Supplementary Material

Table S1: Percentage of variation in MVPA at age 9: full data Table S2: Percentage of variation in MVPA at age 11: full data Table S3: Fixed effect estimates from Model 3: age 9 Table S4: Fixed effect estimates from Model 3: age 11

File S1:

Model Specification MCMC Technical Details References

	Model 1	Model 2	
	All	Boys	Girls
Weekday			
Total variation	510.5	561.2	433.3
Residual variation			
Neighbourhood	0%	7%	3%
School	12%	14%	11%
Triads ¹	1%	8%	5%
Dyads ¹	4%	13%	6%
Individual	83%	58%	75%
DIC^2	9654.7		9529.1
Weekend			
Total variation	1032.2	1340.0	790.8
Residual variation			
Neighbourhood	2%	8%	2%
School	3%	14%	3%
Triads ¹	1%	5%	1%
Dyads ¹	0%	24%	0%
Individual	94%	50%	94%
DIC^2	9368.9		9205.8

Table S1: Percentage of variation in MVPA at age 9: Full data

 1 For friendship levels, we report the average contribution to the total variance 2 lower DIC indicates better model fit

	Model 1	Model 2	
	All	Boys	Girls
Weekday			
Total variation	546.9	614.0	421.6
Residual variation			
Neighbourhood	0%	7%	3%
School	14%	18%	16%
Triads ¹	12%	13%	8%
Dyads ¹	14%	17%	7%
Individual	60%	45%	66%
DIC ²	10036.5		9888.1
Weekend			
Total variation	994.1	1232.0	776.7
Residual variation			
Neighbourhood	1%	20%	3%
School	10%	10%	9%
Triads ¹	14%	17%	10%
Dyads ¹	1%	7%	4%
Individual	74%	47%	74%
DIC ²	9374.3		9244.4

Table S2: Percentage of variation in MVPA at age 11: Full data

¹ For friendship levels, we report the average contribution to the total variance ² lower DIC indicates better model fit

		Weekday		Weekend	
		Coef	95% CI	Coef	95% CI
Intercept		66.4	(25.9, 106.9)	71.5	(10.7, 132.2)
Child characteristics					
Female		-14.2	(-17.7, -10.7)	-14.6	(-21.4, -7.9)
Age		1.1	(-2.7, 5.0)	-1.1	(-6.7, 4.6)
BMI z-score		-2.3	(-3.7, -0.9)	-1.2	(-3.4, 1.1)
school sport club	0	0		0	
(days/week)	1-2	2.0	(-1.5, 5.5)	0.4	(-5.1, 5.9)
-	>2	5.4	(1.4, 9.5)	-0.8	(-7.3, 5.6)
Non -school sport	0	0		0	
club (days/week)	1-2	-3.7	(-7.6, 0.2)	2.5	(-3.7, 8.7)
-	>2	0.4	(-4.0, 4.8)	7.2	(0.4, 14.1)
Playing out	0	0		0	
(days/week)	1-2	-0.5	(-6.3, 5.2)	6.6	(-2.3, 15.6)
	>2	4.4	(-1.2, 9.9)	12.4	(3.7, 21.1)
Parent characteristic	S				
University Degree or higher		-1.5	(-4.5, 1.5)	-0.9	(-5.5, 3.8)
Female		-2.0	(-5.2, 1.3)	0.9	(-4.2, 6.0)
Age		-0.3	(-0.5, -0.05)	-0.6	(-1.0, -0.2)
BMI		0.01	(-0.3, 0.3)	0.00	(-0.5, 0.5)
MVPA (mins)		0.1	(0.1, 0.2)	0.2	(0.1, 0.3)
Logistical support		3.6	(0.7, 6.5)	2.2	(-2.4, 6.8)
Parental modelling		-1.8	(-4.3, 0.7)	1.9	(2.0, 5.9)
Use of community 1	resources	-0.5	(-3.2, 2.2)	0.2	(-4.1, 4.4)
School characteristics	5				
School size (per 100 pupils)		-1.4	(-3.0, 0.1)	-1.3	(-3.3, 0.8)
Neighbourhood characteristics					
IMD score		0.00	(-0.1, 0.2)	-0.01	(-0.2, 0.2)
Population density ($(1000/km^3)$	0.2	(-0.4, 0.8)	0.13	(-0.8, 1.0)

Table S3: Fixed effect estimates from Model 3: Age 9

		Weekday		Weekend	
		Coef	95% CI	Coef	95% CI
Intercept		60.1	(9.5, 111.0)	64.3	(-14.1, 143.3)
Child characteristics					
Female		-14.3	(-17.9, -10.8)	-14.5	(-20.2, -8.9)
Age		-1.1	(-5.3, 3.0)	-3.3	(-9.7, 3.1)
BMI z-score		-2.8	(-4.1, -1.6)	-1.8	(-4.0, 0.3)
No. days with active travel		0.9	(0.2, 1.6)	0.6	(-0.6, 1.7)
school sport club	0	0		0	
(days/week)	1-2	0.4	(-2.9, 3.7)	3.1	(-2.4, 8.6)
-	>2	2.6	(-1.4, 6.6)	8.0	(1.6, 14.5)
Non -school sport	0	0		0	
club (days/week)	1-2	4.7	(0.8, 8.7)	3.1	(-3.3, 9.6)
	>2	7.5	(3.0,11.9)	6.9	(-0.5, 14.3)
Playing out	0	0		0	
(days/week)	1-2	-1.6	(-7.2, 4.0)	-5.9	(-14.8, 3.0)
	>2	-0.1	(-5.6, 5.4)	-2.6	(-11.4., 6.2)
Parent characteristics					
University Degree of	or higher	-0.7	(-3.6, 2.3)	-4.0	(-8.9, 0.9)
Female		4.9	(1.7, 8.0)	4.0	(-1.2, 9.1)
Age		0.3	(-0.01, 0.5)	0.3	(-0.1, 0.8)
BMI		-0.1	(-0.5, 0.2)	-0.3	(-0.9, 0.2)
MVPA (mins)		0.05	(0.00, 0.1)	0.2	(0.1, 0.3)
Logistical support		0.8	(-2.1, 3.7)	3.9	(-0.9, 8.7)
Parental modelling		0.6	(-1.8, 3.0)	0.4	(-3.5, 4.2)
Use of community r	resources	-3.1	(-5.8, -0.5)	-0.7	(-5.1, 3.7)
School characteristics			(-1.4, 1.6)		
School size (per 100 pupils)		0.1		-1.5	(-3.6, 0.6)
Neighbourhood characteristics					
IMD score		-0.1	(-0.2, 0.1)	-0.1	(-0.3, 0.1)
Population density (1000/km ³)		-0.1	(-0.7, 0.5)	0.7	(-0.3,1.6)

Table S4: Fixed effect estimates from Model 3: Age 11

Supplementary Files:

File S1: Model Details

Model Specification

The model is a multiple-membership multiple-classification model (MMMC) for social network dependencies [1, 2] with children (level 1) belong to multiple clique-2 friendship groups (level 2, multiple-membership) nested within clique-3 (level 3), nested within schools (level 4) and neighbourhoods (level 5, cross-classified). We fit three models, whose specification is given in detail below. We use classification notation [1], which provides a simpler notation than multiple subscript notation and remains readable for more complex non-hierarchical multilevel models.

General Model

Let y_i be the MVPA for individual i = 1, ..., n. The multilevel model consists of fixed and random terms as follows:

$$y_i = \text{fixed}_i + \text{random}_i$$

Model 1: Variance components

This model describes the percentage of total variation in MVPA at the neighbourhood, school and friendship levels. The fixed effect consists of β_0 , an intercept term, and random effects are at the clique-2, clique-3, school and neighbourhood levels. The clique-3 and clique-2 levels are multiple-membership, with clieu-2 nested within clique-3, and schools and cliques are cross-classified with neighbourhood.

$$fixed_{i} = \beta_{0}$$

random_{i} = $u_{nhood(i)}^{(5)} + u_{school(i)}^{(4)} + \sum_{j \in clique-3(i)} w_{i,j}^{(3)} u_{j}^{(3)} + \sum_{j \in clique-2(i)} w_{i,j}^{(2)} u_{j}^{(2)} + \epsilon_{i}$

where clique-2(*i*) \subset (1, ..., J_2), clique-3(*i*) \subset (1, ..., J_3) and

$$\begin{aligned} \epsilon_i &\sim N(0, \sigma_{\epsilon}^2) & u_j^{(2)} \sim N(0, \sigma_{u^{(2)}}^2) & u_j^{(3)} \sim N(0, \sigma_{u^{(3)}}^2) \\ u_j^{(4)} &\sim N(0, \sigma_{u^{(4)}}^2) & u_j^{(5)} \sim N(0, \sigma_{u^{(5)}}^2) \end{aligned}$$

Here, clique-3(*i*) is the set of triads of which *i* is a member, J_3 is the total number of triads, the term $\sum_{j \in \text{clique-3}(i)} w_{i,j}^{(3)} u_j^{(3)}$ is a weighted sum of clique-3 effects with weights $w_{i,j}^{(3)}$ for individual *i* in the jth clique, and random effects $u_j^{(3)}$, and the weights sum to 1 for each individual. The set clique-2(*i*) and terms $\sum_{j \in \text{clique-2}(i)} w_{i,j}^{(2)} u_j^{(2)}$ are defined similarly for clique-2. Finally, school(*i*) and nhood(*i*) are the school and neighbourhood respectively to which child *i* belongs.

Model 2 - Gender random slopes model

This model describes the percentage of total variation in MVPA at the neighbourhood, school and friendship levels separately for boys and girls by adding gender as a fixed effect and as a random coefficient at the neighbourhood, school and clique levels.

$$\begin{aligned} \text{fixed}_{i} &= \beta_{0} + \beta_{1} \operatorname{girl}_{i} \\ \text{random}_{i} &= u_{0,\text{nhood}(i)}^{(5)} + u_{1,\text{nhood}(i)}^{(5)} \operatorname{girl}_{i} + u_{0,\text{school}(i)}^{(4)} + u_{1,\text{school}(i)}^{(4)} \operatorname{girl}_{i} + \\ &\sum_{j \in \text{clique-3}(i)} w_{i,j}^{(3)} \left(u_{0j}^{(3)} + u_{1j}^{(3)} \operatorname{girl}_{i} \right) + \sum_{j \in \text{clique-2}(i)} w_{i,j}^{(2)} \left(u_{0j}^{(2)} + u_{1j}^{(2)} \operatorname{girl}_{i} \right) + \epsilon_{i} \end{aligned}$$

with

$$\begin{pmatrix} u_{0j}^{(k)} \\ u_{1j}^{(k)} \end{pmatrix} \sim N \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{u0(k)}^2 & \sigma_{u01(k)} \\ \sigma_{u01(k)} & \sigma_{u1(k)}^2 \end{pmatrix} \right)$$
$$\epsilon_i \sim N(0, \sigma_{\epsilon}^2)$$

for k = 2, ..., 5, corresponding to the clique-2, clique-3, school and neighbourhood levels.

Model 3 – full model

The full model includes child, parent, school and neighbourhood characteristics as fixed effects:

fixed_i =
$$\beta_0 + \beta_1 \operatorname{girl}_i + \sum_{l=1}^{L} \gamma_l x_{il}$$

where x_{il} , l = 1, ..., L are the *L* variables representing the child, parent, school and neighbourhood characteristics, and γ_l are the corresponding coefficients.

The random term is the same as for model 2 above.

MCMC Technical Details

Prior Distributions

We used the MLwiN default non-informative prior distributions for all parameters which express a lack of prior knowledge about the parameters before data collection. These are improper uniform priors ($p(\beta) \propto 1$) for the fixed effects, and weakly informative inverse-Wishart distributions for the variance parameters. Further details can be found in Browne 2016, Chapter 1 [3].

MCMC Estimation

While the chain of sampled parameter values will eventually converge to the required distribution, it may take an initial period (the 'burn-in') to converge, and these values are discarded. Additionally, the sampled values are correlated and if this correlation is high, the chain is said to be slow-mixing and more iterations are required to sample adequately from the full distribution. We assessed convergence of the algorithm via trace plots and by exploring different starting values, and used a burn-in of 20,000 samples for all models. Our models exhibited slow-mixing due to small variance parameters at some levels, and so we based estimation on 1,000,000 iterations to ensure adequate mixing and used hierarchical centring at the highest level, a reparameterisation that can improve mixing of MCMC algorithms [3, 4].

References

- Browne WJ, Goldstein H, Rasbash J: Multiple membership multiple classification (MMMC) models. Statistical Modelling 2001, 1:103-124.
- 2. Tranmer M, Steel D, Browne WJ: Multiple-membership multiple-classification models for social network and group dependences. *J R Statist Soc A* 2014, **177**:439-455.
- 3. Browne WJ: **MCMC estimation in MLwiN v2.36**: Centre for Multilevel Modelling, Univesity of Bristol; 2016.
- 4. Gelfand AE, Sahu SK, Carlin BP: Efficient parametrisations for normal linear mixed models. Biometrika 1995, 82(3):479-488.