2.85 2.38 1.50 1.56 0.16 0.07
2015 10.24 2.64 2.63 1.49 1.55 0.16 0.08

NP: number of patches; PD: patch density; MPS: mean patch size; LPI: largest patch index.

A comparison of the landscape indices at the landscape level is listed in Table 8. NP increased
from 14,663 in 2000 to 17,732 in 2015, while MPS steadily decreased to 83.61 km2 from 101.14 km2,
indicating that some original patches were divided, and landscape heterogeneity and fragmentation
were rising. SHDI has not changed much.

Table 8. Landscape pattern metrics of ecosystems at the landscape level.

Landscape Level NP PD MPS LPI SHDI

2000 14,663 0.99 101.14 18.86 1.47
2005 15,202 1.03 97.54 14.13 1.47
2010 16,636 1.12 89.12 13.84 1.47
2015 17,732 1.20 83.61 10.24 1.48

NP: number of patches; PD: patch density; MPS: mean patch size; LPI: largest patch index; SHDI: Shannon-Weaver
diversity index.

4.3. Driving Forces

Preliminary DCA estimated a gradient length of 0.67 SD, and thus, the use of RDA as a linear
method of canonical ordination was appropriate. The results of RDA were shown in a bi-plot (Figure 5).
The full RDA model using seven environmental variables explained 80.3% of the total variance within
the ecosystem landscape changes (Table 9). RDA results indicated varying correlations between each
ecosystem type and environmental variable. AQ and Pop were the main factors related to the change
of the wetland ecosystem. Pop and GDPpc were closely related to the change of the urban ecosystem.
ATm, CA, and GY had positive correlations with the change of the farmland ecosystem.
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Table 9. Summary statistics for first four axes of RDA with the landscape changes and environmental
variables for ecosystems in the Bohai coastal zone.

Axes Axis 1 Axis 2 Axis 3 Axis 4 Total Variance

Eigenvalues 0.384 0.227 0.078 0.071 1.000
Species-environment correlations 0.984 0.946 0.880 0.714

CV of species data 38.4 61.1 68.9 76.0
CV of species-environment relation 47.8 76.1 85.8 98.0

Sum of all eigenvalues 1.000
Sum of all canonical eigenvalues 0.803

CV: cumulative percentage variance.

5. Discussion

5.1. Land Reclamation in Bohai Coastal Zone

Bohai coastal areas are one of the most densely populated regions in China because of their
prominent biological productivity and high accessibility. Spurred by a fast-growing economy and large
population, coastal administrations have aggressively expanded seafaring facilities and constructed
coastal industries to promote urbanization, which has resulted in a great demand for land area [38].
As a feasible land solution for coastal development, land reclamation can alleviate the pressure of
land shortages. The Changlu sea salt pan, one of China’s four salt fields, is located along northern
Bohai Bay. Driven by huge profit, the total area of the Changlu sea salt pan has been expanded
from 216 km2 to 6580 km2 from 1949 to 1965 [38]. In the 21st century, the Bohai coastal region
has become a focus of economic development with the promotion of national policies in the Bohai
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Economic Rim. Since 2000, some of the reclaimed areas have been used for mariculture and agriculture,
but most of them are used to accommodate the demand for transport, employment and other urban
facilities. The Tangshan Caofeidian Industrial Zone and Tianjin Binhai New area are typical examples
of coastal reclamation projects. Caofeidian Industrial District is located in the heartland of Bohai Bay.
The reclamation plan was carried out in 2004 and is set to be finished in 2020. About 310 km2 waterfront
area was reclaimed for deep water port and for steel, chemical, electric works, and nuclear power
industries [38]. Tianjin New District is another example, nearly 2270 km2 of reclaimed area was used
for the construction of new housing, ports and other coastal industries [39]. Furthermore, some coastal
provinces and metropolises have developed their own coastal economy development plans to boost
the marine economy. For instance, in Shandong province, the “Special Plan on Focused and Intensive
Sea Use for Blue Economic Zone Construction around Shandong Peninsula (2009–2020)” proposed
implementing focused and intensive use of the sea by setting up a total of nine big and 10 small costal
industrial complexes, covering a total area of 1500 km2, including 520 km2 from reclamation [40].
Reclamation has greatly altered the spatial distribution of ecosystems of the Bohai coastal zone,
wetlands have been transformed into farmland and urban or degraded land into bare land. Over the
last 20 years, insufficient ecological considerations and inadequate coastal protection measures have
resulted in sharp area reduction and ecosystem service declines of wetland ecosystems. Presently,
the Chinese government has recognized the conflicts between wetland ecosystem protection and the
space demands from a fast-growing economy. The Chinese government has committed to following the
concept of sustainable development via policy, legislation, science, and management approaches, by
strengthening laws and regulations and improving coastal spatial planning so that ecological protection
can be properly taken into management consideration [38]. These efforts lay a good foundation for
coastal restoration and scientific decision-making or management of coastal conservation.

5.2. Landscape Changes and Their Impact on Coastal Habitat

The above results indicated that the coastal landscape pattern in Bohai has changed dramatically
over the past 15 years. The natural wetland consistently decreased from 2000 to 2015 and became
fragmentated and heterogenous, with a significant decrease in marshland and lake areas. Thus,
the habitat gradually shrunk and diminished. Waterbirds are crucial indicators for assessment of
ecosystem health [41,42]. The species and number of waterbirds can reflect the health status of wetland
ecosystem. Extensive mudflats of northern Bohai Bay have formerly supported over 65,000 Red
Knots, 60% of the entire flyway population, and 80,000 Curlew Sandpipers (45% of the population)
on their northward migration [43]. However, in recent years, approximately 450 km2 of offshore area,
including 218 km2 of intertidal flats have been reclaimed for the Caofeidian Industrial District and
Tianjin Industrial District, which resulted in increasing loss and degradation of waterbird habitat. Only
a small stretch of mudflats remains in this area, forcing the northward migrating birds to concentrate
and crowd into the small remaining area [44]. It was reported that the spring peak numbers of
Curlew Sandpiper C. ferruginea increased from 3% in 2007 to 23% in 2010 of the flyway population [44].
Fragmentation and loss of waterbird habitat leads to a decline in waterbird numbers [45,46] or to
the movement of birds to nearby suitable habitats [47]; the latter can lead to increased densities at
other sites and consequently an increase in mortality of the displaced birds, leading to an overall loss
of birds [48]. Landscape modification and habitat fragmentation have negative impacts on coastal
ecosystems and biodiversity because Bohai Bay is a crucial area for waterbirds to make stopovers or
winter here. It is important that decision makers and the public are made fully aware of the great
importance of Bohai Bay for waterbirds and of the potential environmental disasters for all those that
rely on the tidal flats as a food source [49].

5.3. Limitatios of Driving Forces Analysis

By selecting two natural and five socio-economic factors, we examined the relationship between
landscape changes and driving forces. However, the study area in this research is a buffer zone, it is
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very difficult to gain corresponding relative socio-economic data. We used socio-economic data of
coastal cities to conduct the analysis of driving forces. A bivariate correlation method was employed
to testify to the feasibility of driving forces in the case of inconsistent analysis units. We used spatial
distribution data on population (POPs) and GDP (GDPs) and calculated mean values of POPs and
GDPs with ArcGIS 10.3, named POPsm and GDPsm. Then the relationships between POPsm and Pop,
GDPsm and GDP were analyzed in SPSS 19.0 (IBM, Armonk NY, USA). The results indicated that Pop
showed significant correlation with POPsm, and GDP showed extremely significant correlation with
GDPsm (Table 10). The results of correlation analysis indicated that socio-economic data of coastal
cities can be used to conduct the analysis of driving forces.

Table 10. The relationship analysis between Pop and POPsm as well as GDP and GDPsm.

Items Pop Items GDP

POPsm
Pearson correlation 0.627 *

GDPsm
Pearson correlation 0.886 **

p value 0.022 p value <0.01

* Coefficient is significant at the 0.05 level; ** Coefficient is significant at the 0.01 level; POPsm: mean values of POPs;
GDPsm: mean values of GDPs.

In addition, Due to unavailable data, unknown influencing factors and factors that are impossible
to quantify, it is impossible to include all socio-economic and environmental variables that influence
landscape changes [50]. Natural factors, such as elevation, slope direction and altitude are influential
in reshaping landscapes. Whereas further elaborate analysis wasn’t performed due to data limitation.
In this study, we merely analyzed and displayed the consequences of landscape spatial changes and
paid less attention to the landscape process and function. The difference between correlation and
causality should be distinguished in future researches of landscape changes.

The correlation analysis is helpful for the identification of influential factors, the magnitude
of factors is not quantified yet. Focusing on the changes in landscape processes and functions is
helpful for the identification of dominant factors, and then it is possible to further explore the driving
mechanism of landscape changes.

6. Conclusions

The ecosystem landscape pattern in the Bohai coastal zone has changed significantly over the
15 years of this research. The wetland ecosystem maintained the largest area, followed by the farmland
and urban ecosystems. The main trend of landscape changes was characterized by the expansion of
the urban area and the shrinkage of farmland, wetland and bare land.

There was no obvious changing trend in dynamic degree (K). The analysis of dynamic degree
showed that the extent of grassland change was the largest from 2000–2005 and 2010–2015, accounting
for −8.46% and 7.93% of the change in landscape, respectively. The K value of urban was the highest
from 2005–2010, accounting for 2.56% of the change in total landscape. The landscape change index
level (LCI) in the period 2000–2005 and 2010–2015 was relatively higher than the index for the period
2005–2010, indicating that the largest changes of the landscape occurred in the first and the third
time interval.

The transformation of landscape types mainly occurred in wetland, farmland, urban and bare
land ecosystems. The farmland showed the largest loss and urban showed the largest gain during
2000–2005, and farmland was the main contributor for the increment of urban. During 2005–2010 and
2010–2015, the wetland showed the largest loss and urban still showed the largest gain; most of the
wetland converted to farmland and urban or degraded to bare land; wetland and farmland were the
main contributors for the expansion of urban.

The overall NP increased, whereas MPS decreased, indicating that the spatial landscape pattern
had become fragmented and heterogeneous.
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The results of the RDA model show that landscape changes are indicated by socio-economic
and natural variables. Human activity is a major driving force in shaping the spatial distribution of
the ecosystems.
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