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Abstract: Epigenetic mechanisms have emerged as an important pathway through which
environmental exposures can affect health through the regulation of gene expression without changes
in DNA sequence: microRNAs (miRNAs) are short non-coding RNAs that target protein-coding
mRNAs, leading to post-transcriptional repression. They are involved in important physiologic
processes, but little is known about how miRNA expression may change with age in children. We
used an nCounter miRNA assay to assess the expression of 43 miRNAs in buffy coat samples
collected from newborns (n = 121) and 7-year-old (n = 142) children. We identified 36 miRNAs
that were differentially expressed between newborns and 7-year-olds after controlling for blood
cell composition. Using pathway analysis, we found that differentially expressed miRNAs targeted
genes enriched for processes related to post-translational modifications, metabolism, and immune
response. Our study found that unlike adults, where miRNA expression levels in peripheral blood
may decrease with age, expression levels of most miRNAs increased from birth to mid-childhood.
This may be reflective of the role miRNAs may play in the highly coordinated mechanisms regulating
genes involved in children’s development. Furthermore, it will be important to adjust for both age
and blood cell composition in future pediatric studies of miRNA expression in blood.
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1. Introduction

Epigenetics has emerged as an important biological mechanism through which environmental
exposures can affect health [1–3]. Epigenetic marks such as DNA methylation, non-coding RNA,
and histone modifications regulate gene expression without changes in DNA sequence. The
majority of human studies have focused on the role of DNA methylation on gene regulation,
demonstrating associations of aberrant methylation profiles with environmental exposures such
as smoking, phthalates, and arsenic [4,5], as well as adverse health outcomes ranging from low
birthweight to cancer [6,7].

Growing evidence has demonstrated that non-coding RNAs also play a major role in important
cellular processes and disease etiology [8]: miRNAs are short non-coding RNAs of about 18–22
nucleotides in length. They bind to specific mRNA sequences via miRNA binding sites, thereby
blocking translation. Like DNA methylation, several studies have reported associations of
environmental exposures, including phthalates and air pollution, with differences in miRNA
expression [9,10]. Furthermore, miRNAs have been associated with health outcomes such as fetal
growth [11], cancer [12], and cardiovascular disease [13].
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Host factors including sex and age can also influence interindividual differences in epigenetic
profiles. Yet little is known about sex- and age-specific differences in human miRNA expression,
particularly in children. In adult human plasma, 7 out of 179 candidate circulating miRNAs have been
associated with sex [14]. We recently published the first study comparing the miRNAome between
newborn boys and girls (n = 89) and found 94 miRNAs differentially expressed by sex in cord blood:
The mRNA targets of these differentially expressed miRNAs were significantly enriched in pathways
related to neurodevelopment, RNA metabolism, and post-transcriptional gene silencing [15].

Age-related changes in miRNA expression may be one mechanism regulating gene expression
at different developmental stages. Only a few studies have examined age-associated differences in
miRNA expression in children. Over 100 liver miRNAs (out of 533) were differentially expressed
among fetal, pediatric, and adult subjects, with the largest differences observed between fetal and
pediatric liver samples [16]. Among adults, the majority of miRNAs expressed in peripheral blood
have exhibited lower expression levels in older people [17].

While studies on the relationship between age and sex and miRNA expression are still limited, the
existing data suggest that consideration of important host factors is critical for epidemiological studies
of miRNA expression. In the present study, we sought to better understand age-related differences in
miRNA expression among newborns and 7-year-old children.

2. Materials and Methods

2.1. Study Subjects

Children and mothers in this study were participants of the Center for Health Assessment of
Mothers and Children of Salinas (CHAMACOS) birth cohort, a longitudinal study of farmworker
families from the agricultural region of Salinas Valley, California [18]. Pregnant women were enrolled
in the study from 1999 to 2000. Women were eligible to enroll if they were at least 18 years of age, at
fewer than 20 weeks’ gestation, Spanish- or English-speaking, eligible for low-income health insurance,
receiving prenatal care at one of the participating community clinics, and planning to deliver at the
local public hospital. This study included 196 randomly selected children with cord blood (n = 121)
and/or a blood sample from age 7 years (n = 147) available for analysis: 79 children had samples
assessed at both time points. Children included in this study did not differ significantly from all
children in the cohort by demographic and exposure variables (e.g., poverty level, sex, maternal
marital status, maternal prenatal farm work status, or maternal use of alcohol or tobacco during
pregnancy). Furthermore, children with measurements available at both ages compared to those with
measurements at only one time point did not differ by demographic and exposure variables, with the
exception of being overweight at age 7 years. There was a suggestive trend of a higher incidence of
being overweight and obesity among the children with only a single time point (p = 0.05), but this
association did not remain statistically significant after adjustment for multiple testing.

Study protocols were approved by the University of California, Berkeley, Committee for the
Protection of Human Subjects (2010-03-949). Written informed consent was obtained from all mothers,
and children provided verbal assent at age 7.

2.2. Blood Collection and Processing

Blood specimens were collected from CHAMACOS children at birth (umbilical cord blood) and
at approximately 7 years of age (by venipuncture). We piloted the protocol for cord blood collection in
CHAMACOS participants using two assays, fluorescent in situ hybridization (FISH) analysis for sex
chromosomes and polymerase chain reaction (PCR) analysis using human leukocyte antigen (HLA)
markers, to assure that cord blood samples were not contaminated by maternal blood. Of the 30
samples randomly selected from CHAMACOS boys, none of the assays indicated any contamination
with maternal blood. Heparinized whole blood, collected in BD vacutainers® (Becton, Dickinson and
Company, Franklin Lakes, NJ, USA), were centrifuged, separated into aliquots of plasma, buffy coats,
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and red blood cells, and then stored at −80 ◦C at the School of Public Health Biorepository, University
of California, Berkeley.

2.3. RNA Isolation

In our pilot studies, we compared RNA yields from clot, serum, and buffy coat fractions
(containing all white blood cells) of blood and found that the highest RNA yields came from the buffy
coat fractions. Based on these data and previously published research utilizing miRNA expression
data from buffy coat fractions in human populations [19–23], we chose to use RNA from buffy coats to
analyze miRNA expression in this study. Total RNA was purified from 20 µL of buffy coat using a
mirVana miRNA isolation kit (Life Technologies, Waltham, MA, USA). Concentration and quality of
RNA were measured using a NanoDrop 2000 Spectrophotometer (Thermo Scientific, Waltham, MA,
USA). All samples included in this analysis had a 260/280 ratio >1.9, and their average RNA integrity
number (RIN) value, as measured by Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA), was
8.1. Purified RNA was stored at −80 ◦C until analysis.

2.4. nCounter miRNA Expression Assay

In our previous study, we used an miRNAome wide approach, identifying >500 miRNAs with
measurable expression in cord blood buffy coat samples using an EdgeSeq miRNA whole transcriptome
assay [15]. Here, we measured miRNA expression in a set of 43 miRNAs that had measurable miRNA
expression in our previous study [15] with a range of low to high expression. To determine miRNA
expression, we used a custom-designed nCounter miRNA Expression Assay (NanoString Technologies,
Seattle, WA, USA). We utilized 100 ng per sample of isolated total RNA for the expression assay, which
was performed per the manufacturer’s recommended protocol.

2.5. Cell Composition

Cell type proportions were calculated in the R-package minfi [24] based on their methylation
signatures in Illumina 450K data that were previously analyzed [25,26]. For cord blood samples, we
estimated cell-type proportions using a recently published cord blood reference dataset that included
nucleated red blood cells [27]. For blood samples collected from 7-year-old-children, we used an adult
reference dataset [28].

2.6. Statistical Analysis

Raw miRNA counts measured by nCounter were imported for quality control and normalization
using proprietary software from NanoString, nSolver 3.0 (NanoString Technologies, Seattle, WA, USA).
Raw miRNA expression counts were normalized using the geometric mean of all miRNAs with mean
raw counts >50. To determine whether variability of miRNA expression increases as miRNA expression
increases, we calculated the Pearson’s correlation coefficient of log2 mean miRNA expression with log2

mean SD of miRNA expression at each time point. To model relationships of miRNA expression with
white blood cell counts, we constructed separate linear regression models for each miRNA (outcome)
at each time point (birth and age 7 years), including blood cell type proportions as the independent
variables in the model. To determine whether the miRNAs were differentially expressed by sex at each
age, we used the R/Bioconductor package limma, controlling for white blood cell composition.

To determine correlations of miRNAs across time points, we also calculated the partial correlation
of each miRNA at birth and age 7 years, controlling for cell composition, among children with miRNAs
assessed at both ages (n = 79). All other analyses included all children (121 newborns and 142
7-year-olds). To determine whether children’s miRNA expression levels cluster by age, we applied
principal components analysis (PCA) to log2 normalized miRNA expression counts using the princomp
command in R. We also used the pca3d package in R to visualize the results by age group. To determine
which miRNAs were differentially expressed between the two time points, while controlling for blood
cell composition, we also utilized the limma package.
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To determine the potential regulatory function of miRNAs differentially expressed between
newborns and 7-year-old children, we used DIANA miRpath v3.0, a web-based computational tool [29]
to conduct pathway analysis. This tool carries out target prediction of miRNAs using a microT-CDS
algorithm followed by pathway enrichment analysis of the miRNA target genes using gene ontology
(GO) pathways. The false discovery rate (FDR)-adjusted p-value threshold was set to 0.05, and the
microT threshold was set to 0.8. Reduce + visualize gene ontologies (REVIGOs) were used to visualize
and categorize GO terms via semantic similarity dimension reduction [30]. Allowed similarity was set
to medium (0.7) using the Homo sapiens GO term database.

Unadjusted p-values <0.05 were considered significant. However, to account for multiple testing,
we also used the Benjamini–Hochberg (BH) method for false discovery rate (FDR) with an FDR q-value
< 0.05 threshold for significance [31]. Statistical analyses were performed in STATA (version 12.0,
StataCorp, College Station, TX, USA) and R (version 3.4.3, R Foundation for Statistical Computing,
Vienna, Austria).

3. Results

3.1. Characteristics of Study Participants

Table 1 describes characteristics of CHAMACOS children included in this study at birth and age
7. There were slightly more girls (58% and 55%) than boys (42% and 45%) at each age, respectively.
The majority of children were normal weight at birth. By age 7, over 50% of children were either
overweight or obese.

Table 1. Characteristics of Center for Health Assessment of Mothers and Children of Salinas
(CHAMACOS) children included in this study.

Child Characteristics n (%) Mean (SD)

Newborns

Sex
Boy 51 (42)
Girl 70 (58)

Gestational Age (weeks) 38.7 (1.5)
Birthweight

Low (≤2500 g) 3 (2)
Normal (>2500 g) 118 (98)

7-year-olds

Sex
Boy 64 (45)
Girl 78 (55)

Age at 7-year assessment (years) 7.1 (0.3)
Obesity Status at age 7 years

Normal (≤85th percentile) 67 (47)
Overweight (>85th, <95th percentile) 27 (19)
Obese (≥95th percentile) 48 (34)

SD: standard deviation.

3.2. miRNA Expression in Newborns and 7-Year-Old Children

We measured miRNA expression in a set of 43 miRNAs that had measurable miRNA expression
in our previous study [15] with a range of low to high expression. Distributions of normalized miRNA
counts in newborns (cord blood) and 7-year-old children are summarized in Table 2. Mean expression
counts of the 43 miRNAs ranged from 1.3 to over 60,000 in newborns and from 1.0 to almost 50,000 in
7-year-old children, representing a range of low-, medium-, and high-expressing miRNAs in blood
cells. Additionally, standard deviations of miRNA expression were very strongly correlated with mean
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miRNA expression levels (Figure 1), demonstrating that, as expected, more highly expressed miRNAs
in blood cells also tended to be more variable.

Table 2. Distributions of microRNA (miRNA) expression (counts) in newborns and 7-year-old children.

miRNA Name MIMAT ID
Newborns 7-Year-Olds Level of

ExpressionMean SD IQR Mean SD IQR

hsa-miR-223-3p MIMAT0000280 60218.9 31065.5 34513.5 49912.1 23174.2 33122.0

H
igh

Expression
(m

ean
>

500)*

hsa-miR-150-5p MIMAT0000451 42279.6 27052.2 28918.5 29763.7 16302.7 17273.0
hsa-miR-25-3p MIMAT0000081 14566.5 13796.9 8073.7 19238.3 13050.8 12311.9
hsa-let-7b-5p MIMAT0000063 13089.6 6215.4 6115.7 12935.8 5898.9 6897.7
hsa-miR-26b-5p MIMAT0000083 5192.5 1967.3 2439.9 7633.9 2618.9 3315.9
hsa-let-7d-5p MIMAT0000065 4024.1 1316.9 1234.8 4313.4 1095.8 1406.0
hsa-miR-185-5p MIMAT0000455 1640.3 1000.4 688.2 1531.7 609.6 633.6
hsa-miR-92a-3p MIMAT0000092 1623.7 1045.0 1031.2 1534.0 913.7 970.0
hsa-miR-26a-5p MIMAT0000082 1108.7 513.9 412.6 1977.9 931.9 694.0
hsa-miR-130a-3p MIMAT0000425 1057.6 628.1 278.4 1695.1 441.6 448.8
hsa-miR-19a-3p MIMAT0000073 808.2 383.2 378.4 3263.7 1234.5 1729.3
hsa-miR-107 MIMAT0000104 628.2 159.8 175.3 1018.3 249.5 276.9
hsa-miR-425-5p MIMAT0003393 509.1 202.4 235.4 1609.7 527.8 645.9

hsa-miR-199a-5p MIMAT0000231 336.1 197.1 189.1 286.1 135.9 164.9

M
edium

Expression
(50

<
m

ean
<

500)*

hsa-let-7c-5p MIMAT0000064 335.3 179.6 142.9 536.8 277.9 236.1
hsa-miR-146a-5p MIMAT0000449 259.5 250.7 100.6 474.6 292.9 188.4
hsa-miR-454-3p MIMAT0003885 254.3 95.9 115.4 754.8 250.3 293.7
hsa-miR-301a-3p MIMAT0000688 145.0 64.6 59.0 176.8 71.0 65.3
hsa-miR-495-3p MIMAT0002817 131.9 376.5 64.4 45.6 126.9 28.0
hsa-miR-136-5p MIMAT0000448 114.9 389.5 49.5 45.1 127.1 27.7
hsa-miR-199b-5p MIMAT0000263 95.1 73.8 69.8 57.5 39.0 35.1
hsa-miR-664a-3p MIMAT0005949 89.2 35.4 47.0 151.1 47.5 63.4
hsa-miR-130b-3p MIMAT0000691 54.5 104.2 15.2 81.4 155.0 21.9
hsa-miR-1289 MIMAT0005879 52.2 128.7 21.0 53.0 125.7 20.9
hsa-miR-141-3p MIMAT0000432 52.0 333.6 10.4 94.6 699.8 20.4

hsa-miR-505-3p MIMAT0002876 46.2 94.8 17.1 28.3 62.6 10.4

Low
Expression

(m
ean

<
50)*

hsa-miR-4461 MIMAT0018983 41.2 217.2 9.9 46.1 253.6 11.9
hsa-miR-377-3p MIMAT0000730 37.5 61.7 26.1 22.2 34.1 18.2
hsa-miR-616-3p MIMAT0004805 32.9 149.5 10.5 11.9 63.5 4.9
hsa-miR-335-5p MIMAT0000765 29.5 22.9 14.8 54.9 35.0 25.0
hsa-miR-142-5p MIMAT0000433 29.3 85.9 9.6 74.2 220.0 22.5
hsa-miR-139-5p MIMAT0000250 26.9 174.8 6.1 17.6 127.3 5.6
hsa-let-7e-5p MIMAT0000066 18.7 25.3 5.8 98.1 123.1 30.4
hsa-miR-766-3p MIMAT0003888 18.5 49.2 9.5 49.0 126.0 23.8
hsa-miR-371b-5p MIMAT0019892 17.7 94.7 5.5 5.3 31.8 1.8
hsa-miR-1260b MIMAT0015041 17.7 34.3 10.4 92.1 159.3 46.6
hsa-miR-1275 MIMAT0005929 17.4 47.9 7.4 23.2 62.9 11.1
hsa-miR-6511a-3p MIMAT0025479 16.3 94.7 3.9 54.6 349.4 14.9
hsa-miR-92b-3p MIMAT0003218 12.8 67.4 5.7 5.8 31.8 3.1
hsa-miR-1254 MIMAT0005905 11.5 84.0 2.3 30.2 254.9 7.0
hsa-miR-200a-3p MIMAT0000682 11.1 10.4 3.6 32.6 31.3 11.5
hsa-miR-548e-5p MIMAT0026736 10.5 34.4 4.2 26.8 94.7 10.8
hsa-miR-103a-3p MIMAT0000101 6.7 14.8 2.8 14.7 31.4 6.7

* Low, medium, and high expression determined by mean normalized counts of miRNA expression in cord blood.
IQR: Interquartile range. MIMAT: accession number of mature miRNAs in the miRBase database.
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Figure 1. Scatter plot of mean miRNA expression levels and standard deviation of miRNA expression
levels in newborns and 7-year-old children. Log mean miRNA expression levels and log standard
deviation of miRNA expression levels were highly correlated among the 43 miRNAs interrogated by
NanoString. SD: standard deviation.

3.3. miRNA Expression and Blood Cell Count Proportions

Blood cell proportions estimated by minfi in newborns and 7-year-old children are shown in
Table S1. As expected, cord blood contained a measurable amount of nucleated red blood cells,
unlike 7-year-old blood. Table 3 summarizes miRNAs that had suggestive associations (unadjusted
p-value < 0.05) with blood cell proportions at either age. Among the 43 miRNAs assessed, we found
8 miRNAs that had suggestive associations (2 positive and 6 negative), with blood cell proportions in
cord blood (Table 3, Table S2) indicating that white blood cell proportions may influence expression of
some miRNAs. In addition, miR-495-3p, the only miRNA with a suggestive association with blood
cell proportions in 7-year-old children (Table 3, Table S3), was also associated with CD4+ T cell and
monocyte proportion in cord blood, indicating a consistency of this relationship at both ages. However,
none of the associations of miRNA expression with blood cell composition remained statistically
significant after controlling for multiple testing (FDR-adjusted p-values > 0.05).
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Table 3. Associations of blood cell composition with newborn and 7-year-old miRNA expression.

miRNA
Name

cd8+T cd4+T NK Cells B Cells Monocytes Granulocytes nRBCs

β (95% CI) p-Value β (95% CI) p-Value β (95% CI) p-Value β (95% CI) p-Value β (95% CI) p-Value β (95% CI) p-Value β (95% CI) p-Value

Newborns

miR-495-3p 12.38
(−4.25, 29.01) 0.143 16.39

(1.33, 31.46) 0.033 14.13
(−3.48, 31.75) 0.115 13.10

(−2.47, 28.67) 0.098 19.66
(0.28, 39.04) 0.047 13.21

(−2.29, 28.71) 0.094 14.62
(−1.07, 30.31) 0.068

miR-377-3p 16.37
(−0.78, 33.52) 0.061 20.27

(4.74, 35.80) 0.011 12.37
(−5.80, 30.53) 0.180 19.31

(3.25, 35.36) 0.019 22.68
(2.69, 42.66) 0.027 17.09

(1.10, 33.07) 0.036 19.19
(3.01, 35.37) 0.021

miR-301a-3p 6.22
(−1.73, 14.17) 0.124 9.01

(1.81, 16.21) 0.015 8.77
(0.35, 17.19) 0.041 6.21

(−1.23, 13.65) 0.101 8.8
(−0.46, 18.07) 0.062 8.27

(0.86, 15.68) 0.029 9.07
(1.57, 16.57) 0.018

miR-26b-5p −6.64
(−15.92, 2.63) 0.159 −8.92

(−17.32, −0.51) 0.038 −5.3
(−15.12, 4.53) 0.288 −9.01

(−17.69, −0.32) 0.042 −10.66
(−21.46, 0.15) 0.053 −8.04

(−16.69, 0.60) 0.068 −7.92
(−16.68, 0.83) 0.075

miR-199b-5p 10.68
(−1.81, 23.17) 0.093 12.48

(1.17, 23.80) 0.031 7.31
(−5.93, 20.54) 0.276 11.45

(−0.24, 23.15) 0.055 14.98
(0.42, 29.54) 0.044 9.31

(−2.34, 20.95) 0.116 9.96
(−1.83, 21.74) 0.097

miR-136-5p 18.89
(0.51, 37.28) 0.044 20.04

(3.39, 36.70) 0.019 19.54
(0.06, 39.03) 0.049 19.37

(2.15, 36.58) 0.028 24.31
(2.88, 45.73) 0.027 18.40

(1.26, 35.54) 0.036 19.55
(2.20, 36.90) 0.028

let-7e-5p 5.29
(−2.21, 12.80) 0.165 6.87

(0.07, 13.67) 0.048 3.06
(−4.89, 11.01) 0.447 7.17

(0.14, 14.20) 0.046 9.36
(0.61, 18.11) 0.036 7.10

(0.10, 14.10) 0.047 6.57
(−0.51, 13.65) 0.069

let-7b-5p −7.17
(−15.64, 1.29) 0.096 −8.35

(−16.02, −0.69) 0.033 −2.94
(−11.91, 6.02) 0.517 −8.72

(−16.64, −0.80) 0.031 −8.16
(−18.02, 1.70) 0.104 −6.52

(−14.40, 1.37) 0.104 −6.86
(−14.84, 1.13) 0.092

7-year-olds

miR-495-3p 20.71
(0.67, 40.75) 0.043 25.52

(3.32, 47.73) 0.025 23.61
(3.33, 43.89) 0.023 16.21

(−2.84, 35.25) 0.095 20.36
(−0.35, 41.07) 0.054 23.59

(3.10, 44.09) 0.024

This table shows only the miRNAs with suggestive associations with blood cell composition, where p-values were less than 0.05. Here, p-values < 0.05 are bolded. None of the associations
remained significant after controlling for the false discovery rate (FDR) (FDR-adjusted p-values were > 0.05). NK: natural killer cells. nRBC: nucleated red blood cell. CI: confidence interval.
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3.4. Differential miRNA Expression by Sex in Newborns and 7-Year-Old Children

To examine whether the 43 miRNAs assessed in cord and 7-year-old blood samples differed by
sex, we performed differential expression (DE) analysis for sex. We observed a very consistent trend of
lower expression in girls compared to boys among the majority of cord blood miRNAs (32 out of 43), as
indicated by the negative fold-change values shown in Table S4. Among 7-year-olds, roughly half (22
of 43) of the miRNAs had lower expression levels in girls. We found 14 miRNAs (including let-7d-5p
and miR-301-3p) that were lower in girls compared to boys at both ages and 3 miRNAs (miR1254,
miR-139-5p, and miR-4461) that were higher in girls compared to boys at both ages. However, none of
the differences by sex were statistically significant after controlling for the FDR (FDR-adjusted p-values
were all >0.05).

3.5. Differential miRNA Expression by Age

For each miRNA, we calculated the partial correlations between newborn and 7-year-old
expression, controlling for cell composition among the 79 children with measurements at both ages
(Table S5). Correlations (rho) were weak to moderate at best, with absolute values ranging from 0.01 to
0.23. None of the correlations were statistically significant, suggesting that miRNA expression was not
correlated between newborns and 7-year-old children.

We performed principal components analysis on all miRNAs assessed in newborns and 7-year-old
children. The first four principal components accounted for >60% of the variability of miRNA
expression levels (Figure S1). Figure 2 shows the PCA plot of the first two principal components,
accounting for 29% and 14% of the variance, respectively. We found that there was distinct separation
between newborns and 7-year-old children along the first principal component, demonstrating that
age accounted for the largest portion of the variability of the miRNAs assessed.
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Figure 2. Principal components analysis (PCA) plots of miRNA expression in newborns and 7-year-old
children. PCA analysis showed a clear separation of miRNA expression between age groups along the
first principal component.

In addition to PCA, we also used the R/Bioconductor package limma to identify miRNAs
differentially expressed between newborns and 7-year-old children, adjusting for white blood cell
proportions. Table 4 and Figure 3 summarize our results. The majority of miRNAs (28 out of 43
miRNAs) were lower in newborns compared to 7-year-olds, as demonstrated by negative fold-change
values that were highly statistically significant after controlling for the FDR (FDR-adjusted p-values < 0.05).
For example, miR-1260b was 6.8-fold lower in newborns compared to 7-year-old children (FDR-adjusted
p-value = 7.29 × 10−34). There were also a few miRNAs (8 out of 43) with positive fold-change values,
indicating a small numbers of miRNAs with higher expression in newborns compared to 7-year-old
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children. Figure 4 shows distributions of 4 of the 36 miRNAs that were differentially expressed by
age. It includes several that followed the overall trend of lower levels in newborns than in 7-year-olds
(e.g., miR-19a-3p, miR-1254, miR-425-5p, miR-1260b, etc.). However, other miRNAs did not follow this
pattern. For instance, expression levels of miR-616-3p, which was also differentially expressed between
the two age groups, were higher in newborns versus 7-year-old children.

Table 4. Differential expression analysis of miRNAs in newborns compared to 7-year-old children.

miRNA Name logFC * FC log2 Mean Expression FDR-Adjusted p-Value

miR-1260b −2.77 −6.84 7.66 7.29 × 10−34

let-7e-5p −2.67 −6.36 8.08 2.47 × 10−83

miR-6511a-3p −2.10 −4.29 6.34 6.14 × 10−35

miR-19a-3p −2.06 −4.16 13.43 2.95 × 10−41

miR-1254 −1.95 −3.86 4.80 2.94 × 10−20

miR-425-5p −1.81 −3.50 12.61 1.24 × 10−40

miR-200a-3p −1.76 −3.39 6.88 3.86 × 10−52

miR-454-3p −1.67 −3.18 11.57 1.16 × 10−31

miR-766-3p −1.65 −3.14 7.14 1.28 × 10−23

miR-142-5p −1.56 −2.95 7.82 3.74 × 10−32

miR-548e-5p −1.47 −2.76 6.17 4.32 × 10−29

miR-103a-3p −1.31 −2.49 5.67 4.52 × 10−17

miR-141-3p −1.15 −2.22 7.32 1.53 × 10−18

miR-146a-5p −1.10 −2.14 11.07 2.99 × 10−24

miR-335-5p −1.09 −2.13 7.94 6.37 × 10−18

miR-26a-5p −1.02 −2.03 13.25 6.30 × 10−16

let-7c-5p −0.87 −1.83 11.43 4.65 × 10−12

miR-664a-3p −0.86 −1.81 9.59 1.62 × 10−15

miR-130a-3p −0.82 −1.77 13.12 2.02 × 10−18

miR-107 −0.82 −1.77 12.45 5.57 × 10−16

miR-130b-3p −0.82 −1.76 8.53 3.18 × 10−17

miR-1275 −0.69 −1.61 6.54 1.82 × 10−8

miR-25-3p −0.57 −1.49 16.60 1.06 × 10−4

miR-26b-5p −0.57 −1.48 15.40 3.12 × 10−6

miR-4461 −0.48 −1.39 7.20 1.53 × 10−6

miR-301a-3p −0.33 −1.25 10.03 2.77 × 10−3

let-7d-5p −0.25 −1.19 14.81 1.83 × 10−2

miR-1289 −0.24 −1.18 8.01 2.30 × 10−2

miR-92a-3p −0.16 −1.11 13.24 3.95 × 10−1

let-7b-5p −0.10 −1.07 16.38 4.18 × 10−1

miR-185-5p −0.10 −1.07 13.29 4.18 × 10−1

miR-223-3p 0.04 1.03 18.40 6.96 × 10−1

miR-199a-5p 0.14 1.10 10.85 3.47 × 10−1

miR-505-3p 0.20 1.15 7.43 5.84 × 10−2

miR-139-5p 0.34 1.26 5.44 6.93 × 10−2

miR-199b-5p 0.45 1.36 8.72 4.00 × 10−4

miR-92b-3p 0.55 1.46 4.59 3.10 × 10−3

miR-150-5p 0.58 1.49 17.72 3.26 × 10−6

miR-377-3p 0.63 1.55 6.94 2.77 × 10−3

miR-136-5p 0.83 1.78 7.92 8.28 × 10−5

miR-495-3p 1.05 2.07 8.22 2.37 × 10−9

miR-371b-5p 1.17 2.25 4.67 3.27 × 10−13

miR-616-3p 1.19 2.28 5.71 2.37 × 10−9

* Here, logFC is the log fold-change in miRNA expression for newborns compared to 7-year-old children. This model
adjusted for cell composition (cd8+T, cd4+T, NK cells, B cells, monocytes, and granulocytes). FDR-adjusted
p-values < 0.05 are bolded. FC: fold-change.
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Figure 4. Boxplots of 4 of the 36 miRNAs differentially expressed between visits. As an example,
distributions of four miRNAs that were differentially expressed between newborns and 7-year-olds
are shown here. The first three box plots show higher miRNA expression in 7-year-old children for
let-7e-5p, miR-1260b, and miR-19a-3p, while miRNA expression was actually higher in newborns for
miR-616-3p. Asterisks (*) indicate statistically significant associations (FDR-adjusted p-values < 0.05).
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3.6. Pathway Analysis of miRNA Differentially Expressed between Ages

We applied DIANA-miRPath in miRNAs differentially expressed between newborns and
7-year-old children. Using the union of predicted genes targeted by differentially expressed miRNAs,
we found 130 gene ontology (GO) terms that were significantly enriched (FDR-adjusted p-value < 0.05,
Table S6). The most significant GO terms included metabolic processes, ion binding, and cellular
protein modification processes. Using REVIGO to summarize and visualize the GO terms, we found
that the most prominent miRNA-related GO terms related to differences between newborns and
7-year-old children fell into several broad categories such as cell cycle, cell–cell signaling, immune
system process, post-translational modification, and catabolic and metabolic processes (Figure 5).
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Figure 5. Enriched gene ontology (GO) terms: miRpath v3.0 was used to identify significantly enriched
GO terms among predicted mRNA targets of 36 miRNAs that were differentially expressed between
newborns and 7-year-old children. The miRNA-related GO terms related to age differences in children
fell into several broad categories including immune system process, neurotrophin tropomyosin-related
kinase (TRK) receptor signaling, post-translational protein modification, and mitotic cell cycle.

4. Discussion

In this study, we assessed miRNA expression of 43 miRNAs in buffy coat samples collected from
children at birth and age 7 years. We found suggestive, though nonsignificant, evidence that expression
of some miRNAs can differ by cell type, highlighting the need to consider cell type composition in
studies of miRNA expression in blood. Importantly, we found several miRNAs that were differentially
expressed between the two ages, the majority of which were more highly expressed in 7-year-old
children compared to newborns after controlling for white blood cell composition.

Few studies have examined associations of miRNA expression with age in children. Burgess et al.
identified 114 upregulated and 72 downregulated miRNAs when comparing fetal to pediatric liver
samples [16]. In our study, five of the differentially expressed miRNAs overlapped with their findings,
suggesting some similarities despite the different target tissues studied. Among adults, a few studies
have reported age-related decreases in miRNA expression in blood [14,32,33]. The most comprehensive
study to date measured 150 miRNAs in whole blood samples from over 5000 adults [33]. They found
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127 miRNAs that were differentially expressed in relation to chronological age. Notably, many of the
miRNAs differentially expressed between newborns and 7-year-old children in our study (16 of 43)
were also differentially expressed by age in adults, though not necessarily in the same direction. It is
possible that some miRNAs remain involved in age-related biological pathways throughout the life
course, while others may only be implicated in developmental pathways in children or in aging and
senescence in adults.

In children, miRNAs related to age may be involved in biological pathways related to development
and growth. Our pathway analysis highlighted several broad categories of GO terms that were
significantly enriched among age-associated miRNAs, including immune system process, post-translational
modification, and cell cycle. Among adults, age-associated miRNAs were also enriched for pathways
related to immune response and the regulation of transcription and translation [33]. These data suggest
that these miRNAs may regulate genes that are integral to age-related biological mechanisms.

It is well established that DNA methylation levels vary between blood cell types in humans [34],
and it is now standard practice to control for blood cell proportions in DNA methylation studies [35,36].
However, how miRNA expression levels differ by blood cell composition is not as well characterized.
One recent study examined miRNA expression in seven types of peripheral blood cells and identified
several blood cell-specific miRNAs, indicating that miRNA expression profiles can indeed differ
between blood cell types [37]. In our study, we found suggestive but nonsignificant associations of
some miRNAs with blood cell type proportions. This corroborates the Huan et al. finding [33] that
although blood cell composition does account for some variability in miRNA expression levels among
adults, adjusting for blood cell composition in statistical models does not considerably change results.

Sex-specific differences in miRNA expression have been previously reported in a few studies [14,38],
though data in children are quite limited. None of the 43 miRNAs assessed in this study were significantly
differentially expressed between boys and girls at either age. These results corroborate both our previous
study of 89 newborns [15] and another study of cord blood miRNAs [39]. Interestingly, we did observe
some consistent, albeit nonsignificant, trends of lower miRNA expression in girls compared to boys,
particularly in newborns, which also confirms trends observed in our previous study.

Our study was performed in buffy coat samples that contained a mixture of different white
blood cell types, which had the potential to bias the results if miRNA expression differed between
these various blood cell types [37,40]. However, adjustment for blood cell proportions did not
significantly change results, and we found only weak evidence of relationships between miRNA
expression levels and blood cell type proportions. Furthermore, samples were stored at −80 °C
without RNA stabilization, which may have presented another potential source of bias for miRNA
expression levels. However, miRNAs are considered to be relatively stable compared to other RNA
molecules [41]. Another limitation of this study was that we only examined a subset of miRNAs
expressed in blood. Given that many miRNAs were differentially expressed by age, it will be important
to expand analysis to all miRNAs with measurable expression in blood. Despite these limitations, this
is one of the few studies that has examined potential differences in miRNAs by age in children and has
identified miRNAs that may be essential as children develop from infancy to mid-childhood.

5. Conclusions

In this study, we observed differential expression of many miRNAs in newborns compared to
7-year-old children. Pathway analysis revealed several ontology terms related to post-translational
modifications, metabolism, and immune response that were enriched among predicted targets of
age-associated miRNAs. Given that the majority of differentially expressed miRNAs were upregulated
at age seven (versus newborns), the predicted mRNA targets and their associated pathways highlighted
processes important in biological development as children get older.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/16/4/524/s1,
Table S1: Blood cell proportions estimated by minfi in cord and 7-year-old blood. Table S2: Regression model of
blood cell composition on cord blood miRNA expression. Table S3: Regression model of blood cell composition on
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7-year-old blood miRNA expression. Table S4: Differential expression analysis by sex in newborns and 7-year-olds.
Table S5: Partial correlation of miRNAs between newborns and 7-year-olds, controlling for cell composition. Table
S6: Significantly enriched GO terms related to miRNAs differentially expressed between newborns and 7-year-old
children. Figure S1: PCA analysis. Cumulative variance explained by each principal component.
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