
International  Journal  of

Environmental Research

and Public Health

Article

Association between PM2.5 Exposure and All-Cause,
Non-Accidental, Accidental, Different Respiratory
Diseases, Sex and Age Mortality in Shenzhen, China

Junfang Cai 1, Chaoqiong Peng 2, Shuyuan Yu 2, Yingxin Pei 3, Ning Liu 2, Yongsheng Wu 2,
Yingbin Fu 2 and Jinquan Cheng 2,*

1 National Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control
and Prevention, Beijing 100021, China; caijunfang@nieh.chinacdc.cn

2 Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; pcq@szcdc.net (C.P.);
shuyuanyu2008@163.com (S.Y.); liun@szcdc.net (N.L.); cdc@szcdc.net (Y.W.); fuyingbin0320@163.com (Y.F.)

3 CFETP, Chinese Center for Disease Control and Prevention, Beijing 100050, China; peiyingxin@hotmail.com
* Correspondence: cjinquan@szcdc.net; Tel.: +86-135-0281-3859

Received: 19 December 2018; Accepted: 29 January 2019; Published: 31 January 2019
����������
�������

Abstract: Background: China is at its most important stage of air pollution control. Research on the
association between air pollutants and human health is very important and necessary. The purpose
of this study was to evaluate the association between PM2.5 concentrations and residents’ mortality
and to compare the effect of PM2.5 on the different diseases, accidental deaths, sex or age of residents
from high polluted areas with less polluted areas. Methods: The semi-parametric generalized additive
model (GAM) with Poisson distribution of time series analysis was used. The excess risk (ER)
of mortality with the incremental increase of 10 µg/m3 in PM2.5 concentration was calculated.
Concentration-response relationship curves and autocorrelation between different lags of PM2.5 were
also evaluated. Results: PM2.5 exposure was significantly associated with the mortality of residents.
The strongest ERs per 10 µg/m3 increase in PM2.5 were 0.74% (95% CI: 0.11–1.38%) for all-cause,
0.67% (95% CI: 0.01–1.33%) for non-accidental, 1.81% (95% CI: 0.22–3.42%) for accidental, 3.04%
(95% CI: 0.60–5.55%) for total respiratory disease, 6.38% (95% CI: 2.78–10.11%) for chronic lower
respiratory disease (CLRD), 8.24% (95% CI: 3.53–13.17%) for chronic obstructive pulmonary disease
(COPD), 1.04% (95% CI: 0.25–1.84%) for male and 1.32% (95% CI: 0.46–2.19%) for elderly. Furthermore,
important information on the concentration-response relationship curves was provided. Conclusions:
PM2.5 can increase the risk of residents’ mortality, even in places with less air pollution and developed
economy in China.
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1. Introduction

Air pollution is harmful to human health [1,2]. Exposure to air pollution increases mortality and
morbidity and is an important cause of the global disease burden [3]. Research has shown that ambient
air pollution had become the fourth biggest threat to the health of the Chinese people in 2010 [4].
Among atmospheric pollutants, airborne fine particulate matter (containing fine particulates often
measured as particulate matter ≤2.5 µm in aerodynamic diameter; PM2.5) is one that was consistently
associated with adverse human health and of great concern to the general public [5–7].

China had undergone a period of reform and opening-up and extensive economic development.
China’s economy had been growing rapidly for decades. At present, it is in the transition period from
extensive development to refined development. With the rapid growth of the economy, China, which
accounts for one fifth of the world’s population (according to China’s sixth census, the population
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of the Chinese mainland accounts for 19.27 percent of the world’s population), had become one of
the countries with the most serious air pollution in the world [8–10]. The average annual nationwide
concentration of PM2.5 in 272 cities in China from 2013 to 2015 was 56 µg/m3 [11]. Information from
the air quality status report of China National Environmental Monitoring Centre indicates that the
average concentration of PM2.5 in 338 cities in China in January 2016, January 2017 and January 2018
was 68 µg/m3, 78 µg/m3 and 64 µg/m3, respectively [12].

The Chinese government is paying more and more attention to the health effects of air pollution.
China was at its most important stage of air pollution control. In 2013, the State Council of China
issued the Air Pollution Prevention and Control Action Plan (APPCAP) to alleviate severe air pollution
and associated adverse health effects in China. In 2018, the report of the nineteenth National Congress
of the Communist Party of China regarded pollution control as one of the three major battles [13].
China’s air quality has improved in recent years. Annual average concentrations of PM2.5 decreased
by 33.3%, PM10 by 27.8%, sulfur dioxide (SO2) by 54.1%, and carbon monoxide (CO) 28.2% between
2013 and 2017 in the 74 key cities in China [14]. Air pollution control has been effective in China.
The concentration of major air pollutants is decreasing, but the overall situation of air pollution is
still grim.

Since China has only begun monitoring PM2.5 concentration in 2013 and there is a lack of
standardized long-term monitoring data, so most previous studies are based on short-term or
intermittent data [14–19]. Recent studies had focused mainly on the national level and the overall
study from multiple cities or the evaluation of pollution control measures [11,20]. This study focuses
on the association between PM2.5 concentration and mortality among residents in Shenzhen, China,
exploring the effects of PM2.5 on different diseases, sex or age. This would potential contribute to
research on the impact of PM2.5 to human health in a region characterized by slight pollution.

Shenzhen is situated in southeastern China, 113◦46–114◦37 E and 22◦27–22◦52 N, the area of
1991.64 km2 (Figure 1). The year-end permanent population in 2013, 2014 and 2015 was 1062.89, 1077.89
and 1137.87 (×105 persons), respectively [21,22]. Shenzhen has a subtropical monsoon climate with
long summers and short winters, mild climate, abundant sunshine and abundant rainfall. The average
annual temperature is 23 ◦C, the historical extreme maximum temperature is 39 ◦C, the historical
extreme minimum temperature is 0 ◦C, the average temperature in January is the lowest (15 ◦C),
the average temperature in July is the highest (29 ◦C), the average annual sunshine is 1838 h and
the average annual precipitation is 1935.8 mm. Shenzhen, with a developed economy, is China’s
first special economic zone and a window for China’s reform and opening-up. It is one of the three
major national financial centers in China. In 2015, agriculture, light industry and heavy industry
represented 0.1, 22.8 and 77.1 of the economic output, respectively (gross output value of industry and
agriculture = 100). In Shenzhen, the annual average concentration of PM2.5 was 35 µg/m3 in 2013–2015.
Air quality was better than in many parts of China’s interior (China National Ambient Air Quality
Standards 35 µg/m3 for annual mean at residential areas) [23]. The PM2.5 pollution level was still
higher than many American and European countries and the WHO standard (U.S. National Ambient
Air Quality Standards 15 µg/m3 for annual mean, The Global Air Quality Guidelines set by World
Health Organization 10 µg/m3 for annual mean). This study aims to assess the association between
PM2.5 concentration and residents’ mortality and to know the effect of PM2.5 on the different disease,
accidental, sex or age residents in a place with less air pollution and a developed economy in China.
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2. Materials and Methods

2.1. Materials

2.1.1. Mortality Data

Data on residents’ mortality in Shenzhen during 1 January 2013–31 December 2015 (a total of
1095 days) were obtained from Shenzhen Center for Disease Control and Prevention, Shenzhen Public
Security Bureau and Shenzhen Funeral Home. Each record includes as variables identity card number,
name, sex, age, date of birth, date of death, the main cause of death and the main cause of death
ICD coding. Data for the three agencies were compared in accordance with identity card number
and name. Data for the three agencies were compared in accordance with identity card number and
name. There were 41,815 entries after excluding repetitive data. After grouping the daily mortality of
residents and sorting and screening the data, data were encoded as non-accidental mortality (A00–R99),
accidental mortality (Initials were S, T, V, W, X, Y), total respiratory disease mortality (J00–J99), chronic
lower respiratory disease (CLRD) (J40–J47), chronic obstructive pulmonary disease (COPD) (J44)
according to the International Classification of Diseases Revision 10 (IDC-10). Elderly people means
those older than 65 years old; younger people means those younger than 65 years old. There were no
deaths due to the flu in the database.

2.1.2. Air Pollution Data

Exposure estimates of the air pollutants in this study included PM2.5, particulate matter with
particle size below 10 microns (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide
(CO) and ozone (O3). We obtained exposure data, which were daily air pollutant monitoring data,
provided by the seven national-level monitoring sites of the Shenzhen Environmental Monitoring
Station, covering the period from 1 January 2013–31 December 2015. The air pollution PM2.5, PM10,
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SO2, NO2 and CO data were based on the means of 24-h average concentration values at the seven sites
in Shenzhen. In China, the concentration of O3 is reported as an 8-h moving average concentration.
We used the 8-h moving average concentration for O3 to ensure comparisons with Chinese Ambient
Air Quality Standards. Monitoring of PM2.5, PM10, SO2, NO2, CO and O3 were done in accordance
with the Chinese Ambient Air Quality Standards (GB 3095-2012) and the Chinese Technical Regulation
for Ambient Qir Quality Assessment (HJ 663-2013) [23,24]. The concentration values of PM2.5, PM10,
SO2, NO2 and CO 24-h average concentration and O3 8-h moving average concentration represented
the exposure city-level.

2.1.3. Meteorological Data

Meteorological data were daily routine monitoring data released by Shenzhen Weather Center,
covering the period of 1 January 2013–31 December 2015, including daily average temperature, daily
average relative humidity (RH), daily average atmospheric pressure, daily average wind speed, Daily
rainfall and sunshine.

2.2. Methods

2.2.1. Basic Description

Mortality, air pollutant and meteorological data are verified to be the not normally distributed.
The data were described by mean, standard deviation (SD), range (minimum–maximum) and median
(Q1, Q3) (Q1, median, Q3 are equal to the 25%, 50% and 75% number of all values in the sample
arranged from small to large, respectively) in order to show the data more clearly.

2.2.2. Autocorrelation Analysis

The autocorrelation analysis of daily PM2.5 concentration from 1 January 2013 to 31 December
2015 (1095 days) was conducted. The autocorrelation function and partial autocorrelation function of
daily PM2.5 concentration series were calculated.

2.2.3. Analysis of Time Series

Mortality data were combined into the daily sex-specific, age-specific and cause-specific mortality
through grouping, screening and summary. The air pollutant variables, PM2.5 and CO, were based
on the means of 24-h average concentration values. The air pollutant O3 was based on the means
of 8-h sliding average concentration values. Multiple time series chart were produced with time
on the horizontal axis, while cause-specific mortality, sex-specific mortality, age-specific mortality,
concentrations of pollutants (all-cause mortality, non-accidental mortality, accidental mortality, total
respiratory disease mortality, CLRD mortality, COPD mortality, male mortality, female mortality, elder
mortality, younger mortality, PM2.5, CO and O3) on the vertical coordinate axes.

2.2.4. Generalized Additive Models, GAM

In the first stage, the basic model was constructed. Mortality data correspond to a Poisson
distribution [25,26]. Analysis of time series with a generalized additive model (GAM) based on Poisson
distribution were used to establish the model [11,26–32]. The dependent variables was linked with
the independent variables through log transformation [33,34]. Several confounders were introduced
in the models: (1) Influence of long-term trend, seasonal trend, day of the week (DOW), public
holiday (PH), daily average temperature and daily average relative humidity were controlled [35,36].
The long-term trend, daily average temperature and daily average relative humidity were adjusted
by cubic regression spline function [37]. Seasonal trend, DOW and public holiday were adjusted by
dummy variables. (2) Sensitivity analysis was carried out. The best parameters were established
basing on the unbiased risk estimate (UBRE, UBRE is a readjustment standard of Akaike information
criterion (AIC)) value and previous literature [38,39]. We adjusted the degrees of freedom (
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smoothness of long-term trend (1–14/year) and meteorological conditions (temperatures and relative
humidity degrees of freedom from 1 to 7 in smooth functions) alternately. For the basic regression
model, we ultimately used seven degrees of freedom (
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3 are the degree of freedom for adjusting
non-parametric smoothing function daily average temperature and daily average relative humidity;
season is the dummy variable for season; dow and holiday are the dummy variable for day of the week
and holiday respectively used to control the short-term fluctuations in the number of daily residents’
mortality; α is the residual error [37].

Mortality, air pollution and meteorological data were not missing. In order to analyze the lag effect,
there were missing values of pollutant concentration. The corresponding record of the missing value
was deleted. If p < 0.05, the effect estimates were considered statistically significant, and borderline
significant if p < 0.10 [46].

2.2.5. Analysis of Concentration-Response Relationship

In each single-day lag (lag0–lag5), the strongest effect of PM2.5 concentration upon
residents’ different cause mortality was chosen to make concentration-response relationship figures.
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The concentration-response relationship between PM2.5 concentration and all-cause mortality,
non-accidental mortality, accidental mortality, total respiratory disease mortality, CLRD mortality, COPD
mortality, male mortality, female mortality, elder mortality, younger mortality were shown, respectively.

The software R3.2.0 (open source software, Auckland, New Zealand) was used for statistical
analysis. A generalized additive model was constructed by using the penalty spline function of gam in
the mgcv package.

3. Results

3.1. Basic Information of Mortality Residents

A total of 41,815 residents died in Shenzhen in 2013–2015. On average, there were 38 deaths
per day; the number of residents deaths was in range of 10–77 people every day; the average age
of death including all causes was 58 years old; the age range was 0–113 years old; 26,567 males and
15,243 females died in 2013–2015; giving a male-female ratio of roughly 1.7:1.35, 467 people died due
to non-accidental causes, accounting for 85% of the total number of deaths; 10–71 people died due
to non-accidental causes every day; the average age of non-accidental death was 61 years old, and
the age range was 0–109 years old. 6348 people died due to accidents, accounting for 15% of the total
number of deaths; 0–17 people died due to accidents every day; the average age of accidental death
was 42 years old, and the age range was 0–113 years old. 2534 people died due to respiratory diseases,
accounting for 6% of the total number of deaths; 0–11 people died due to respiratory diseases every
day; the average age of respiratory diseases death was 71 years old, and the age range was 0–107 years
old; 1049 people died because of CLRD, accounting for 41% of the total respiratory disease deaths;
0–7 people died due to CLRD every day; the average age of CLRD death was 76 years old, and the
age range was 0–102 years old. 646 people died because of COPD, accounting for 26% of the total
respiratory disease deaths; 0–5 people died due to COPD every day; the average age of COPD death
was 79 years old, and the age range was 7–102 years old. See Table 1.

Table 1. Basic information of mortality residents in Shenzhen (2013–2015).

Category Total Deaths Percent among Total Deaths (%) Mean (SD) Range Median (Q1, Q3)

Health effects

All-cause mortality
2013 13,126 100 36 (7) 18–59 35 (31, 40)
2014 14,116 100 39 (8) 18–77 39 (33, 43)
2015 14,573 100 40 (7) 10–68 40 (35, 44)

2013–2015 41,815 100 38 (8) 10–77 38 ( 33, 43)

Non-accidental mortality (A00–R99)
2013 10,846 83 30 (6) 13–53 29 (25, 34)
2014 12,071 86 33 (7) 13–71 33 (28, 37)
2015 12,550 86 34 (7) 10–60 35 (30, 39)

2013–2015 35,467 85 32 (7) 10–71 32 (27, 37)

Accidental mortality (S, T, V, W, X, Y)
2013 2278 17 6 (3) 1–17 6 (4, 8)
2014 2045 14 6 (3) 0–16 5 (4, 7)
2015 2023 14 6 (3) 0–14 5 (4, 7)

2013–2015 6348 15 6 (3) 0–17 6 (4, 7)

Respiratory disease mortality (J00–J99)
2013 745 6 2 (2) 0–8 2 (1, 3)
2014 883 6 2 (2) 0–8 2 (1, 3)
2015 906 6 2 (2) 0–11 2 (1, 3)

2013–2015 2534 6 2 (2) 0–11 2 (1, 3)
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Table 1. Cont.

Category Total Deaths Percent among Total Deaths (%) Mean (SD) Range Median (Q1, Q3)

CLRD mortality (J40–J47)
2013 319 2 1 (1) 0–6 1 (0, 1)
2014 384 3 1 (1) 0–6 1 (0, 2)
2015 346 2 1 (1) 0–7 1 (0, 1)

2013–2015 1049 3 1 (1) 0–7 1 (0, 2)

COPD mortality (J44)
2013 192 1 1 (1) 0–5 0 (0, 1)
2014 217 2 1 (1) 0–4 0 (0, 1)
2015 237 2 1 (1) 0–5 0 (0, 1)

2013–2015 646 2 1 (1) 0–5 0 (0, 1)

Sex

Male
2013 8258 63 23 (5) 10–38 22 (19, 26)
2014 8881 63 24 (6) 9–54 24 (20, 27)
2015 9428 65 26 (6) 4–50 26 (22, 29)

2013–2015 26,567 64 24 (6) 4–54 24 (20, 28)

Female
2013 4868 37 13 (4) 2–28 13 (11, 16)
2014 5232 37 14 (4) 5–32 14 (11, 17)
2015 5143 35 14 (4) 3–30 14 (11, 17)

2013–2015 15,243 36 14 (4) 2–32 14 (11, 17)

Sex-Unknown
2013 0 0 0 (0) 0–0 0 (0, 0)
2014 3 0 0 (0) 0–1 0 (0, 0)
2015 2 0 0 (0) 0–1 0 (0, 0)

2013–2015 5 0 0 (0) 0–1 0 (0, 0)

Age (years)

Elderly (≥65)
2013 5927 45 16 (4) 5–31 15 (13, 19)
2014 6633 47 18 (5) 8–43 18 (15, 21)
2015 6835 47 19 (5) 6–33 19 (16, 22)

2013–2015 19,395 46 18 (5) 5–43 17 (14, 21)

Younger (<65)
2013 7199 55 20 (5) 9–34 20 (16, 23)
2014 7483 53 21 (5) 6–39 20 (17, 24)
2015 7738 53 21 (6) 4–38 21 (17, 24)

2013–2015 22,420 54 20 (5) 4–39 20 (17, 24)

Percent among Total Deaths (%) is percentage of the same year; Mean = daily average number of deaths; SD =
standard deviation; Range = lowest daily deaths to highest daily deaths; Q1, median, Q3 are equal to the 25%, 50%
and 75% number of all values in the sample arranged from small to large, respectively; CLRD = chronic lower
respiratory disease; COPD = chronic obstructive pulmonary disease; Elder = age is greater than or equal to 65 years
old; Younger = age is less than 65 years old.

3.2. Information of Air Pollutants and Meteorological Factors

In 2013–2015, the annual average PM2.5 concentration in Shenzhen was 35 µg/m3; Days when the
PM2.5 24-h average concentration exceeded the national grade 1 criterion of China (concentration limit
< 35 µg/m3) was 458 days and the national grade 2 criterion of China (concentration limit < 75 µg/m3)
58 days [23]. PM2.5 showed a downward trend in three years. See Table 2.
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Table 2. Air pollutants and meteorological factors in Shenzhen (2013–2015).

Indicator Mean (SD) Range Median (Q1, Q3) Days of Exceeding
Grade 1 Criterion *

Days of Exceeding
Grade 2 Criterion **

Air pollutants
PM2.5 (µg/m3)

2013 40 (26) 7–137 35 (20, 53) 183 39
2014 35 (20) 7–107 31 (17, 48) 159 13
2015 30 (17) 7–111 27 (16, 41) 116 6

2013–2015 35 (22) 7–137 30 (17, 47) 458 58

PM10 (µg/m3)
2013 62 (36) 11–182 52 (33, 83) 195 8
2014 56 (28) 12–169 49 (32, 73) 178 2
2015 49 (24) 13–174 44 (30, 63) 140 1

2013–2015 56 (30) 11–182 48 (31, 72) 513 11

SO2 (µg/m3)
2013 12 (6) 4–55 10 (8, 15) 1 0
2014 10 (4) 4–31 9 (7, 11) 0 0
2015 9 (3) 4–19 9 (8, 11) 0 0

2013–2015 10 (5) 4–55 9 (7, 12) 1 0

NO2 (µg/m3)
2013 49 (21) 17–134 44 (34, 59) 34 34
2014 42 (16) 15–130 39 (31, 51) 9 9
2015 40 (14) 16–128 37 (30, 47) 4 4

2013–2015 44 (18) 15–134 40 (32, 52) 47 47

CO (µg/m3)
2013 1163 (257) 575–1930 1134 (963, 1350) 0 0
2014 1126 (233) 619–1759 1130 (945, 1277) 0 0
2015 897 (202) 543–1671 857 (757, 1029) 0 0

2013–2015 1062 (260) 543–1930 1034 (857, 1239) 0 0

O3 (µg/m3)
2013 53 (24) 16–140 50 (33, 70) 17 0
2014 60 (20) 26–143 55 (44, 73) 17 0
2015 52 (22) 18–131 47 (35, 68) 8 0

2013–2015 55 (22) 16–143 51 (38, 70) 42 0

Meteorological factors

Daily average temperature (◦C)
2013 23 (5) 10–31 24 (19, 28)
2014 23 (6) 6–31 25 (19, 29)
2015 24 (5) 12–33 26 (19, 28)

2013–2015 23 (5) 6–33 25 (19, 28)

Daily average RH (%)
2013 75 (16) 24–100 78 (67, 87)
2014 73 (13) 19–96 76 (67, 82)
2015 72 (11) 28–93 73 (67, 79)

2013–2015 73 (13) 19–100 75 (67, 82)

Daily average atmosphere pressure (Kpa)
2013 1005 (6) 987–1019 1005 (1001, 1011)
2014 1006 (6) 992–1021 1006 (1000, 1011)
2015 1006 (6) 991–1019 1006 (1001, 1011)

2013–2015 1006 (6) 987–1020 1006 (1001, 1011)

Daily average wind speed (m/s)
2013 2 (1) 0–6 2 (2, 3)
2014 2 (1) 1–5 2 (2, 3)
2015 2 (1) 1–5 2 (2, 2)

2013–2015 2 (1) 0–6 2 (2, 3)
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Table 2. Cont.

Indicator Mean (SD) Range Median (Q1, Q3) Days of Exceeding
Grade 1 Criterion *

Days of Exceeding
Grade 2 Criterion **

Daily rainfall (0.1 mm)
2013 6 (15) 0–101 0 (0, 3)
2014 5 (17) 0–188 0 (0, 1)
2015 4 (15) 0–150 0 (0, 1)

2013–2015 4 (16) 0–188 0 (0, 1)

Sunshine (0.1 h)
2013 5 (4) 0–13 6 (1, 9)
2014 6 (4) 0–12 6 (2, 9)
2015 5 (4) 0–12 6 (2, 9)

2013–2015 5 (4) 0–13 6 (2, 9)

Mean = daily average number of deaths; SD = standard deviation; Range = lowest daily deaths to highest daily
deaths; Q1, median, Q3 are equal to the 25%, 50% and 75% number of all values in the sample arranged from small
to large, respectively. PM2.5 = particulate matter with a particle size below 2.5 microns. PM10 = particulate matter
with particle size below 10 microns. RH = relative humidity. * The number of days for average daily concentration
exceeded the national grade 1 criterion of China. ** The number of days for average daily concentration exceeded
the national grade 2 criterion of China.

3.3. Autocorrelation Analysis of PM2.5 Concentration

The autocorrelation analysis of daily PM2.5 concentration for 2013–2015 years was carried out.
The autocorrelation function and partial autocorrelation function showed that the PM2.5 concentration
series had a significant autocorrelation. See Figure 2.
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Figure 2. The autocorrelation function and partial autocorrelation function of daily PM2.5

concentration. ACF = autocorrelation function; Partial ACF = partial autocorrelation function. (a) The
autocorrelation function of daily PM2.5 concentration. (b) The partial autocorrelation function of daily
PM2.5 concentration.

3.4. Time Series Chart on Residents’ Mortality versus Air Pollutants Concentration

Time series diagram of resident mortality and air pollutant concentration for 2013–2015 years
displayed that the variation trend of all-cause mortality, non-accidental, accidental, total respiratory
disease, male and elder mortality counts and that of PM2.5 concentration basically matched; both
peaked in winter (November, December and January), and both declined in summer (May, June and
July). CO and O3 had also seasonal trend. See Figure 3.
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Figure 3. Time Series Chart on Residents’ Mortality versus Air Pollutants Concentration Day by Day
in Shenzhen (2013–2015). CLRD = chronic lower respiratory disease; COPD = chronic obstructive
pulmonary disease; Elder = age is greater than or equal to 65 years old; Younger = age is less than 65
years old.



Int. J. Environ. Res. Public Health 2019, 16, 401 11 of 26

3.5. Analysis of Generalized Additive Model, GAM

Single pollutant model and two-pollutant models were used to calculate the RR value and its
95% CI lag0–lag5, lag01–lag04 of PM2.5 24-h average concentration versus mortality in Shenzhen
(Supplementary Material, Figure S1).

The effects of PM2.5 concentration on all-cause mortality, non-accidental mortality, accidental
mortality, total respiratory disease mortality, CLRD mortality, COPD mortality, male mortality, female
mortality, elder mortality and younger mortality without controlling other pollutants and after
controlling CO or O3 see Table 3.

3.5.1. Effects of PM2.5 Concentration on All-Cause Mortality

Without controlling for other pollutants, PM2.5 concentration of lag1, lag2, lag5 on the all-cause
mortality had significant effects, of which lag2 was the most significant. For every 10 µg/m3 PM2.5

concentration of lag2 rose, the ER of total residents’ mortality was 0.74% (95% CI: 0.11–1.38%). PM2.5

moving average concentration (lag01–lag04) on the all-cause mortality had significant effects, of which
lag02 was the most significant. For every 10 µg/m3 PM2.5 concentration of lag02 rose, the ER of total
residents’ mortality was 0.39% (95% CI: 0.14–1.73%).

After controlling CO, the results showed that PM2.5 concentration of lag0–lag5 on the all-cause
mortality had significant effects, of which lag2 was the most significant. For every 10 µg/m3 PM2.5

concentration of lag2 rose, the ER of total residents’ mortality was 1.00% (95% CI: 0.30–1.70%). PM2.5

moving average concentration (lag01–lag04) on the all-cause mortality had significant effects, of which
lag02 was the most significant. For every 10 µg/m3 PM2.5 concentration of lag02 rose, the ER of total
residents’ mortality was 1.26% (95% CI: 0.40–2.12%).

After controlling O3, the results showed that PM2.5 concentration of lag1, lag2 and lag5 on the
all-cause mortality had significant effects, of which lag5 was the most significant. For every 10 µg/m3

PM2.5 concentration of lag5 rose, the ER of total residents’ mortality was 1.07% (95% CI: 0.37–1.77%).
PM2.5 moving average concentration (lag02–lag04) on the all-cause mortality had significant effects, of
which lag04 was the most significant. For every 10 µg/m3 PM2.5 concentration of lag04 rose, the ER of
total residents’ mortality was 1.12% (95% CI: 0.09–2.16%).

3.5.2. Effects of PM2.5 Concentration on Non-Accidental Mortality

Without controlling other pollutants, PM2.5 concentration of lag2 and lag5 on the non-accidental
mortality had significant effects, of which lag5 was the most significant. For every 10 µg/m3 PM2.5

concentration of lag5 rose, the ER of non-accidental residents’ mortality was 0.67% (95% CI: 0.01–1.33%).
PM2.5 moving average concentration (lag02–lag04) on the non-accidental mortality had significant
effects, of which lag02–lag04 were marginally significant.

After controlling CO, the results showed that PM2.5 concentration of lag0–lag2, lag4–lag5 on the
non-accidental mortality had significant effects, of which lag4 was the most significant. For every
10 µg/m3 PM2.5 concentration of lag4 rose, the ER of non-accidental residents’ mortality was 0.89% (95%
CI: 0.16–1.62%). PM2.5 moving average concentration (lag01–lag04) on the non-accidental mortality had
significant effects, of which lag04 was the most significant. For every 10 µg/m3 PM2.5 concentration of
lag04 rose, the ER of non-accidental residents’ mortality was 1.24% (95% CI: 0.25–2.23%).

After controlling O3, the results showed that PM2.5 concentration of lag2 and lag5 on the
non-accidental mortality had significant effects, of which lag5 was the most significant. For every
10 µg/m3 PM2.5 concentration of lag5 rose, the ER of non-accidental residents’ mortality was 1.10% (95%
CI: 0.35–1.86%). PM2.5 moving average concentration (lag03–lag04) on the non-accidental mortality had
significant effects, of which lag04 was the most significant. For every 10 µg/m3 PM2.5 concentration of
lag04 rose, the ER of non-accidental residents’ mortality was 1.11% (95% CI: 0.01–2.23%).
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Table 3. The effects of PM2.5 concentration on residents’ mortality without controlling other pollutants and after controlling CO or O3 in Shenzhen (2013–2015).

Items

Single Pollutant Model Two-Pollutant Model Two-Pollutant Model

PM2.5 PM2.5 + CO PM2.5 + O3

β StdErr p ER % (95% CI) β StdErr p ER % (95% CI) β StdErr p ER % (95% CI)

All-cause mortality
Lag0 0.0005 0.0003 0.16 0.48 (−0.19–1.17) 0.0008 0.0004 0.05 * 0.78 (0.00–1.56) 0.0004 0.0004 0.31 0.37 (−0.35–1.10)
Lag1 0.0006 0.0003 0.07 @ 0.61 (−0.04–1.27) 0.0009 0.0004 0.01 # 0.95 (0.23–1.68) 0.0006 0.0004 0.09 @ 0.61 (−0.11–1.33)
Lag2 0.0007 0.0003 0.02 * 0.74 (0.11–1.38) 0.0010 0.0004 0.00 # 1.00 (0.30–1.70) 0.0008 0.0004 0.04 * 0.76 (0.05–1.48)
Lag3 0.0004 0.0003 0.26 0.36 (−0.26–0.98) 0.0006 0.0003 0.10 @ 0.57 (−0.10–1.26) 0.0006 0.0004 0.11 0.57 (−0.14–1.27)
Lag4 0.0004 0.0003 0.16 0.44 (−0.17–1.05) 0.0008 0.0003 0.02 * 0.79 (0.12–1.47) 0.0005 0.0004 0.20 0.46 (−0.24–1.16)
Lag5 0.0007 0.0003 0.02 * 0.71 (0.10–1.32) 0.0008 0.0003 0.02 * 0.83 (0.16–1.50) 0.0011 0.0004 0.00 # 1.07 (0.37–1.77)

Lag01 0.0007 0.0004 0.06 @ 0.70 (−0.04–1.45) 0.0010 0.0004 0.01 * 1.05 (0.23–1.88) 0.0006 0.0004 0.14 0.62 (−0.20–1.45)
Lag02 0.0009 0.0004 0.02 * 0.93 (0.14–1.73) 0.0013 0.0004 0.00 # 1.26 (0.40–2.12) 0.0009 0.0005 0.05 @ 0.89 (−0.02–1.81)
Lag03 0.0009 0.0004 0.03 * 0.92 (0.09–1.75) 0.0012 0.0004 0.01 # 1.25 (0.36–2.14) 0.0010 0.0005 0.04 * 1.04 (0.06–2.02)
Lag04 0.0010 0.0004 0.03 * 0.97 (0.11–1.83) 0.0013 0.0005 0.01 # 1.30 (0.39–2.22) 0.0011 0.0005 0.03 * 1.12 (0.09–2.16)

Non-accidental mortality
Lag0 0.0004 0.0004 0.31 0.38 (−0.36–1.11) 0.0007 0.0004 0.08 @ 0.75 (−0.09–1.60) 0.0003 0.0004 0.49 0.27 (−0.50–1.06)
Lag1 0.0005 0.0004 0.15 0.51 (−0.19–1.22) 0.0009 0.0004 0.03 * 0.86 (0.08–1.65) 0.0005 0.0004 0.17 0.54 (−0.24–1.32)
Lag2 0.0006 0.0003 0.09 @ 0.60 (−0.09–1.29) 0.0008 0.0004 0.03 * 0.83 (0.08–1.59) 0.0007 0.0004 0.07 @ 0.72 (−0.05–1.50)
Lag3 0.0003 0.0003 0.32 0.34 (−0.33–1.01) 0.0006 0.0004 0.10 0.61 (−0.12–1.35) 0.0006 0.0004 0.12 0.60 (−0.16–1.36)
Lag4 0.0004 0.0003 0.18 0.45 (−0.21–1.11) 0.0009 0.0004 0.02 * 0.89 (0.16–1.62) 0.0005 0.0004 0.16 0.54 (−0.21–1.30)
Lag5 0.0007 0.0003 0.05 * 0.67 (0.01–1.33) 0.0009 0.0004 0.02 * 0.88 (0.16–1.61) 0.0011 0.0004 0.00 # 1.10 (0.35–1.86)

Lag01 0.0006 0.0004 0.16 0.57 (−0.23–1.38) 0.0010 0.0005 0.03 * 0.96 (0.07–1.86) 0.0005 0.0005 0.26 0.51 (−0.37–1.41)
Lag02 0.0007 0.0004 0.09 @ 0.74 (−0.11–1.60) 0.0011 0.0005 0.02 * 1.10 (0.18–2.04) 0.0008 0.0005 0.11 0.79 (−0.19–1.78)
Lag03 0.0008 0.0005 0.10 @ 0.76 (−0.14–1.66) 0.0011 0.0005 0.02 * 1.13 (0.17–2.10) 0.0010 0.0005 0.07 @ 0.98 (−0.07–2.04)
Lag04 0.0008 0.0005 0.08 @ 0.83 (−0.09–1.76) 0.0012 0.0005 0.01 * 1.24 (0.25–2.23) 0.0011 0.0006 0.05 * 1.11 (0.01–2.23)

Accidental mortality
Lag0 0.0012 0.0009 0.17 1.19 (−0.50–2.91) 0.0010 0.0010 0.29 1.04 (−0.89–3.01) 0.0012 0.0009 0.20 1.20 (−0.64–3.07)
Lag1 0.0013 0.0008 0.10 1.36 (−0.28–3.02) 0.0016 0.0009 0.08 @ 1.63 (−0.18–3.47) 0.0013 0.0009 0.15 1.36 (−0.47–3.22)
Lag2 0.0018 0.0008 0.03 * 1.81 (0.22–3.42) 0.0021 0.0009 0.02 * 2.16 (0.41–3.94) 0.0013 0.0009 0.15 1.33 (−0.48–3.17)
Lag3 0.0007 0.0008 0.36 0.73 (−0.82–2.31) 0.0006 0.0009 0.49 0.61 (−1.09–2.34) 0.0008 0.0009 0.40 0.77 (−1.02–2.60)
Lag4 0.0007 0.0008 0.39 0.67 (−0.86–2.22) 0.0005 0.0009 0.56 0.50 (−1.18–2.20) 0.0004 0.0009 0.69 0.36 (−1.41–2.17)
Lag5 0.0012 0.0008 0.14 1.16 (−0.36–2.71) 0.0008 0.0009 0.38 0.76 (−0.92–2.46) 0.0012 0.0009 0.18 1.22 (−0.56–3.03)

Lag01 0.0016 0.0009 0.09 @ 1.61 (−0.24–3.49) 0.0017 0.0010 0.11 1.69 (−0.35–3.78) 0.0016 0.0011 0.12 1.64 (−0.44–3.77)
Lag02 0.0022 0.0010 0.02 * 2.26 (0.30–4.25) 0.0024 0.0011 0.03 * 2.40 (0.27–4.56) 0.0020 0.0011 0.08 @ 2.01 (−0.26–4.33)
Lag03 0.0022 0.0010 0.03 * 2.19 (0.16–4.27) 0.0022 0.0011 0.04 * 2.24 (0.05–4.47) 0.0020 0.0012 0.10 2.03 (−0.39–4.50)
Lag04 0.0021 0.0010 0.05 * 2.08 (0.02–4.17) 0.0019 0.0011 0.08 @ 1.95 (−0.25–4.19) 0.0018 0.0013 0.15 1.85 (−0.64–4.40)
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Table 3. Cont.

Items

Single Pollutant Model Two-Pollutant Model Two-Pollutant Model

PM2.5 PM2.5 + CO PM2.5 + O3

β StdErr p ER % (95% CI) β StdErr p ER % (95% CI) β StdErr p ER % (95% CI)

Total respiratory mortality
Lag0 −0.0014 0.0014 0.30 −1.43 (−4.06–1.27) −0.0006 0.0016 0.73 −0.55 (−3.58–2.57) −0.0019 0.0015 0.21 −1.83 (−4.64–1.06)
Lag1 0.0004 0.0013 0.74 0.44 (−2.12–3.07) 0.0009 0.0015 0.56 0.85 (−1.98–3.77) −0.0012 0.0015 0.43 −1.15 (−3.95–1.74)
Lag2 0.0020 0.0013 0.12 2.02 (−0.49–4.58) 0.0011 0.0014 0.41 1.14 (−1.56–3.91) 0.0018 0.0014 0.20 1.85 (−0.96–4.75)
Lag3 0.0030 0.0012 0.01 * 3.04 (0.60–5.55) 0.0026 0.0013 0.05 @ 2.62 (−0.04–5.34) 0.0041 0.0014 0.00 # 4.17 (1.40–7.02)
Lag4 0.0021 0.0012 0.08 @ 2.17 (−0.25–4.65) 0.0020 0.0013 0.13 2.05 (−0.59–4.77) 0.0015 0.0014 0.28 1.53 (−1.21–4.36)
Lag5 0.0023 0.0012 0.06 @ 2.36 (−0.05–4.83) 0.0018 0.0013 0.18 1.79 (−0.83–4.48) 0.0019 0.0014 0.18 1.88 (−0.86–4.69)

Lag01 −0.0006 0.0015 0.69 −0.59 (−3.47–2.38) 0.0001 0.0017 0.94 0.13 (−3.08–3.43) −0.0021 0.0017 0.22 −2.07 (−5.26–1.22)
Lag02 0.0006 0.0016 0.72 0.58 (−2.50–3.76) 0.0007 0.0017 0.68 0.70 (−2.62–4.14) −0.0009 0.0019 0.64 −0.85 (−4.39–2.81)
Lag03 0.0018 0.0016 0.27 1.82 (−1.41–5.16) 0.0017 0.0017 0.33 1.73 (−1.69–5.28) 0.0012 0.0020 0.54 1.22 (−2.59–5.17)
Lag04 0.0024 0.0017 0.16 2.42 (−0.93–5.88) 0.0021 0.0018 0.24 2.12 (−1.40–5.77) 0.0015 0.0021 0.46 1.53 (−2.48–5.71)

Chronic lower respiratory disease mortality
Lag0 0.0015 0.0021 0.48 1.48 (−2.54–5.66) 0.0006 0.0024 0.80 0.60 (−3.93–5.35) 0.0015 0.0022 0.50 1.47 (−2.75–5.87)
Lag1 0.0012 0.0020 0.54 1.22 (−2.65–5.24) 0.0005 0.0022 0.81 0.53 (−3.68–4.92) 0.0010 0.0022 0.66 0.96 (−3.21–5.32)
Lag2 0.0043 0.0019 0.02 * 4.43 (0.71–8.29) 0.0022 0.0020 0.28 2.20 (−1.77–6.34) 0.0056 0.0020 0.01 # 5.81 (1.68–10.11)
Lag3 0.0062 0.0018 0.00 # 6.38 (2.78–10.11) 0.0043 0.0019 0.03 * 4.40 (0.50–8.44) 0.0093 0.0019 0.00 # 9.71 (5.60–13.97)
Lag4 0.0034 0.0018 0.06 @ 3.41 (−0.14–7.08) 0.0021 0.0020 0.27 2.17 (−1.66–6.16) 0.0039 0.0020 0.05 @ 3.93 (−0.06–8.08)
Lag5 0.0028 0.0018 0.12 2.80 (−0.74–6.46) 0.0015 0.0020 0.43 1.56 (−2.26–5.53) 0.0025 0.0020 0.22 2.51 (−1.47–6.65)

Lag01 0.0016 0.0023 0.47 1.66 (−2.74–6.26) 0.0008 0.0025 0.75 0.81 (−3.98–5.83) 0.0015 0.0024 0.54 1.52 (−3.23–6.51)
Lag02 0.0035 0.0024 0.13 3.60 (−1.08–8.50) 0.0020 0.0025 0.42 2.07 (−2.89–7.29) 0.0043 0.0026 0.10 4.36 (−0.83–9.83)
Lag03 0.0057 0.0024 0.02 * 5.84 (0.94–10.98) 0.0038 0.0026 0.14 3.87 (−1.27–9.28) 0.0079 0.0027 0.00 # 8.26 (2.66–14.16)
Lag04 0.0059 0.0025 0.02 * 6.05 (1.01–11.35) 0.0036 0.0026 0.18 3.64 (−1.59–9.15) 0.0083 0.0028 0.00 # 8.64 (2.75–14.86)

Chronic obstructive pulmonary disease mortality
Lag0 −0.0011 0.0027 0.68 −1.09 (−6.10–4.19) −0.0012 0.0030 0.69 −1.18 (−6.83–4.81) −0.0006 0.0028 0.83 −0.61 (−5.91–4.99)
Lag1 0.0000 0.0026 0.99 −0.03 (−4.92–5.12) 0.0006 0.0028 0.84 0.56 (−4.84–6.26) −0.0001 0.0028 0.98 −0.05 (−5.37–5.56)
Lag2 0.0052 0.0024 0.03 * 5.37 (0.55–10.41) 0.0035 0.0026 0.18 3.57 (−1.57–8.98) 0.0070 0.0026 0.01 # 7.29 (1.89–12.98)
Lag3 0.0079 0.0023 0.00 # 8.24 (3.53–13.17) 0.0063 0.0025 0.01 * 6.52 (1.43–11.86) 0.0122 0.0025 0.00 # 13.01 (7.53–18.77)
Lag4 0.0044 0.0023 0.06 @ 4.46 (−0.18–9.32) 0.0029 0.0025 0.26 2.89 (−2.09–8.14) 0.0053 0.0026 0.04 * 5.40 (0.12–10.95)
Lag5 0.0052 0.0023 0.03 * 5.29 (0.61–10.20) 0.0030 0.0025 0.24 3.01 (−1.98–8.25) 0.0055 0.0026 0.03 * 5.70 (0.39–11.29)

Lag01 −0.0007 0.0029 0.82 −0.67 (−6.14–5.13) −0.0003 0.0032 0.92 −0.33 (−6.35–6.09) −0.0003 0.0032 0.92 −0.33 (−6.31–6.02)
Lag02 0.0024 0.0030 0.43 2.40 (−3.51–8.69) 0.0019 0.0033 0.56 1.92 (−4.40–8.65) 0.0037 0.0034 0.27 3.81 (−2.85–10.94)
Lag03 0.0057 0.0031 0.07 @ 5.83 (−0.47–12.53) 0.0047 0.0033 0.16 4.82 (−1.81–11.90) 0.0093 0.0036 0.01 # 9.72 (2.34–17.62)
Lag04 0.0062 0.0032 0.06 @ 6.36 (−0.18–13.32) 0.0043 0.0034 0.20 4.42 (−2.30–11.61) 0.0106 0.0038 0.01 # 11.15 (3.18–19.74)
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Table 3. Cont.

Items

Single Pollutant Model Two-Pollutant Model Two-Pollutant Model

PM2.5 PM2.5 + CO PM2.5 + O3

β StdErr p ER % (95% CI) β StdErr p ER % (95% CI) β StdErr p ER % (95% CI)

Male
Lag0 0.0007 0.0004 0.10 0.70 (−0.14–1.56) 0.0010 0.0005 0.05 * 0.98 (0.01–1.97) 0.0005 0.0005 0.24 0.55 (−0.36–1.46)
Lag1 0.0006 0.0004 0.14 0.62 (−0.20–1.44) 0.0009 0.0005 0.06 @ 0.87 (−0.03–1.78) 0.0005 0.0005 0.26 0.51 (−0.39–1.42)
Lag2 0.0010 0.0004 0.01 # 1.04 (0.25–1.84) 0.0011 0.0004 0.01 * 1.09 (0.23–1.97) 0.0011 0.0005 0.02 * 1.09 (0.19–1.99)
Lag3 0.0005 0.0004 0.25 0.45 (−0.32–1.23) 0.0004 0.0004 0.39 0.37 (−0.48–1.22) 0.0008 0.0004 0.07 @ 0.81 (−0.07–1.70)
Lag4 0.0004 0.0004 0.35 0.36 (−0.40–1.13) 0.0005 0.0004 0.28 0.46 (−0.38–1.30) 0.0004 0.0004 0.33 0.43 (−0.44–1.31)
Lag5 0.0007 0.0004 0.09 @ 0.65 (−0.10–1.42) 0.0004 0.0004 0.33 0.41 (−0.42–1.25) 0.0010 0.0004 0.02 * 1.03 (0.17–1.91)

Lag01 0.0009 0.0005 0.07 @ 0.86 (−0.07–1.79) 0.0011 0.0005 0.03 * 1.13 (0.10–2.17) 0.0007 0.0005 0.20 0.67 (−0.36–1.71)
Lag02 0.0012 0.0005 0.02 * 1.22 (0.23–2.22) 0.0014 0.0005 0.01 # 1.40 (0.34–2.48) 0.0011 0.0006 0.06 @ 1.11 (−0.02–2.25)
Lag03 0.0012 0.0005 0.02 * 1.21 (0.18–2.25) 0.0013 0.0006 0.02 * 1.31 (0.21–2.43) 0.0013 0.0006 0.03 * 1.36 (0.14–2.58)
Lag04 0.0012 0.0005 0.02 * 1.21 (0.15–2.27) 0.0013 0.0006 0.03 * 1.26 (0.14–2.40) 0.0014 0.0006 0.02 * 1.45 (0.19– 2.72)

Female
Lag0 0.0002 0.0006 0.77 0.16 (−0.92–1.25) 0.0005 0.0006 0.45 0.47 (−0.76–1.73) 0.0002 0.0006 0.77 0.17 (−0.98–1.34)
Lag1 0.0006 0.0005 0.25 0.61 (−0.43–1.66) 0.0011 0.0006 0.07 @ 1.09 (−0.07–2.26) 0.0009 0.0006 0.14 0.86 (−0.29–2.03)
Lag2 0.0003 0.0005 0.55 0.31 (−0.71–1.34) 0.0009 0.0006 0.13 0.87 (−0.25–2.00) 0.0004 0.0006 0.53 0.37 (−0.78–1.54)
Lag3 0.0003 0.0005 0.59 0.28 (−0.72–1.28) 0.0009 0.0006 0.09 @ 0.95 (−0.15–2.06) 0.0003 0.0006 0.57 0.33 (−0.81–1.48)
Lag4 0.0007 0.0005 0.18 0.68 (−0.31–1.67) 0.0014 0.0006 0.01 * 1.42 (0.32–2.53) 0.0007 0.0006 0.22 0.70 (−0.43–1.85)
Lag5 0.0009 0.0005 0.06 @ 0.94 (−0.05–1.93) 0.0016 0.0006 0.00 # 1.62 (0.52–2.73) 0.0014 0.0006 0.02 * 1.39 (0.26–2.53)

Lag01 0.0005 0.0006 0.43 0.47 (−0.70–1.66) 0.0009 0.0007 0.17 0.92 (−0.39–2.24) 0.0007 0.0007 0.32 0.67 (−0.64–1.99)
Lag02 0.0005 0.0006 0.43 0.51 (−0.74–1.78) 0.0011 0.0007 0.13 1.06 (−0.31–2.44) 0.0007 0.0007 0.31 0.75 (−0.70–2.22)
Lag03 0.0005 0.0007 0.42 0.54 (−0.77–1.86) 0.0012 0.0007 0.10 @ 1.20 (−0.21–2.63) 0.0008 0.0008 0.30 0.82 (−0.73–2.40)
Lag04 0.0007 0.0007 0.30 0.72 (−0.63–2.09) 0.0015 0.0007 0.05 * 1.47 (0.01–2.96) 0.0010 0.0008 0.22 1.02 (−0.62–2.68)

Elder
Lag0 0.0006 0.0005 0.22 0.61 (−0.35–1.57) 0.0009 0.0006 0.09 @ 0.95 (−0.15–2.06) 0.0005 0.0005 0.31 0.54 (−0.49–1.57)
Lag1 0.0009 0.0005 0.07 @ 0.85 (−0.07–1.78) 0.0011 0.0005 0.03 * 1.14 (0.11–2.17) 0.0009 0.0005 0.08 @ 0.91 (−0.11–1.93)
Lag2 0.0011 0.0005 0.02 * 1.10 (0.20–2.00) 0.0012 0.0005 0.02 * 1.22 (0.23–2.21) 0.0010 0.0005 0.06 @ 0.98 (−0.04–2.01)
Lag3 0.0009 0.0004 0.04 * 0.91 (0.03–1.79) 0.0011 0.0005 0.03 * 1.09 (0.12–2.06) 0.0008 0.0005 0.12 0.78 (−0.21–1.79)
Lag4 0.0010 0.0004 0.03 * 0.98 (0.12–1.86) 0.0013 0.0005 0.01 # 1.30 (0.34–2.26) 0.0010 0.0005 0.06 @ 0.97 (−0.02–1.96)
Lag5 0.0013 0.0004 0.00 # 1.32 (0.46–2.19) 0.0013 0.0005 0.01 # 1.32 (0.37–2.28) 0.0017 0.0005 0.00 # 1.74 (0.75–2.74)

Lag01 0.0009 0.0005 0.08 @ 0.92 (−0.12–1.98) 0.0013 0.0006 0.03 * 1.26 (0.10–2.43) 0.0009 0.0006 0.12 0.91 (−0.25–2.08)
Lag02 0.0013 0.0006 0.03 * 1.27 (0.15–2.40) 0.0015 0.0006 0.01 * 1.54 (0.33–2.77) 0.0012 0.0007 0.06 @ 1.22 (−0.06–2.52)
Lag03 0.0014 0.0006 0.02 * 1.44 (0.27–2.62) 0.0017 0.0006 0.01 # 1.70 (0.45–2.96) 0.0014 0.0007 0.05 @ 1.37 (−0.01–2.76)
Lag04 0.0016 0.0006 0.01 # 1.57 (0.38–2.78) 0.0018 0.0006 0.00 # 1.82 (0.55–3.11) 0.0015 0.0007 0.04 * 1.53 (0.10–2.99)
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Table 3. Cont.

Items

Single Pollutant Model Two-Pollutant Model Two-Pollutant Model

PM2.5 PM2.5 + CO PM2.5 + O3

β StdErr p ER % (95% CI) β StdErr p ER % (95% CI) β StdErr p ER % (95% CI)

Younger
Lag0 0.0004 0.0005 0.39 0.41 (−0.51–1.34) 0.0007 0.0005 0.22 0.67 (−0.39–1.74) 0.0003 0.0005 0.54 0.31 (−0.68–1.31)
Lag1 0.0004 0.0005 0.40 0.39 (−0.50–1.28) 0.0008 0.0005 0.12 0.78 (−0.21–1.78) 0.0004 0.0005 0.45 0.38 (−0.60–1.38)
Lag2 0.0004 0.0004 0.35 0.42 (−0.45–1.29) 0.0008 0.0005 0.11 0.79 (−0.17–1.75) 0.0006 0.0005 0.22 0.61 (−0.37–1.60)
Lag3 −0.0001 0.0004 0.80 −0.11 (−0.96–0.74) 0.0001 0.0005 0.77 0.14 (−0.79–1.07) 0.0005 0.0005 0.36 0.45 (−0.51–1.43)
Lag4 0.0000 0.0004 0.98 −0.01 (−0.85–0.83) 0.0004 0.0005 0.45 0.35 (−0.57–1.28) 0.0001 0.0005 0.86 0.09 (−0.87–1.06)
Lag5 0.0002 0.0004 0.65 0.19 (−0.64–1.03) 0.0004 0.0005 0.36 0.43 (−0.49–1.35) 0.0005 0.0005 0.28 0.53 (−0.43–1.49)

Lag01 0.0005 0.0005 0.33 0.51 (−0.51–1.53) 0.0009 0.0006 0.13 0.86 (−0.26–2.00) 0.0004 0.0006 0.45 0.43 (−0.69–1.57)
Lag02 0.0006 0.0005 0.26 0.62 (−0.46–1.71) 0.0010 0.0006 0.10 @ 0.99 (−0.18–2.18) 0.0007 0.0006 0.29 0.68 (−0.57–1.94)
Lag03 0.0004 0.0006 0.44 0.45 (−0.68–1.58) 0.0008 0.0006 0.18 0.83 (−0.38–2.05) 0.0008 0.0007 0.22 0.85 (−0.49–2.20)
Lag04 0.0004 0.0006 0.53 0.38 (−0.79–1.56) 0.0008 0.0006 0.23 0.77 (−0.48–2.02) 0.0008 0.0007 0.26 0.82 (−0.59–2.25)

# p value < 0.01; * p value < 0.05; @ p value < 0.10; StdErr = standard error; ER = excess risk.
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3.5.3. Effects of PM2.5 Concentration on Accidental Mortality

Without controlling other pollutants, PM2.5 concentration of lag2 on the accidental mortality had
significant effects. For every 10 µg/m3 PM2.5 concentration of lag2 rose, the ER of accidental residents’
mortality was 1.81% (95% CI: 0.22–3.42%). PM2.5 moving average concentration (lag01–lag04) on
the accidental mortality had significant effects, of which lag02 was the most significant. For every
10 µg/m3 PM2.5 concentration of lag02 rose, the ER of accidental residents’ mortality was 2.26% (95%
CI: 0.30–4.25%).

After controlling CO, the results showed that PM2.5 concentration of lag1 and lag2 on the
accidental mortality had significant effects, of which lag2 was the most significant. For every
10 µg/m3 PM2.5 concentration of lag2 rose, the ER of accidental residents’ mortality was 2.16% (95%
CI: 0.41–3.94%). PM2.5 moving average concentration (lag02–lag04) on the accidental mortality had
significant effects, of which lag02 was the most significant. For every 10 µg/m3 PM2.5 concentration of
lag02 rose, the ER of accidental residents’ mortality was 2.40% (95% CI: 0.27–4.56%).

After controlling O3, the results showed that PM2.5 moving average concentration of lag02 on the
accidental mortality had significant effects. For every 10 µg/m3 PM2.5 concentration of lag02 rose, the
ER of accidental residents’ mortality was 2.01% (95% CI: −0.26–4.33%).

3.5.4. Effects of PM2.5 Concentration on Total Respiratory Disease Mortality

Without controlling other pollutants, PM2.5 concentration of lag3–lag5 on the total respiratory
disease mortality had significant effects, of which lag3 was the most significant. For every 10 µg/m3

PM2.5 concentration of lag2 rose, the ER of total respiratory disease mortality was 3.04% (95%
CI: 0.60–5.55%). After controlling CO, PM2.5 concentration of lag3 on total respiratory disease
mortality had significant effect. For every 10 µg/m3 PM2.5 concentration of lag3 rose, the ER of
total residents’ respiratory disease mortality was 2.62% (95% CI: −0.04–5.34%). After controlling O3,
PM2.5 concentration of lag3 on the total respiratory disease mortality had a significant effect. For every
10 µg/m3 PM2.5 concentration of lag3 rose, the ER of total residents’ respiratory disease mortality was
4.17% (95% CI: 1.40–7.02%). PM2.5 moving average concentration (lag01–lag04) on the total respiratory
disease mortality had no significant effects.

3.5.5. Effects of PM2.5 Concentration on CLRD Mortality

Without controlling other pollutants, PM2.5 concentration of lag2, lag3 and lag4 on CLRD mortality
had significant effects, of which lag3 was the most significant. For every 10 µg/m3 PM2.5 concentration
of lag3 rose, the ER of CLRD mortality was 6.38% (95% CI: 2.78–10.11%). PM2.5 moving average
concentration (lag03–lag04) on CLRD mortality had significant effects, of which lag04 was the most
significant. For every 10 µg/m3 PM2.5 concentration of lag04 rose, the ER of CLRD mortality was
6.05% (95% CI: 1.01–11.35%).

After controlling CO, the results showed that PM2.5 concentration of lag3 on CLRD mortality had
significant effects. For every 10 µg/m3 PM2.5 concentration of lag3 rose, the ER of CLRD mortality was
4.40% (95% CI: 0.50–8.44%). PM2.5 moving average concentration (lag01–lag04) on CLRD mortality
had no significant effect.

After controlling O3, the results showed that PM2.5 concentration of lag2–lag4 on CLRD mortality
had significant effects, of which lag3 was the most significant. For every 10 µg/m3 PM2.5 concentration
of lag3 rose, the ER of CLRD mortality was 9.71% (95% CI: 5.60–13.97%). PM2.5 moving average
concentration (lag03–lag04) on CLRD mortality had significant effects, of which lag03 was the most
significant. For every 10 µg/m3 PM2.5 concentration of lag03 rose, the ER of CLRD mortality was
8.26% (95% CI: 2.66–14.16%).
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3.5.6. Effects of PM2.5 Concentration on COPD Mortality

Without controlling other pollutants, PM2.5 concentration of lag2–lag5 on COPD mortality had
significant effects, of which lag3 was the most significant. For every 10 µg/m3 PM2.5 concentration
of lag3 rose, the ER of COPD mortality was 8.24% (95% CI: 3.53–13.17%. PM2.5 moving average
concentration (lag03 and lag04) on COPD mortality had significant effects, and lag03 and lag04 were
all marginally significant.

After controlling CO, the results showed that PM2.5 concentration of lag3 on COPD mortality had
significant effects. For every 10 µg/m3 PM2.5 concentration of lag3 rose, the ER of COPD mortality was
6.52% (95% CI: 1.43–11.86%). PM2.5 moving average concentration (lag01–lag04) on COPD mortality
had no significant effect.

After controlling O3, the results showed that PM2.5 concentration of lag2–lag5 on COPD mortality
had significant effects, of which lag3 was the most significant. For every 10 µg/m3 PM2.5 concentration
of lag3 rose, the ER of COPD mortality was 13.01% (95% CI: 7.53–18.77%). PM2.5 moving average
concentration (lag03–lag04) on COPD mortality had significant effects, of which lag04 was the most
significant. For every 10 µg/m3 PM2.5 concentration of lag04 rose, the ER of COPD mortality was
11.15% (95% CI: 3.18–19.74%).

3.5.7. Effects of PM2.5 Concentration on Male Mortality

Without controlling other pollutants, PM2.5 concentration of lag2 and lag5 on the male mortality
had significant effects, of which lag2 was the most significant. For every 10 µg/m3 PM2.5 concentration
of lag2 rose, the ER of male residents’ mortality was 1.04% (95% CI: 0.25–1.84%). PM2.5 moving average
concentration (lag01–lag04) on the male mortality had significant effects, of which lag02 was the most
significant. For every 10 µg/m3 PM2.5 concentration of lag02 rose, the ER of male residents’ mortality
was 1.22% (95% CI: 0.23–2.22%). The effect of PM2.5 moving average concentration on male mortality
was more obvious.

After controlling CO, the results showed that PM2.5 concentration of lag0–lag2 on the male
mortality had significant effects, of which lag2 was the most significant. For every 10 µg/m3 PM2.5

concentration of lag2 rose, the ER of male residents’ mortality was 1.09% (95% CI: 0.23–1.97%). PM2.5

moving average concentration (lag01–lag04) on the male mortality had significant effects, of which
lag02 was the most significant. For every 10 µg/m3 PM2.5 concentration of lag02 rose, the ER of male
residents’ mortality was 1.40% (95% CI: 0.34–2.48%).

After controlling O3, the results showed that PM2.5 concentration of lag2, lag3 and lag5 on the
male mortality had significant effects, of which lag2 was the most significant. For every 10 µg/m3

PM2.5 concentration of lag2 rose, the ER of male residents’ mortality was 1.09% (95% CI: 0.19–1.99%).
PM2.5 moving average concentration (lag02–lag04) on the male mortality had significant effects, of
which lag04 was the most significant. For every 10 µg/m3 PM2.5 concentration of lag04 rose, the ER of
male residents’ mortality was 1.45% (95% CI: 0.19–2.72%).

3.5.8. Effects of PM2.5 Concentration on Female Mortality

Without controlling other pollutants, PM2.5 concentration of lag5 on the female mortality had
significant effects. For every 10 µg/m3 PM2.5 concentration of lag5 rose, the ER of female residents’
mortality was 0.94% (95%CI: −0.05–1.93%).

After controlling CO, the results showed that PM2.5 concentration of lag1, lag3–lag5 on the female
mortality had significant effects, of which lag5 was the most significant. For every 10 µg/m3 PM2.5

concentration of lag5 rose, the ER of female residents’ mortality was 1.62% (95% CI: 0.52–2.73%). PM2.5

moving average concentration (lag03–lag04) on the female mortality had significant effects, of which
lag04 was the most significant. For every 10 µg/m3 PM2.5 concentration of lag04 rose, the ER of female
residents’ mortality was 1.47% (95% CI: 0.01–2.96%).
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After controlling O3, the results showed that PM2.5 concentration of lag5 on the female mortality
had significant effects. For every 10 µg/m3 PM2.5 concentration of lag5 rose, the ER of female residents’
mortality was 1.39% (95% CI: 0.26–2.53%).

3.5.9. Effects of PM2.5 Concentration on Elderly Mortality

Without controlling other pollutants, PM2.5 concentration of lag1–lag5 on the elder mortality had
significant effects, of which lag5 was the most significant. For every 10 µg/m3 PM2.5 concentration of
lag5 rose, the ER of elder residents’ mortality was 1.32% (95% CI: 0.46–2.19%). PM2.5 moving average
concentration (lag01–lag04) on the elder mortality had significant effects, of which lag04 was the most
significant. For every 10 µg/m3 PM2.5 concentration of lag04 rose, the ER of elder residents’ mortality
was 1.57% (95% CI: 0.38–2.78%).

After controlling CO, the results showed that PM2.5 concentration of lag0–lag5 on the elder
mortality had significant effects, of which lag5 was the most significant. For every 10 µg/m3 PM2.5

concentration of lag5 rose, the ER of elder residents’ mortality was 1.32% (95% CI: 0.37–2.28%). PM2.5

moving average concentration (lag01–lag04) on the elder mortality had significant effects, of which
lag04 was the most significant. For every 10 µg/m3 PM2.5 concentration of lag04 rose, the ER of elder
residents’ mortality was 1.82% (95% CI: 0.55–3.11%).

After controlling O3, the results showed that PM2.5 concentration of lag1, lag2, lag4 and lag5 on
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Figure 4. Association between the strongest effect among each single-day lag (lag0–lag5) of residents’
mortality and PM2.5 concentration (µg/m3) considered in the generalized additive model. The solid
line stands for fitting curve and intermittent lines stand for their 95% CI. RR is relative risk; Non-ACCI
= non-accidental mortality; ACCI = accidental mortality; RES = total respiratory disease mortality;
CLRD = chronic lower respiratory disease; COPD = chronic obstructive pulmonary disease; Elder =
age is greater than or equal to 65 years old; Younger = age is less than 65 years old.

According to the diagrams, based on the control of long-term and season trend of residents’
mortality, effect of DOW, public holiday, daily average temperature and daily average RH, the relative
risk (RR) of all-cause mortality, non-accidental mortality, accidental mortality, total respiratory disease
mortality, CLRD mortality, COPD mortality, male mortality, female mortality and elder mortality
increased along with the increase in PM2.5 24-h average concentration except for younger mortality.
The concentration-response curve for PM2.5 (lag0) and younger mortality was slightly non-linear
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with a sharp slope upward at less than 40 µg/m3, a leveling at 40–70 µg/m3 and a moderate slope
downward with much wider confidence intervals at greater than 70 µg/m3.

4. Discussion

This study aimed to explore the association between PM2.5 and mortality in a place in China with
less air pollution and a developed economy. It showed that PM2.5 exposure was significantly associated
with residents’ mortality. The association for mortality from respiratory causes (particularly from CLRD
and COPD) was robust and appeared to be stronger than for either all-cause mortality or non-accidental
causes. Association for accidental causes of mortality was greater than for non-accidental causes. CLRD
or COPD causes of mortality were greater than for total respiratory causes. There also being lag effects.
However, there is no significant association between PM2.5 exposure and younger mortality. Results of
this study were consistent with the previous literature on the relationship between air pollution and
mortality [1,47,48].

According to the global data meta-analysis for all-cause mortality, a 10 µg/m3 increment in PM2.5

was associated with a 1.04% (95% CI: 0.52–1.56%) increase in the risk. The risk of all-cause mortality in
North America, other parts of the Americas, Europe and the Western Pacific region increased 0.94%
(95% CI: 0.73–1.16%), 2.08% (95% CI: 1.60–2.56%), 1.23% (95% CI: 0.45–2.01%) and 0.25% (95% CI:
0.06–0.44%), respectively [49]. Our results were slightly below the global level, but were beyond
that of Western Pacific region. Noteworthy was that our estimate was similar to a pooled estimate
(0.94%) in North America. Dai et al. reported that a 10 µg/m3 increment in the PM2.5 2 days moving
average concentration was associated with a 1.18% (95% CI: 0.93–1.44%) increase in the risk of all-cause
mortality, which was similar to our results (0.93%) [1]. Kan et al. reported that in Shanghai the strongest
effect was 0.36% (95% CI: 0.11–0.61%) [17]. This was lower than our results (lag02, 0.93%). Venners et
al. reported that no significant associations were found between PM2.5 and any cause of mortality [19].

Our study showed that PM2.5 exposure was significantly associated with non-accidental mortality.
This was the same with the study of NIH-AARP diet and health cohort by Thurston et al. (HR = 1.03;
95% CI: 1.00–1.05), survivors of myocardial infarction cohort study by Tu et al. (HR = 1.22; 95% CI:
1.03–1.45), a Canadian national-level cohort study by Crouse et al. (HR = 1.15; 95% CI: 1.13–1.16), in
the 2001 Canadian Census Health and Environment Cohort study by Pinault et al. ( HR = 1.18; 95%
CI: 1.15–1.21) and the Canadian community health survey cohort study by Pinault et al. (HR = 1.26;
95% CI: 1.19–1.34) [48,50–53]. For a 10 µg/m3 increase of PM2.5 concentrations, we estimated a 0.67%
increase for non-accidental mortality, which was higher than a recent multicity study (0.22%) [11].
Our findings confirm the discovery that the associations were stronger in cities with lower PM2.5 levels
or higher temperatures [11,54]. Our result was lower than study by Lee et al. which showed that each
10 µg/m3 increase in PM2.5 (mean lag0 and lag1) was associated with a 1.56% (1.19, 1.94) increase in
daily non-accidental mortality, but was higher than study by Baxter et al. [55,56]. Weichenthal et al.
reported that PM2.5 was not associated with non-accidental mortality based on the Agricultural Health
study cohort [57].

We also observed stronger associations between PM2.5 exposure and mortality from accidental
causes. The ER of accidental mortality was 1.81% (95% CI: 0.22–3.42%) while PM2.5 concentration of
lag2 rose by every 10 µg/m3. PM2.5 moving average concentration (lag01–lag04) on the accidental
mortality had also significant effects. It suggested that serious air pollution could increase the risk of
accidents and aggravate the depressive symptoms of people. In the future, perhaps more attention
should be paid to this aspect.

At the global level, a 10 µg/m3 increment in PM2.5 was associated with a 1.51% (95% CI:
1.01–2.01%) increase in the risk of total respiratory disease mortality. The risk of total respiratory
disease mortality in North America, other parts of the Americas, Europe and the Western Pacific
region respectively increased 1.39% (95% CI: 0.62–2.16%), 0.88% (95% CI: −1.88–3.71%), 3.81% (95%
CI: 0.57–7.16%) and 1.49% (95% CI: 0.04–2.96%) [49]. Our results were slightly below the results of
Europe, but exceeded those of North America, other parts of the Americas and the Western Pacific
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region. For a 10 µg/m3 increase of PM2.5 concentrations, we estimated a 3.04% increase for respiratory
mortality, which was higher than a multicity study (0.29%) [11]. For every 10µg/m3 increase in 2-day
averaged PM2.5 concentration, Dai, et al. reported a 1.71% (95% CI: 1.06–2.35%) increase in respiratory
death, and Kan, et al. reported a 0.95% (95% CI: 0.16–1.73%) increase of respiratory mortality [1,17].
Our result (3.04%) was beyond the study of the two results. Pinault et al. reported that each 10 µg/m3

increase in exposure was associated with increased risks of respiratory disease mortality (HR = 1.52;
95 % CI: 1.26–1.84) [53]. PM2.5 exposure was not statistically significant associated with respiratory
mortality (HR = 1.05; 95% CI: 0.98–1.13) reported by Thurston et al. (2016) [48].

Our study showed that PM2.5 concentration had a significant positive correlation with CLRD
mortality. The strongest ER per 10 µg/m3 increase in PM2.5 were 6.38% (95% CI: 2.78–10.11%) for
CLRD. Hao et al. reported that the association between ambient PM2.5 and CLRD mortality was
positive but statistically insignificant (RR: 1.07, 95% CI: 0.99–1.14) [58].

For a 10 µg/m3 increase of PM2.5 concentrations, the strongest effect we estimated an 8.24%
increase for COPD mortality, which was higher than a multicity study (0.38%) [11]. We observed
higher ERs for COPD mortality compared to ER for non-accidental causes of death. The results were
the same with the study by Pinault et al. [52]. Li et al. reported that the association between PM2.5

concentration and death from COPD was 2.5% (95% CI: 1.5–3.5%) [59]. The results of Li et al. were
lower than in our study. Pinault et al. reported that each 10 µg/m3 increase in exposure was associated
with increased risks of COPD mortality (HR = 1.40; 95 % CI: 1.09–1.80) [53]. Research demonstrated
that a higher risk of acute exacerbation of COPD was associated with present-day PM2.5 exposure [60].
Atkinson et al. reported that association between PM2.5 and death from COPD was not statistically
significant, which was different from our result [49].

Our findings showed that PM2.5 was positively associated with male mortality. The result was
same with the study by Thurston et al. (HR = 1.03; 95% CI: 1.00–1.06) [48]. Pinault et al. reported an
analysis that each 10 µg/m3 increase in exposure was associated with increased risks of male mortality
(HR = 1.34; 95 % CI: 1.24–1.46) [53].

Our findings showed that PM2.5 exposure was not significantly associated with increased risk of
female mortality, but it is noteworthy that after controlling CO or O3, there was a significant correlation
between PM2.5 and female mortality. The results were same as the study by Thurston et al. (HR = 1.02;
95% CI: 0.98–1.06) [48]. Another study by Villeneuve et al. showed that PM2.5 exposure was significantly
associated with female mortality [61]. Pinault et al. reported that each 10 µg/m3 increase in exposure
was associated with increased risks of female mortality (HR = 1.18; 95 % CI: 1.09–1.28) [53].

Our findings showed that PM2.5 was significantly associated with elderly mortality, which were
similar to an estimate (1.05%) of the study by Alessandrini et al. [62]. Shi et al. reported that PM2.5 was
associated with increased mortality. 2.14% (95% CI: 1.38–2.89%) increases was estimated for 10 µg/m3

increase in lag01 exposure among elder people in the New England area [2]. In our study, lag04 was
the most significant. For every 10 µg/m3 PM2.5 concentration of lag04 rose, the ER of elder mortality
was 1.57% (95% CI: 0.38–2.78%). the results of Shi et al. were higher than ours. A study of the Hong
Kong elderly population by Qiu et al. showeda statistically significant association of PM2.5 exposure
over 0–6 day lags with all natural mortality and the overall cumulative effect of PM2.5 over 0–30 lag
days was 3.44% (95% CI: 0.30–6.67%) increase in all natural mortality [63]. PM2.5 exposure was also
significantly associated with elderly mortality (HR = 1.03; 95% CI: 1.00–1.06 and HR = 1.14; 95% CI:
1.07–1.22) in the reports by Thurston et al. and by Wong et al. [48,64]. Research demonstrated that a
higher risk of acute exacerbation of COPD associated with present-day PM2.5 exposure, especially in
the elderly [60].

Our study found that PM2.5 exposure was not statistically significantly associated with younger
mortality, which was the same as the study by Thurston et al. (HR = 1.00; 95% CI: 0.95–1.05) [48].
There was very little research on the association between PM2.5 and young people [49].

As shown by the time series figures, the variation tendency of daily residents’ mortality and the
daily average PM2.5 concentration were basically matched. According to the concentration-response



Int. J. Environ. Res. Public Health 2019, 16, 401 22 of 26

relationship figures, RR of residents’ all-cause mortality, non-accidental, accidental, total respiratory
disease, CLRD, COPD, male, female and elder mortality increased along with the increase in PM2.5 24-h
average concentration, except for female. Both the time series chart and the concentration-response
relationship figures indicated that PM2.5 could affect the death of the residents.

During 2013–2015 in Shenzhen, the mean age at death was 58 years old, but the respiratory-caused
death was 71 years old, which was younger than China’s average life expectancy (74.83 years old) [9].
One of the possible reasons might be that although having a high-standard living and belonged to the
economically developed areas, Shenzhen is a city of immigrants, which has a lot of people coming
from all over the country to earn a living. These immigrants were basically young people, so the
average age of Shenzhen residents is much younger than many other areas of China [41]. In Shenzhen,
the mortality rate was 1.28 per thousand while the national mortality rate was 7.11 per thousand in
2015 [21,22].

From different places in the world, the reported results were not exactly the same. On one hand,
it might be relevant to the factors of regions, air-pollution levels, main sources of pollutants and
PM2.5 components. On the other hand, different adjustments of confounding factors and different
measurement methods of exposure in the course of study could also affect the results. Evidence
for small study bias in single-city mortality studies was found [49]. Multi-city population-based
epidemiological studies of short-term PM2.5 exposures and mortality have observed heterogeneity
in risk estimates between cities [65]. They found that cities with larger homes, more heating degree
days, a higher percentage of home heating with oil had significantly higher health effect estimates,
while cities with more gas heating had significantly lower health effect estimates. According to Fang et
al., weather conditions could affect health effect estimates [66]. Also, Vodonos et al. found that PM2.5

mean exposures of less than 10 µg/m3 were associated with higher mortality effect estimates [54].
Atkinson et al. thought that reasons for heterogeneity in effect estimates in different regions of the
world require further investigation [49].

Data on residents’ mortality was collected from Shenzhen CDC, Shenzhen Public Security Bureau
and Shenzhen Funeral Home in this study, which has the authority to represent the death of local
residents. Steady results of this study were based on the data analysis of 2013–2015 for three consecutive
years. Several factors that could affect residents’ mortality, like DOW, PH, seasonal trend, long-term
trend, daily average humidity and temperature, were controlled in model in this study. In conclusion,
this study objectively analyzed the relationship between PM2.5 concentration and mortality.

This study, however, also has some limitations. The locally-specific factors that could have effects
on correlations between pollutant exposure and mortality refer to PM chemical composition, smoking
status, socioeconomic factors, existing emission sources, etc. are not contained in this study, thus needs
further researches.

5. Conclusions

According to the results of this study, although Shenzhen PM2.5 annual average concentration
was 35 µg/m3, corresponding to a slight pollution level in China, PM2.5 still increased the number
of all-cause mortality, non-accidental, accidental, total respiratory disease, CLRD, COPD, male and
elderly mortality of residents. Therefore, it is recommended that residents were still need to use
personal protection in polluted weather, especially those with respiratory diseases, such as CLRD and
COPD. The government still needs to strengthen the governance of air pollution despite being a place
with less air pollution in China.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/16/3/401/s1,
Figure S1: RR and 95% CI of mortality per 10 µg/m3 increase in PM2.5 concentration with different lags0–5 days
prior to mortality and moving averages from day 0 to day prior to mortality lag0–lag5, lag01–lag04. CLRD =
chronic lower respiratory disease; COPD = chronic obstructive pulmonary disease; Elderly = greater than or equal
to 65 years old; Younger = less than 65 years old.
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