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Abstract: Previous studies on the water quality of surface runoff often focused on the chemical
oxygen demand (COD), nitrogen, phosphorus, and total suspended solid (TSS), but little is known in
terms of the inorganic suspended solids (ISS). This research investigated the effects of ISS carried
by surface runoff on the treatment efficiency of the pretreatment facilities and the ratio of mixed
liquor volatile suspended solid to mixed liquor suspended solid (MLVSS/MLSS) of the activated
sludge in a wastewater treatment plant (WWTP) with the anaerobic-anoxic-oxic (AAO) process in
Chongqing city, China. The results showed that the surface runoff had a long-lasting impact on the
grit removal capacity of the grit chamber, affecting the normal operation after the rainfall. In contrast,
the primary sedimentation tank showed strong impact resistance with higher removal rates of COD,
TSS, and ISS. Nonetheless, the primary settling tank aggravates the removal of organic carbon in
sewage during rainfall, having a negative impact on subsequent biological treatment. The ISS in the
surface runoff could increase the sludge concentration and decrease the MLVSS/MLSS ratio. After
repeated surface runoff impact, the MLVSS/MLSS ratio in the activated sludge would drop below
even 0.3, interrupting the normal operation of WWTP.
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1. Introduction

In general, urban surface runoff contains toxic and harmful pollutants (such as suspended solids,
vehicle emissions, air sedimentation, etc.), which might be significantly greater than those of urban
sewage. Such circumstances are receiving widespread attention [1–4]. A survey of water pollution in
the United States in 1990 reported that over 30% of the water bodies were contaminated by non-point
source pollution [5]. Studies have found that somewhere between 50% and 60% of the suspended
solids in the combined drainage outflows originate from urban surface runoff [6,7]. In some river
basins, the concentration of suspended solid could be 22–106-times above the typical values [6].

Recently, a number of studies have focused on investigating the impacts of urbanization
degree [8,9], seasonal variation [10,11], and land use [12,13] on surface runoff pollutants and the
contribution of surface runoff to pollutants in the combined drainage system [7,14]. In these studies,
researchers paid the most attention to the nutrient contaminants (such as chemical oxygen demand
(COD), total nitrogen (TN), total phosphorus (TP)) [15,16], total suspended solids (TSS) [17], and heavy
metals [18] in surface runoff. To our knowledge, few studies have evaluated the contents of inorganic
suspended solids (ISS) in surface runoff. Several studies suggested that the ISS/TSS ratios during
rainy days could reach as high as 60% in the combined drainage system [19]; about 10% of the fine

Int. J. Environ. Res. Public Health 2019, 16, 453; doi:10.3390/ijerph16030453 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
http://www.mdpi.com/1660-4601/16/3/453?type=check_update&version=1
http://dx.doi.org/10.3390/ijerph16030453
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2019, 16, 453 2 of 12

sand in bed sediments came from surface runoff [20]. These indicate that the content of inorganic
solids is quite substantial in the runoff.

With the widespread application of the sequencing batch reactor (SBR) and oxidation ditch
technology in wastewater treatment processes, many wastewater treatment plants (WWTP) have
stopped using the primary settling tank [21]. However, most of the cities in China continue to apply
the combined drainage system. In this case, inorganic solids in surface runoff that cannot be removed
by the grit chambers would enter the biochemical treatment tanks directly, causing the deposition
of ISS and reduction in the mixed liquor volatile suspended solid to mixed liquor suspended solid
(MLVSS/MLSS) ratio of activated sludge. In a sense, high contents of ISSs in surface runoff could
significantly reduce the performance of WWTP. However, such a kind of investigation has not been
performed elsewhere.

In this paper, a wastewater treatment plant (WWTP) in Chongqing city (China) is selected as a
test bed to perform a pilot scale study. The aim is to understand how a “shock load” of inorganic solids
in surface runoff would affect the water quality and sludge activity ratio. This study should provide
some useful scientific basis for refining and improving the regulation and operation of WWTP.

2. Materials and Methods

2.1. Introduction of WWTP

The selected WWTP is located in Chongqing city (China) with a combined sewage collection
system. The WWTP provides wastewater treatment services for three nearby districts, including
Nan’an District, Jiulongpo District, and Yuzhong District (see Figure 1). The wastewater from Nan’an
District enters the WWTP directly through Route A; and the wastewater from Jiulongpo District and
Yuzhong District is channeled to the pump station through the Route B and Route C, respectively.
During rainy days, the pumping station regulates the flow by controlling the number of sewage pumps.
The wastewater collection route is shown in Figure 1. The treatment capacity of the WWTP in dry and
rain seasons is 60,000 m3/d and 100,000 m3/d, respectively. The inverted anaerobic-anoxic-oxic (AAO)
process is used, and the flow chart is shown in Figure 2.

Figure 1. The wastewater collection route. WWTP, wastewater treatment plant.
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Figure 2. Schematic diagram of WWTP and sampling locations.

2.2. Rainfall

On 29 May, the rainfall mainly occurred between 2:00 and 4:00; while the hourly rainfall hit a
peak of 12.5 mm at 3:00 (see Figure 3). According to the U.S. Geological Survey (USGS) definition
of individual rainfall events, this rainfall can be categorized as heavy rain, and the surface erosion
rate was greater than or equal to 90% [18]. Prior to this rainfall event, it had been dry and sunny
over the past 15 days. Therefore, the surface runoff generated by this heavy rainfall event should be
representative in the current study.

Figure 3. Rainfall variation.

2.3. Sampling Method

The locations of four water quality sampling points and one sludge sampling point are shown
in Figure 2. An automated water sampler (YCS-778, Suzhou Yuchen Instrument Co. LTD., Suzhou,
China) was used to take mixed samples.

The sampling process was divided into three stages. The first stage was the background period,
which was five days before the rain. The second stage was the impact period, which was from
the beginning of the rainfall to the end of the shock impact of the system, lasting from 0–400 min.
The third stage was the recovery period, which started right after the end of the rainfall and until the
MLVSS/MLSS ratio of the mixed liquor recovered to the background value, lasting from 440 min to
the 8th day.
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2.3.1. Sampling Plan during Impact Period

The purpose of setting up 1#~3# sampling points was to investigate the treatment efficiency of
the pretreatment facilities of WWTP. Samples were taken every 20 min between 0 h and 4 h since the
beginning of the rainfall event; then, every 40 min between 4 h and 8 h; every one hour between 8 h
and 12 h; and finally, every 2 h between 12 h and 20 h.

Taking into account the hydraulic retention time of sewage in the biological treatment structures,
the sampling intervals of 4# and 5# should be increased accordingly. Samples were taken every one
hour between 0 h and 8 h since the beginning of the rainfall event; then every two h between 8 h and
16 h; and at last, every 4 h between 16 h and 20 h.

2.3.2. Sampling Plan during the Background and Recovery Periods

The sampling started at 8:00 and was taken every 4 h. The six samples collected over a day were
mixed evenly for index test.

2.4. Test Indicators and Methods

TP and TN were tested in accordance with the national standard methods (State Environment
Protection Administration of China, 2002). The COD was determined using a DR1010 COD Analyzer
(HACH, Loveland, CO, USA). Particle size was determined using a laser particle size analyzer
(BT-9300HT, Bettersize Instruments LTD., Dandong, China). All samples were passed through a
0.45-µm filter and dried to a constant weight at 105 ◦C to obtain MLSS. Inorganic solids (MLISS) were
also determined by weighing following incineration at 600 ◦C for 2 h. Organic solids (MLVSS) were
calculated as the difference between MLSS and MLISS.

3. Results

3.1. Variation of Pollutants Concentration in Different Periods

Figure 4 shows the variation of pollutant concentration in different periods. The specific values are
shown in Table 1. The liquid level (This refers to the water level of the sewage pump station before the
coarse screen. These are the on-line monitoring data, which can reflect the flow change after the runoff
entering the WWTP.) of the WWTP increased gradually with the rainfall and then maintained at the
highest level during 200–480 min (which is somewhere between 184.85 m and 185.00 m). At 80 min since
the rainfall started, the concentrations of COD, TSS, and ISS elevated to the highest levels, which were
728 mg/L, 1469 mg/L, and 1242 mg/L, respectively. Relative to the mean values of the background
period, the COD, TSS, and ISS concentrations increased by 30.7%, 113.5%, and 139.8%, respectively.
Because of the scouring effect of the initial rainwater, the peak value of pollutant concentration was
ahead of the peak value of runoff, and the pollutant load mainly concentrated at the rising stage of
runoff. This is consistent with previous studies. Subsequently, it decayed exponentially between
100 min and 440 min and gradually stabilized at the concentration of the background period. After the
rain water entered WWTP, the concentrations of TN and TP kept falling. When the flow returned to
the normal level, the concentrations of TN and TP gradually recovered.
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Table 1. Variation range and mean value of pollutant concentration.

Treatment
Facilities Period

COD (mg/L) TSS (mg/L) ISS (mg/L) TN (mg/L) TP (mg/L) Particle Size (µm)

Variation
Range

Mean
Value

Variation
Range

Mean
Value

Variation
Range

Mean
Value

Variation
Range

Mean
Value

Variation
Range

Mean
Value

Variation
Range

Mean
Value

Grit Chamber
Influent

background period 512–600 557 612–735 688 440–654 518 46–59 54.9 6.31–9.67 8.28 52.09–56.43 54.41
impact period 412–728 596 428–1469 966 409–1242 761 30–56 43.8 3.68–8.18 6.11 65.85–74.42 71.95

recovery period 312–612 507 374–788 659 336–665 536 30–61 43.9 3.98–9.72 7.10 55.93–65.27 61.70

Grit Chamber
Effluent

background period 501–596 528 534–697 601 402–554 449 44–59 51.7 7.56–10.65 8.29 51.29–55.85 54.09
impact period 514–806 627 497–1512 971 459–1244 752 31–55 41.4 3.12–7.57 5.12 62.54–72.76 68.16

recovery period 273–596 500 433–752 645 364–647 558 29–62 41.8 3.63–10.63 7.05 56.85–64.68 60.85

Primary Settling
Tank Effluent

background period 198–355 287 236–387 303 132–205 165 33–50 41.1 4.54–7.95 5.62 52.34–55.45 55.20
impact period 208–332 304 223–321 261 158–254 201 29–54 41.9 2.82–7.95 5.08 53.62–64.22 60.35

recovery period 158–331 242 186–322 273 106–259 210 28–45 34.1 3.04–5.17 4.25 53.45–60.51 57.50

Note: COD: chemical oxygen demand; TSS: total suspended solids; ISS: inorganic suspended solids; TN: total nitrogen; TP: total phosphorus.
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Figure 4. The variation of pollutant concentration in different periods. ISS, inorganic suspended
solids; AAO, anaerobic-anoxic-oxic. Grit Chamber Influent Grit Chamber Influent—GCI; Grit
Chamber Effluent—GCO; Primary Settling Tank Effluent—PSTO. Meanwhile, PSTO is also the AAO
process influent.

3.2. Pollutant Removal Efficiency of the Pretreatment Facilities of WWTP

The removal rates of pretreatment facilities in different periods are shown in Figure 5. In the
background period, the removal rates of COD, TSS, and ISS in the grit chamber were 5.21%, 12.65%,
and 13.33%, respectively. In the impact period, they decreased to 0.00%, 0.00%, and 1.18%, respectively.
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Nonetheless, the pollutant removal capacity of the grit chamber was not recovered during the recovery
period. This suggests that surface runoff has a significant impact on the grit-removal capacity of the
grit chamber. This impact is persistent with a lasting effect on the normal operation of the grit chamber
after the rainfall event.

Figure 5. The removal rate of pretreatment facilities.

Surprisingly, the primary sedimentation tank demonstrated very good impact resistance during
the impact period. In this period, the removal rates of COD, TSS, and ISS in the primary settling tank
escalated from 45.64%, 49.59%, and 63.25% to 51.52%, 73.12%, and 73.27%, respectively. According
to the data in Table 1, it can be found that the removed concentration of TSS by the primary settling
tank was 298, 710, and 372 mg/L during the background period, impact period, and recovery period,
and the ISS removal concentration was 284, 551, and 348 mg/L, respectively. These results show that
the primary settling tank ordinarily has the same performance on TSS and ISS removal, but it does
remove 149mg/L of VSS during the rainfall event. Combined with the increase of the COD removal
rate, it can be inferred that the primary settling tank aggravates the removal of organic carbon in
sewage during rainfall, which has a negative impact on subsequent biological treatment.

The TSS/COD, ISS/COD, COD/TN, and COD/TP ratios of the grit chamber influent, effluent,
and primary settling tank effluent (or AAO influent) are shown in Table 2, Table 3, and Table 4,
respectively. The TSS/COD ratio of the influent, the effluent of the grit chamber, and the effluent of the
primary sedimentation tank in the background period were 1.24, 1.14, and 1.06, respectively; and their
mean ISS/COD ratios were 0.93, 0.85, and 0.57, respectively. After the rainfall, the TSS/COD and
ISS/COD ratios of the influents of the grit chamber, primary sedimentation tank, and AAO peaked at
80 min. Their maximum values of TSS/COD ratios were 2.35, 2.02, and 1.18, respectively. Relative to
the background period, their TSS/COD ratios increased by 89.5%, 77.2%, and 10.17%, respectively.
Their peak ISS/COD ratios were 1.98, 1.66, and 0.95 (i.e., increased by 112.9%, 95.3%, and 66.67%,
respectively, compared with the background period). Since the increase of the ISS/COD ratio was
much larger than that of the TSS/COD ratio, we deduced that a substantial amount of the suspended
solids brought in by the surface runoff was mainly inorganic solids.
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Table 2. The SS/COD, ISS/COD, COD/TN, and COD/TP ratios of the influent of the grit chamber.

Period
SS/COD ISS/COD COD/TN COD/TP

Variation
Range

Mean
Value

Variation
Range

Mean
Value

Variation
Range

Mean
Value

Variation
Range

Mean
Value

background
period 1.10–1.38 1.24 0.74–1.13 0.93 8.80–12.7 10.24 60.51–93.80 68.71

impact
period 0.98–2.35 1.58 0.79–1.98 1.26 9.24–21.24 13.74 66.06–147.92 99.56

recovery
period 1.05–1.57 1.31 0.26–1.24 1.06 9.74–15.67 11.72 52.08–106.32 75.74

Table 3. SS/COD, ISS/COD, COD/TN, and COD/TP of grit chamber effluent.

Period
SS/COD ISS/COD COD/TN COD/TP

Variation
Range

Mean
Value

Variation
Range

Mean
Value

Variation
Range

Mean
Value

Variation
Range

Mean
Value

background
period 1.01–1.25 1.14 0.76–1.06 0.85 8.86–11.66 10.30 52.00–62.44 59.48

impact
period 0.95–2.02 1.54 0.75–1.66 1.20 10.09–22.70 15.63 82.38–225.78 133.04

recovery
period 1.1–1.59 1.31 0.94–1.33 1.14 8.71–12.65 11.93 55.41–97.32 74.23

Table 4. SS/COD, ISS/COD, COD/TN, and COD/TP of primary settling tank effluent or AAO influent.

Period
SS/COD ISS/COD COD/TN COD/TP

Variation
Range

Mean
Value

Variation
Range

Mean
Value

Variation
Range

Mean
Value

Variation
Range

Mean
Value

background
period 0.66–1.34 1.09 0.47–0.71 0.59 3.99–10.26 7.31 39.52–61.25 51.33

impact
period 0.68–1.18 0.87 0.47–0.95 0.67 5.63–9.66 7.40 38.15–104.40 59.68

recovery
period 0.94–1.21 1.15 0.67–1.03 0.88 4.97–8.12 7.01 44.21–84.38 57.35

3.3. MLVSS/MLSS Variation of Mixed Liquor

After the rainfall, due to the influx of fine sediment, the sludge concentration (MLSS) increased
by about 1200 mg/L, and the MLVSS/MLSS ratio of the mixed liquor decreased by 0.05. The results
are shown in Figure 6.

Figure 6. The variation of mixed liquor MLVSS/MLSS during rainfall.
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The correlation analysis between the MLVSS/MLSS ratio of the mixed liquor and ISS/COD ratio
of the primary sedimentation tank effluent is shown in Figure 7. The R value was a linear correlation.

Figure 7. Correlation between ISS/COD and MLVSS/MLSS.

4. Discussions

4.1. The Influence of Surface Runoff on Wastewater Pollutants

The influence of surface runoff on the combined wastewater was mainly reflected in two aspects:
firstly, the scouring effect caused the increase of pollutant concentration; secondly, the dilution effect
of rainwater on domestic sewage. The concentrations of COD and TSS and ISS during the initial
rainwater were higher while the concentrations of TP and TN were relatively low [22]. Therefore,
when the surface runoff entered WWTP, the concentrations of COD, TSS, and ISS first reflected the
scouring effect of initial rainwater and then reflected the dilution effect of surface runoff [23]. The
effects on TN and TP were primarily dilution [24]. After the rainfall started, the average volume
diameter of the influent from the grit chamber increased from 54.4 µm–71.9 µm, with the maximum
value appearing at 80 min. This indicates that the concentration and particle size of suspended solids
washed into the WWTP peaked at the same time when the surface runoff peaked.

4.2. The Differences of Removal Efficiency between the Grit Chamber and Primary Sedimentation Tank

Although both the grit chamber and primary sedimentation tank are responsible for removing
suspended solids within the WWTP system, the removal rate of the primary sedimentation tank was
obviously better. However, most of the suspended solids removed by the primary sedimentation
tank were organic matter, which reduced the carbon source required for the subsequent biochemical
treatment [25,26]. For this reason, the primary sedimentation tank was gradually removed in the
SBR and oxidation ditch process, widely used in small and medium-sized cities. This resulted in a
large number of inorganic solids entering the biochemical tanks, followed by their accumulation in
the mixtures and at the bottom of tanks when surface runoff shocked [27,28]. The TP removal rate
increased during the whole runoff impact process, which may be caused by huge amount of iron and
aluminum ions transported by the surface runoff [22].

The mean TSS/COD ratio of the influent of the primary sedimentation tank was normally about
1.24, but it reached as high as 2.35 during the impact period. Compared with the typical TSS/COD
ratio of 1.1 in developed countries, the TSS/COD ratio of the influent of the sewage plant was relatively
high [29]. After the treatment at the primary settling tank, the TSS/COD of the effluent dropped to 1.14,
which was close to the normal level. Whilst the ISS/COD of the effluent was reduced from 1.24–0.67,
it was way above the typical ISS/COD ratio of 0.2 in developed countries [29]. The COD/TN ratio of
the effluent was reduced from over 10 to about seven, slightly below the normal ratio of eight required
for phosphorus and nitrogen removal [30]. These results indicate that the primary sedimentation tank
substantially reduced the carbon source, which affected the subsequent biochemical treatment.
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4.3. The Influence of Surface Runoff on WWTP Performance

Although the impact of a single rainfall event on the sewage plant was not obvious,
the accumulation of sediments after repeated rainfall events would have serious consequences.
According to previous studies, increasing sludge concentration to maintain a constant volume of
MLVSS is the only way for WWTP to resist the sediment shock impact in the rainy season. After
repeated rainfall shocks, the highest sludge concentration of WWTP could reach 8000 mg/L, and
the MLVSS/MLSS ratio could be reduced to as low as 0.24. Although this method can enhance the
sewage treatment effect, the accumulation of fine sediments in sludge will inevitably reduce the mass
transfer efficiency of oxygen in the aeration tank, aggravate the wear and tear of the reflux sludge
pump, and ultimately affect the sewage treatment process.

The correlation coefficient between the MLVSS/MLSS ratio of the mixed liquor and ISS/COD
ratio of the primary sedimentation tank effluent during rainfall was at 0.47. This further illustrates that
the concentration of influent sediment in WWTP during a rainfall period has an important influence on
the MLVSS/MLSS ratio of the mixed liquor. According to the above results, the sludge concentration
increased to 1200 mg/L and the MLVSS/MLSS ratio decreased to 0.05 in this single rainfall event.
Moreover, this is the outcome of setting up the primary settling tank. If the primary sedimentation
tank were removed, inorganic solids such as sediment during rainfall would have a profound impact
on the activated sludge treatment system.

With the absence of the primary settling tank in the SBR and oxidation ditch process, there were
increasing inorganic suspended solids with particle sizes of less than 200 µm (which cannot be removed
by the grit chambers) flowing into the biochemical tanks. As a result, the MLVSS/MLSS ratio of the
activated sludge declined significantly. For example, the MLVSS/MLSS ratio of some WWTPs hit
0.3–0.5 in China [31], which is much lower than the typical value of 0.7 [29,32].

5. Conclusions

(1) The influence of surface runoff on the combined wastewater is mainly reflected in two aspects:
firstly, the scouring effect leads to the increase of pollutant concentration. Relative to the background
period, the COD, TSS, and ISS concentrations during rainfall were higher by 30.7%, 113.5%, and 139.8%.
Secondly, the dilution effect of rainwater on the concentrations of TN and TP of the domestic sewage
was obvious.

(2) The surface runoff has a long-lasting effect on the grit removal capacity of the grit chamber.
In the background period, the removal rates of COD, TSS, and ISS in the grit chamber were 5.21%,
12.65%, and 13.33%, respectively. In the impact period, they decreased to 0.00%, 0.00%, and 1.18%,
respectively. The primary sedimentation tank demonstrated a strong impact resistance during the
rainfall impact period. In the impact period, the removal rates of COD, TSS, and ISS in the primary
settling tank escalated from 45.64%, 49.59%, and 63.25% to 51.52%, 73.12%, and 73.27%, respectively.
Combined with the increase of the COD removal rate, it can be inferred that the primary settling tank
aggravates the removal of organic carbon in sewage during rainfall, which has a negative impact on
subsequent biological treatment.

(3) After the rainfall, the influx of inorganic solids (such as fine sediment) pushed the sludge
concentration (MLSS) by about 1200 mg/L. The MLVSS/MLSS ratio of the mixed liquor decreased by
0.05. The correlation coefficient between the MLVSS/MLSS ratio of the mixed liquor and the ISS/COD
ratio of the primary sedimentation tank effluent during rainfall was 0.47. This further confirms that the
concentration of influent inorganic solids in WWTP has a significant influence on the MLVSS/MLSS
ratio of the mixed liquor.
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