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Abstract: The potential effect of a typhoon track on the extent of damage makes the track a critical factor
during the emergency response phase. Historical typhoon data may provide information for decision
makers to anticipate the impact of an upcoming typhoon and develop prevention strategies to reduce
the damage. In our preliminary work, we proposed a track similarity algorithm and implemented a
real-time search engine for past typhoon events. However, the proposed algorithm was not discussed
thoroughly in the preliminary work, and the great number of historical typhoon track records slowed
down the similarity calculations. In addition, the tool did not feature the option of automatically
importing upcoming typhoon track predictions. This research introduces the assumption of the
recentness dominance principle (RDP), explores the details of the track similarity algorithm of the
preliminary work, completes the discussion of parameter setting, and developed a method to improve
the efficiency of the similarity calculation. In this research, we implemented the proposed advanced
methodology by developing a new information display panel featuring the ability to auto-import
forecast data. The results of this study provide decision makers and the public with a concise and
handy search engine for searching similar historical typhoon records.

Keywords: decision support; typhoon track similarity; search engine; user interface design

1. Introduction

The interaction of a typhoon and the land affects the winds and precipitation of different areas,
causing different amounts of damage. The potential effect of a typhoon track on the extent of damage
makes the track a critical factor during the emergency response phase. Historical typhoon data,
covering tracks, speeds, and precipitation distributions, may provide information for decision makers
to anticipate the impact of an upcoming typhoon and develop prevention strategies to reduce the
damage caused by the typhoon. By categorizing historical typhoon tracks, the interactions of the
typhoons with the landforms and the patterns of damage can be analyzed. The Central Weather Bureau
(CWB) of Taiwan has analyzed historical records and determined nine categories of tracks of typhoons
that have hit Taiwan, covering approximately 96% of historical typhoons that affected Taiwan between
1911 and 2018 [1]. Moreover, the CWB has linked the behavior of wind and precipitation of typhoons
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with different tracks to different regions in Taiwan [2,3]. The patterns found may help decision makers
predict the damage that will be induced by upcoming typhoons.

In our preliminary work, we proposed a track similarity algorithm and implemented a real-time
search engine for past typhoon events. A cross-platform user interface was designed and validated
by a usability test, and a three-year field test was coordinated with the government of Taiwan.
The search engine helped the relevant personnel to intuitively search and review the historical typhoon
information and efficiently develop corresponding response strategies. However, the proposed
algorithm was not discussed, leaving the choice of parameter settings baseless. In addition, the large
number of historical typhoon track records resulted in long calculation times for the track similarity
algorithm. Further, the implemented tool did not have a feature for automatically importing the data
of upcoming typhoon track predictions, forcing users to input the track manually, and reducing the
convenience of the tool.

This research aimed to explore the details of the track similarity algorithm of our preliminary
work, complete the discussion on parameter setting, and develop a method to improve the efficiency
of the track similarity calculation. Additionally, a new information display panel was developed
featuring auto-importing forecast data. A literature review of typhoon track categories and databases
is presented in Section 2, including a discussion of our preliminary work. The details of the algorithm
are discussed in Section 3. The implementation of the new panel and the method used to increase the
efficiency of the algorithm are described in Section 4. The parameter setting is discussed in Section 5.

2. Literature Review

Reviewing past typhoon records is now one of the main approaches for typhoon status
prediction [4]. Wu and Kuo [5] stated that the interaction of the typhoon circulation and the complicated
topography related to the Central Mountain Range in Taiwan produces significant mesoscale variations
in pressure, wind, and precipitation distributions in Taiwan. Huang et al. [6] investigated the link
between typhoon tracks, precipitation patterns, and flood peak time, finding that different typhoon
tracks appear to have preferable precipitation types. For the emergency response phase of typhoon
events in Taiwan, decision makers and responders seek the status of the disaster, the response strategies,
and other relevant data of similar past typhoons.

Studies on typhoons have focused more on the accuracy of forecast models in regard to different
aspects. Classical methods of predicting a typhoon’s behavior are climatological or dynamic with
different considerations. For example, Lee et al. [7] developed a climatology model for predicting
typhoon precipitation, which provides hourly rainfall at any station or any river basin for a given
typhoon center. Recently, some studies have attempted to adapt data-driven methods to forecast
typhoons. For example, Rüttgers et al. [8] adapted a generative adversarial network (GAN) with
satellite images as inputs for typhoon track predictions, reducing the errors between predicted and real
typhoon centers measured quantitatively to kilometers. Precise forecasts may support decision-making.
However, the connections between the anticipated damage from upcoming typhoons and forecasts
are often implicit. Forecasts may provide the predicted amount of precipitation and the intensity of
the wind, but deducing predicted damage from the prediction of precipitation and wind requires the
decision makers’ knowledge of the regional capacity. In addition, the computation time for forecasting
may hinder immediate reactions to emergencies. Thus, the use of past typhoon records for developing
quicker response strategies may be useful for decision makers.

Currently, several typhoon databases have been developed, providing comprehensive information
about past typhoon records. For tropical cyclones (TCs) in the western North Pacific (WNP), CWB
developed the Taiwan Typhoon Database, containing observational data of past typhoon events during
1958–2019 [9]. In addition, the National Institute of Informatics (NII) of Japan manages the Digital
Typhoon Database, which has archives of the data on past typhoons in the WNP during 1951–2018
and the western South Pacific during 1907–2018 [10]. The databases provide several search methods,
including by time, pressure, wind, location, rainfall, intensity, etc. However, such databases do not
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provide the ability to search by typhoon track. Tsai et al. [4] remarked that efficient search methods
should allow users to search past typhoon records by comparing the tracks between upcoming and
past typhoons. The track of a typhoon is a critical factor since it may affect the extent of the damage.

Alternatively, some studies have categorized typhoons by clustering tracks. Camargo et al. [11]
applied probabilistic clustering analysis to categorize TCs in the WNP during 1950–2002 into seven
distinct types. Chu et al. [12] proposed a track-pattern-oriented categorization approach to forecasting
TC frequency in the WNP, clustering the historical TC tracks into seven distinct types. Kim et al. [13]
applied a fuzzy c-means method to cluster TC tracks and obtained seven clusters using TC records
in the WNP during 1965–2006. Chu et al. [14] integrated fuzzy cluster analysis and kernel density
estimation to cluster the typhoon tracks using typhoons that affected Taiwan during 1986–2010, finding
six clusters. Ho et al. [15] targeted seasonal TC track clusters covering the entire WNP and found
seven clusters. Kim et al. [16] developed a statistical–dynamical model for TC intensity prediction
using a track-pattern clustering (TPC) method and ocean-coupled potential predictors, finding five
clusters using TC tracks during 2004–2012 in the WNP. The CWB categorized the typhoon tracks
into nine specific categories and one special category using typhoon data from the past 100 years [1].
Such approaches to categorizing typhoon tracks provide the possibility of accessing the databases
by track categories. For example, the Taiwan Typhoon Database has a search features that allows
searching by the ten categories of typhoon tracks proposed by the CWB. However, even though many
studies have been conducted to cluster typhoon tracks, a users’ determination of which category a
forecast track should belong to is still required. The lack of integration with forecast data and historical
typhoon databases makes the task of track matching less intuitive for users.

T-search, a real-time historical typhoon search engine, was developed by the authors to assist the
disaster management staff in predicting upcoming damage and developing strategies for emergency
response [4]. The sorting mechanism is based on a track similarity algorithm also developed in the
preliminary work. An intuitive user interface was designed for the search engine to increase the
efficiency of reviewing the historical typhoon records. The capability of T-search for aiding the staff
in accomplishing their tasks was validated by a usability test involving nine subjects. Moreover,
a three-year field test was conducted in cooperation with the government of Taiwan for a real
case study, demonstrating three major advantages of T-search for the typhoon emergency response
activities: the enhanced accessibility to typhoon records, the improved efficiency of utilizing historical
information, and the opportunity for decision makers to develop multiple strategies. However,
the role of each parameter of the algorithm was not discussed throughout, leaving the choice of
parameter setting baseless. Additionally, there are approximately 1700 typhoon records whose tracks
are composed of 65,000 coordinates on average, slowing down the similarity calculation. In addition,
the tool did not have a feature for automatically importing the data of upcoming typhoon track
predictions, forcing users to input the track manually, thus lowering the convenience of using the tool.

3. Methodology

This research extracted the core of the model in the preliminary work with the presumption of the
recentness dominance principle (RDP). The RDP states that those later user-specific track points are
more relevant than the earlier ones, and thus their relative weighting should be increased. The RDP
is constructed on the presumption that when the typhoon is in its developing stage, the typhoon’s
direction possesses high uncertainty. This research elaborates on the preliminary work and provides
the definition and interpretation of the time weighting. We discuss the core of the comparison model
by decomposing it into a static sector and a dynamic sector, propose a strategy to enhance the efficiency
of the computation, and set an order to ensure the discrimination of similarity.

3.1. The Core of the Comparison Model

The model retrieves the most similar historical typhoon tracks for the user-specific track of the
forecasted typhoon through track comparison and matching. For each past typhoon, the model
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calculates the similarity based on points of tracks, valid regions given by the user, time, etc., for the
user-specific track points and quantifies scores for comparison. The similarity of the forecasted typhoon
and each historical typhoon is calculated with Equations (1) and (2):

similarity(i) =
M

∑
k=1

(1 + kw)× δk

=
M

∑
k=1

δk + w
M

∑
k=1

(k× δk)

(1)

δk =

{
1, djk < Rk

0, otherwise.
(2)

M is the number of the user-specific track points. k is the index of the user-specific track points starting
from one; for example, the initial point is given as one, while the second point is given as two, and so on.
i is the index of the historical typhoons. j is the index of the closest track point of the historical typhoon
i to the user-specific track point k. w is the time weighting of all the user-specific points, which is
critical in determining the comparison result and changes depending on the value of M. Further
details on k and w are given in Section 3.2. The binary variable δk represents whether the historical
typhoon track point j falls in the given valid region of the user-specific track point k. The valid regions
corresponding to the user-specific track points are designed to restrict the distances between a forecast
track point and historical track points (denoted as djk in Equation (2)), and eliminate those whose
tracks are too far from the user-specific track points. For each historical typhoon, at least one point
should lie within the valid region set by the user-specified radius (denoted as Rk in Equation (2)),
meaning that the typhoon is close enough to the user-specific track. For the historical typhoons that do
not have any track points located in the given valid regions, the similarity scores of the typhoons are
zero since they are determined to be too far.

The model is capable of quantifying the similarity score of each historical typhoon, which yields
a ranking and eventually outputs the most similar historical typhoon(s). For example, the scores
of Typhoon Morakot (2009) and Typhoon Haitang (2005) can be simplified as 7 + 28w and 3 + 12w,
as demonstrated in Figure 1. Typhoon Morakot is much more similar to the track in question than
Typhoon Haitang, and thus Typhoon Morakot has a higher rank.

Figure 1. An example of the tracks of Typhoon Morakot (2009) and Typhoon Haitang (2005).
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However, not every situation is as simple. A second example is shown in Figure 2, with one typhoon
passing through the last three input points with the score of 3 + 12w, and the other passes through
the first three input points and the last input point with the score of 4 + 11w. In the case, we cannot
determine which typhoon ranks higher if the variable w, the time weighting, remains unknown. If the
variable w is greater than 1, the typhoon with the score of 3 + 12w obtains higher similarity; by contrast,
the typhoon with the score of 4 + 11w obtains higher similarity if the variable w is less than 1. Therefore,
it is essential to dig deeper into the above summation for a comprehensive explanation.

Figure 2. An example of two typhoon tracks for the similarity comparison demonstrating increased
complexity over the example in Figure 1.

3.2. Static Sector and Dynamic Sector

To examine the roles of k and w, we divided Equation (1) into two sectors: the static sector and
the dynamic sector. The static sector refers to the constant part (∑M

k=1 δk), and the dynamic sector refers
to the second component (w ∑M

k=1 k× δk).
The static sector is obtained from the number of eligible track points that are located in the given

valid regions. In this sector, only the valid regions of the given track points are of concern, which present
a clear view of the coarse similarity of that historical typhoon and the given track. Following the example
of Typhoon Morakot, the score of 7 + 28w of Typhoon Morakot indicates that it passes seven given track
points in total. Hence, the static sector self-explains the stationary aspect of the similarity.

The dynamic sector includes time as a factor into the model through multiplying the time series (k)
by the time weighting (w). In this approach, by adjusting the given time weighting, the model
emphasizes the importance of time by adding the dynamic sector to the similarity comparison.
Following RDP, the value of the time weighting should be changed when more track points are
specified. If the time weighting does not correlate with the number of given track points, the scores of
the historical typhoons can be distorted in some cases.

To prevent the distortion, the global recentness dominance time weighting (gRDW) and the
individual recentness dominance time weighting (iRDW) are introduced. They are obtained by the
following approach (Equations (3) and (4)):

ŵ = max{wi : i = 1..|P|} (3)

wi =
si,b − si,a

di,a − di,b
∀(si,a + di,aw, si,b + di,bw) ∈ P (4)

indeterministic score pair ≡ (sa + daw, sb + dbw)∀a, b ∈ N(sa > sb ∧ da < db ∧ a < b). (5)

For those which do not belong to the indeterministic score pairs (denoted as P in Equations (3)
and (4)), which are defined in Equation (5), any values of gRDW (denoted as ŵ in Equation (3)) greater
than zero are suitable for the comparison. By contrast, when examining the indeterministic score pairs,
gRDW should be carefully measured. For simplicity, the model equalizes the score of each score pair
to obtain iRDW (denoted as wi in Equations (3) and (4)). Afterward, in an attempt to emphasize the
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recentness, the model takes the maximum of the set of iRDW as gRDW. After determining gRDW,
there exists no indeterministic score pair that contravenes RDP, and the similarity scores can then be
calculated. In Section 5, this research relaxes the assumption of RDP and presents an insight into the
role of time weighting.

Taking five user-specific points (M = 5) for instance, all valid combinations of static and dynamic
sectors of any historical typhoon are shown in Table 1. If the time weighting (w) remains unknown,
some indeterministic scores exist, causing the comparison result to be undetermined. In this case,
there are twelve indeterministic score pairs in total, as listed in Table 2. Using Equation (4), the set of
iRDW is {1, 1

2 , 1, 1, 1
2 , 1

3 , 1, 1
2 , 1, 1, 1

2 , 1}, as listed in Table 2; therefore, the gRDW is 1.

Table 1. All possible combinations for the case of M = 5.

Static Sector 0 1 2 3 4 5

Possible combinations 0 + 0w

1 + 5w
1 + 4w
1 + 3w
1 + 2w
1 + 1w

2 + 9w
2 + 8w
2 + 7w
2 + 6w
2 + 5w
2 + 4w
2 + 3w

3 + 12w
3 + 11w
3 + 10w
3 + 9w
3 + 8w
3 + 7w
3 + 6w

4 + 14w
4 + 13w
4 + 12w
4 + 11w
4 + 10w

5 + 15w

Table 2. The indeterministic score pairs in the case of M = 5 and the calculation process of individual
recentness dominance time weighting (iRDW).

s1 + d1w s2 + d2w s1 + d1w = s2 + d2w iRDW

1 + 5w 2 + 4w
2 + 3w

1 + 5w = 2 + 4w
1 + 5w = 2 + 3w

w = 1
w = 1

2

1 + 4w 2 + 3w 1 + 4w = 2 + 3w w = 1

2 + 9w
3 + 8w
3 + 7w
3 + 6w

2 + 9w = 3 + 8w
2 + 9w = 3 + 7w
2 + 9w = 3 + 6w

w = 1
w = 1

2
w = 1

3

2 + 8w 3 + 7w
3 + 6w

2 + 8w = 3 + 7w
2 + 8w = 3 + 6w

w = 1
w = 1

2

2 + 7w 3 + 6w 2 + 7w = 3 + 6w w = 1

3 + 12w 4 + 11w
4 + 10w

3 + 12w = 4 + 11w
3 + 12w = 4 + 10w

w = 1
w = 1

2

3 + 11w 4 + 10w 3 + 11w = 4 + 10w w = 1

3.3. Computation Optimization

The task of comparing all the indeterministic score pairs one by one is inefficient, since it requires
too many computational resources and too much time. The more user-specific track points that are
given, the more indeterministic score pairs there are.

Using Equation (4), we derived that for any indeterministic score pair (sa + daw) and (sb + dbw)
where sa < sb and da > db, gRDW is the maximum value of all sb − sa when da − db equals 1.
To enhance the efficiency, the model first compares the indeterministic score pairs for which the static
sectors are 1 (CM

1 ) to M− 1 (CM
M−1). If gRDW equals sa, the model takes the maximum of the dynamic

sectors da of CM
sa , compares it with the combination of all values of the static sectors larger than sa,

and finds the maximum of the static sectors sb so that its dynamic sector may be not greater than da.
Thus, the model is capable of minimizing the time by comparing column by column. By this means,
the difference between the values of these two static sectors, sb − sa is the maximum of all wi for
which the total passing point is sa, expressed by ŵ. By conducting the procedure column by column,
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the corresponding ŵ is the maximum of all wi. In short, this approach simplifies the process from
comparing wi of entire indeterministic score pairs to comparing the scores column by column based
on their individual greatest values of the dynamic sector. Subsequently, the model substitutes the ŵ
into the dynamic sectors and calculates the final similarity scores. Finally, the model singles out the
requested results from the top following the comparison order discussed in Section 3.4.

Taking M = 6 for instance, the possible scores of a historical track are shown in Table 3. When
the value of the static sector is 1 (sa = 1), the maximum of da is 6. Then, the model goes to the next
column to compare with the next value of the static sector. db = 5 is found to satisfy the condition of
da − db = 1 when the value of the static sector is 2 (sb = 2). However, when the value of the static
sector is greater than 2, there is no db less than da, leading to an indeterministic score pair. Hence, wi is
1 when M = 6 and sa = 1. By contrast, when the value of the static sector is 2 (sa = 2), the largest da

is 11. Thus, the ŵ is 2 as db is 10 when sb equals 4. After comparing column by column, from sa = 1
to sa = M− 1 = 5, the model gathers a set of iRDWs, and the maximum value of the set stands for
the gRDW. In this case, when M = 6, ŵ is 2. The results are presented in Figure 3, with M on the
x-axis and gRDW on the y-axis, which resembles the form of a Gaussian function in which gRDW is an
increasing integer with increasing M.

Table 3. All possible combinations for the case of M = 6.

Static Sector 0 1 2 3 4 5 6

Possible combinations 0 + 0w

1 + 6w
1 + 5w
1 + 4w
1 + 3w
1 + 2w
1 + 1w

2 + 11w
2 + 10w
2 + 9w
2 + 8w
2 + 7w
2 + 6w
2 + 5w
2 + 4w
2 + 3w

3 + 15w
3 + 14w
3 + 13w
3 + 12w
3 + 11w
3 + 10w
3 + 9w
3 + 8w
3 + 7w
3 + 6w

4 + 18w
4 + 17w
4 + 16w
4 + 15w
4 + 14w
4 + 13w
4 + 12w
4 + 11w
4 + 10w

5 + 20w
5 + 19w
5 + 18w
5 + 17w
5 + 16w
5 + 15w

6 + 21w

Figure 3. Visualization of the relationship between M and global recentness dominance time
weighting (gRDW).
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3.4. Comparison Order

To ensure the discrimination of similarity between the historical typhoon tracks and the
user-specific track, the comparison order is in five steps as follows:

1. Total similarity score;
2. Dynamic sector;
3. Static sector;
4. Month disparity;
5. Year gap.

The model first sorts the past typhoons by the computed similarity scores with the user-specific
track using Equation (1). The similarity score takes both the numbers of track points of the given track
the historical typhoon passes through and RDP into consideration, indicating that the score is an index
of general similarity. When the scores of some historical typhoons are equally matched, the model
first evaluates the dynamic sectors, and then weighs the static sectors, which reaffirms that RDP does
matter. If the ranks still make no difference, the model keeps comparing by the order of the disparity
of months, and the gap between the present year and the year of that historical typhoon. At that point,
the similarity comparison result should be evident and reasonable.

4. Implementation

The research is implemented in the form of a web application, composed of a front-end information
display panel and a back-end server developed using Flask, a Python library. The information display
panel, which is the interface interacting with users, sends requests to the server, which is constructed
based on Flask; the server starts an instant historical typhoon data renew, goes through procedures,
including clean-up, track matching, etc., and returns formatted data and similarity rankings. Through this
user-friendly interface, the concept of typhoon tracks matching in this research can be readily understood.

4.1. Data Source

For TCs in the WNP, the historical best track data provided by the Japan Meteorological Agency
(JMA), the regional specialized meteorological center of the WNP and the South China Sea, are the most
used [17]. Tropical cyclone data in the jurisdiction of the JMA from 1951 to the present are collected
from its open-access application programming interface (API). Each typhoon dataset has one header line
and several data lines. As shown in Figure 4, each header line is composed of the international number
and name of a typhoon, while the following data lines are the point data recorded every six hours,
including its latitude, longitude, wind speed, etc. As Figure 4 shows, each line of data has a unique
meaning in different positions. After line-by-line procedures, string processing and organization into
a JSON (JavaScript object notation) format, the data are cleaned-up and well prepared for subsequent
processing. As a result, the tropical cyclone data of the WNP for the past 70 years totaled approximately
1700 typhoons and contained approximately 65,000 coordinates.

Besides historical typhoons, present typhoon track forecasts are also required to analyze present
typhoons at the information display stage. Several meteorological institutions provide forecasts of
present typhoons in the WNP. In this study, we retrieved real-time forecasts from the Integrated
Multi-Agency Tropical Cyclone Forecast, which provides comprehensive information about current
typhoon forecasts from several meteorological institutions all over the world [18].
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Figure 4. A sample of the Japan Meteorological Agency (JMA) best track data.

4.2. Information Display Panel

The information display panel was developed using the HyperText Markup Language (HTML),
Cascading Style Sheets (CSS), and ECMAScript (JavaScript). To deliver the primary objective of
this research, the interface shown in Figure 5 contains only two components: a map built based on
OpenLayers libraries and a control panel providing two modes for inputting track points.

Figure 5. The information display panel.

The first mode is “center auto-import”, offering real-time feeds and forecasts of current typhoons
from several meteorology institutions collected from the Integrated Multi-Agency Tropical Cyclone
Forecast. The panel is capable of merging predictions from different meteorological institutions. When
querying using the forecast track points retrieved from these institutions, there is a higher possibility
that the query result matches the condition of the case, thus yielding greater accuracy.

The second mode is “manual input.” Users complete comparisons between any desired tracks and
historical typhoon tracks. Track specification can be done by either keying in latitudes and longitudes
or simply clicking on the map. The radii of valid regions can be determined by a tunable slide bar.
At that point, essential parameters for the similarity comparison are ready, and those query conditions
can be sent to the server by finally clicking on the button “query.” Hence, the query is accomplished
intuitively and rapidly. As the server finishes the computation, the panel presents the result containing
the basic information of the similar typhoons, including names, historical track points, and rankings.
After being rendered, users can acquire historical typhoon tracks and rankings through the map and
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the table inside the panel. Furthermore, the typhoons listed in this table are attached with links to the
corresponding information in the Taiwan Typhoon Database and can be selected independently.

The query result is illustrated in Figure 6. Through the two modes that the panel provides, users
can not only comprehend the track similarities but also make a connection with what is going on.
With the support of the panel, the application makes it convenient for decision makers to review
historical typhoons quickly, which is a rapid way to grasp the current situation through the experience
of past events. The damages caused by typhoons can thus be forecast, and precautions such as
evacuations and pump pre-allocations can be executed on time.

Figure 6. The query result using Typhoon Hagibis (2019).

5. Discussion

5.1. Effect of Time Weighting

In this section, we discuss the effect of setting different values for the time weighting. As described
in Section 3.2, the dynamic sector of the model constructs a gRDW that ensures the dominance of
recentness. To discuss the effect of setting different values of time weighting, this research relaxed RDP
by allowing users to set the preferred time weighting. We divided the real number into seven special
weight groups that give different interpretations of the time weighting. The most critical weight group
is when w equals gRDW, which refers to the value determined by the number of user-specific track
points and is the minimum value that ensures RDP. The remaining six groups are:

1. Over gRDW: w ∈ (gRDW, ∞);
2. Positive related time weighting: w ∈ (0, gRDW);
3. Static sector: w = 0, only presenting the static sector’s score;
4. Negative related time weighting: w ∈ (−1, 0);
5. Repulsion force weighting: w = −1;
6. Reverse similarity: w ∈ (−∞,−1).

Since the six groups above are obtained by relaxing the presumption of RDP, setting time
weightings with the six groups may not provide proper search results. The actual usage of non-RDP
time weighting is not yet clarified and remains a future objective. However, in this research, we discuss
the behavior of search results with time weightings of different groups, and the discussion provides
insight for potential usage.
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5.1.1. Over gRDW

The over gRDW weight group refers to all the numbers greater than gRDW. For any time
weightings set in this range, the outcome of the similarity model remains identical to the outcome’s
time weighting set as gRDW. Thus, the time weightings in this group merely exaggerate RDP but
generate the same result.

5.1.2. Positive Relative Time Weighting

The positive relative time weighting group refers to the positive numbers that lie in the range
of zero and gRDW. The positive relation highlights that for any time weighting set in this group,
the recentness is proportionally increased; however, some of the cases that the recentness might be
defeated by the static sector are erroneously included. The closer values are to gRDW, the more
influential the recentness. The positive relative time weighting provides a trade off between the
dynamic sector and the static sector.

5.1.3. Static Sector

The static sector weight group refers to when the time weighting is set as zero, which eliminates
the dynamic sector. Hence, the similarity comparison is solely determined by the static sector, which
presents the pure summation of the user-specific track points passing through the valid regions of the
historical typhoon track.

5.1.4. Negative Relative Time Weighting

The negative relative time weighting group refers to negative time weightings that lie in the
range of −1 and 0. The negative relation highlights that for any time weighting in this group,
the recentness is proportionally decreased, making older typhoons play a more important role than
recent typhoons. The closer to the −1 the time weighting is, the more influential the past is. However,
the negative relative time weighting provides a limited interpretation of the comparison and prediction.
The discussion merely points out the role that time weighting plays in this group.

5.1.5. Repulsion Force Weight

The repulsion force weight group refers to when the time weight equals −1. This case is singled
out for the reason that it generates the outcome resembling the graph of magnetic repulsion forces.
When the time weight (w) is set as −1, the model reduces to:

M

∑
k=1

(1 + kw) =
M

∑
k=1

(1− k) ≤ 0. (6)

Mathematically, the similarity score must be less than zero. Hence, the model must pick the
historical typhoons that are scored as zero. Those historical typhoons whose scores are zero can be
broken into two types:

1. Pass through none of the given points: ∑M
k=1(1− k) = 0− 0 = 0;

2. Pass through the first given point: ∑M
k=1(1− k) = 1− 1 = 0.

After sorting by the comparison order discussed in Section 3.4, the model prefers the latter more
than the former, which would present results similar to the outcome shown by Figure 7. The graph
resembles a magnetic field where the first given user input point acts as one of the magnetic poles
while the other points act as the other poles. Consequently, the time weighting group for weights
equals to –1 is named the repulsion force weight group.
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Figure 7. An example of the case of repulsion force weighting.

5.1.6. Reverse Similarity

The reverse similarity weighting group refers to the time weightings that are set as less than −1,
which would make the model perfectly remove the effect of the user-specific track points. In other
words, the model simply eliminates all the historical typhoons that pass through the user-specific
track points. Hence, the model would simply skip the above three steps in the comparison order
discussed in Section 3.4 and solely presents the historical typhoons that are scored as zero discussed in
Section 5.1.5. Evidently, this result is contrary to this studies’ research goals.

5.2. Contributions

Several major advantages of this research over the preliminary work are evident.
First, this research discussed the details of the similarity model, developed a strategy to reduce

computational requirements, developed a new information display panel featuring auto-importing typhoon
forecast track data, and integrated the track similarity comparison technique and the typhoon database.

Next, in the similarity model, we not only considered the geometric similarity but also introduced
the time weightings as a means of controlling the importance of track point time. We proposed the
use of RDP regarding the effect of the number of track points. Furthermore, the effect of varying
time weightings potentially provides a means for decision makers to modify the time weighting for
different purposes.

Finally, we developed a new information display panel enabling the user to import forecast track
data by both the manual-input method and the center auto-import method. The decision makers no
longer need to specify the forecast track by hand; the new panel eliminates the possibility of making
mistakes in the exact locations of the track points. In addition, we integrated several forecasters,
providing various choices for the decision makers.

5.3. Limitations

There are several limitations of this research, including the lack of model performance validation,
the potential effect of forecast error, and the ignorance of other important factors.

The validation of a model result with observations is currently not practicable because the factors for
calculating the similarity of damages caused by multiple typhoon events remain unknown. Also, in the
current design, the key parameters are decided by the decision makers in the implementation. To properly
validate the model performance, the evaluation factors should be found, and the method of the decision
maker setting up the key parameters should be discussed. In future work, more information should be
collected from the application in real decision making cases to set up a reasonable validation process.
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Since the historical typhoon search engine of this research relies on user-specific track points,
the risk of error due to the forecast data cannot be eliminated. When there is a noticeable drop from
the forecast and the reality, the search result derived from the forecast data may not apply well due to
the existence of forecast error. To reduce the potential effect on relying on a single forecast, the search
engine features auto-import forecast data from six different meteorology institutions. The decision
makers can choose the preferred data source to utilize. By diversifying forecast data sources, the search
engine can reduce the interference of underlying forecast error.

The search algorithm only considers track points as input. However, it is insufficient for decision
support to leave other factors since the track is not the only factor that affects the damage. By taking
other factors such as the intensity of typhoons into consideration, the search engine may be capable of
getting a better search result that meets up to the current scenario. The ignorance of other factors is
one of the limitations that need to be solved in future works.

6. Conclusions

This research improved on the preliminary work done on the similarity model and developed a
new information display panel featuring auto-importing typhoon forecast track data. The similarity
model provides an algorithm that compares all the historical typhoons tracks to the user-specific tracks.
Compared with the historical typhoon tracks, when a typhoon is in its developing state, the decision
makers can input the forecast track points and discover the historical typhoons that are observed
to have the most similar characteristics to the upcoming typhoon. In this study, we introduced the
recentness dominance principle (RDP), stating that recent data is always superior to older historical
records. Following RDP, the similarity model computes the time weighting according to the number
of user-specific points. Furthermore, the role of time weighting is discussed, providing direction for
setting up the parameters for different purposes. The information display panel provides a concise
and convenient interface for decision makers to quickly review historical typhoons, which is a rapid
means to grasp the current situation through the experience of past events.

Author Contributions: Conceptualization: M.-H.T.; methodology: M.-H.T., H.-Y.C., C.-M.H., C.-Y.H., and H.-K.K.;
software: H.-Y.C., C.-M.H., C.-Y.H., and H.-K.K.; validation: H.-Y.C., C.-M.H., C.-Y.H., and H.-K.K.; formal analysis:
M.-H.T.; investigation: M.-H.T. and H.-Y.C.; resources: M.-H.T.; data curation: H.-Y.C., C.-M.H., C.-Y.H., and
H.-K.K.; writing—original draft preparation: H.-Y.C., C.-M.H., C.-Y.H., and H.-K.K.; writing—review and editing:
M.-H.T., Y.-C.T., and I.-C.C.; visualization: H.-Y.C., C.-M.H., C.-Y.H., and H.-K.K.; supervision: M.-H.T. and Y.-C.T.;
project administration: M.-H.T. and Y.-C.T.

Funding: This research was funded by Taiwan’s Ministry of Science and Technology (MOST) under contract
108-2119-M-011-002 and the Taiwan Building Technology Center from The Featured Areas Research Center
Program within the framework of the Higher Education Sprout Project by the Ministry of Education in Taiwan.

Acknowledgments: We thank Shih-Chung Kang, Yih-Chi Tan, Jihn-sung Lai, James Yichu Chen, Cheng-Hsuan Yang,
and Tzong-Hann Wu of National Taiwan University; and Wei-Chyuan Shieh and Chun-Nan Chen of the
Meteorological Application and Development Foundation for their contribution to the preliminary study.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

CWB Central Weather Bureau
gRDW global recentness dominance time weighting
iRDW individual recentness dominance time weighting
JMA Japan Meteorological Agency
NII National Institute of Informatics
RDP recentness dominance principle
TC tropical cyclone
WNP western North Pacific



Int. J. Environ. Res. Public Health 2019, 16, 4879 14 of 14

References

1. Central Weather Bureau. Categorized Paths of Typhoons Invading Taiwan? Available online:
https://www.cwb.gov.tw/V7e/knowledge/encyclopedia/ty017.htm (accessed on 22 July 2019).

2. Central Weather Bureau. What Is the Wind Intensity for Typhoon Invading Taiwan? Available online:
https://www.cwb.gov.tw/V7e/knowledge/encyclopedia/ty018.htm (accessed on 22 July 2019).

3. Central Weather Bureau. What Is the Rainfall Situation of Taiwan When Invaded by Typhoons? Available
online: https://www.cwb.gov.tw/V7e/knowledge/encyclopedia/ty019.htm (accessed on 22 July 2019).

4. Tsai, M.H.; Chen, J.Y.; Kang, S.C. T-SEARCH: A CROSS-PLATFORM SEARCHER FOR HISTORICAL
TYPHOON EVENTS. J. Chin. Inst. Civ. Hydraulic Eng. 2019, 31, 351–360.

5. Wu, C.C.; Kuo, Y.H. Typhoons Affecting Taiwan: Current Understanding and Future Challenges. Bull. Am.
Meteorol. Soc. 1999, 80, 67–80. [CrossRef]

6. Huang, J.C.; Yu, C.K.; Lee, J.Y.; Cheng, L.W.; Lee, T.Y.; Kao, S.J. Linking typhoon tracks and spatial
rainfall patterns for improving flood lead time predictions over a mesoscale mountainous watershed.
Water Resour. Res. 2012, 48. [CrossRef]

7. Lee, C.S.; Huang, L.R.; Shen, H.S.; Wang, S.T. A Climatology Model for Forecasting Typhoon Rainfall in
Taiwan. Nat. Hazards 2006, 37, 87–105. [CrossRef]

8. Rüttgers, M.; Lee, S.; Jeon, S.; You, D. Prediction of a typhoon track using a generative adversarial network
and satellite images. Sci. Rep. 2019, 9, 6057. [CrossRef] [PubMed]

9. Central Weather Bureau. Typhoon Database. Available online: https://rdc28.cwb.gov.tw/TDB/
(accessed on 22 July 2019).

10. National Institute of Informatics. Digital Typhoon: Typhoon Images and Information. Available online:
http://agora.ex.nii.ac.jp/digital-typhoon/ (accessed on 2 October 2019).

11. Camargo, S.J.; Robertson, A.W.; Gaffney, S.J.; Smyth, P.; Ghil, M. Cluster Analysis of Typhoon Tracks. Part I:
General Properties. J. Clim. 2007, 20, 3635–3653. [CrossRef]

12. Chu, P.S.; Zhao, X.; Ho, C.H.; Kim, H.S.; Lu, M.M.; Kim, J.H. Bayesian Forecasting of Seasonal Typhoon
Activity: A Track-Pattern-Oriented Categorization Approach. J. Clim. 2010, 23, 6654–6668. [CrossRef]

13. Kim, H.S.; Kim, J.H.; Ho, C.H.; Chu, P.S. Pattern Classification of Typhoon Tracks Using the Fuzzy c-Means
Clustering Method. J. Clim. 2011, 24, 488–508. [CrossRef]

14. Chu, H.J.; Liau, C.J.; Lin, C.H.; Su, B.S. Integration of fuzzy cluster analysis and kernel density estimation
for tracking typhoon trajectories in the Taiwan region. Expert Syst. Appl. 2012, 39, 9451–9457. [CrossRef]

15. Ho, C.H.; Kim, J.H.; Kim, H.S.; Choi, W.; Lee, M.H.; Yoo, H.D.; Kim, T.R.; Park, S. Technical note on a
track-pattern-based model for predicting seasonal tropical cyclone activity over the western North Pacific.
Adv. Atmos. Sci. 2013, 30, 1260–1274. [CrossRef]

16. Kim, S.H.; Moon, I.J.; Chu, P.S. Statistical–Dynamical Typhoon Intensity Predictions in the Western North
Pacific Using Track Pattern Clustering and Ocean Coupling Predictors. Weather Forecast. 2018, 33, 347–365.
[CrossRef]

17. Japan Meteorological Agency. RSMC Tokyo—Typhoon Center. Available online: https://www.jma.go.jp/
jma/jma-eng/jma-center/rsmc-hp-pub-eg/RSMC_HP.htm (accessed on 1 October 2019).

18. Typhoon2000.com. Integrated Multi-Agency Tropical Cyclone Forecast. Available online: http://www.
typhoon2000.ph/multi/ (accessed on 1 October 2019).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.cwb.gov.tw/V7e/knowledge/encyclopedia/ty017.htm
https://www.cwb.gov.tw/V7e/knowledge/encyclopedia/ty018.htm
https://www.cwb.gov.tw/V7e/knowledge/encyclopedia/ty019.htm
http://dx.doi.org/10.1175/1520-0477(1999)080<0067:TATCUA>2.0.CO;2
http://dx.doi.org/10.1029/2011WR011508
http://dx.doi.org/10.1007/s11069-005-4658-8
http://dx.doi.org/10.1038/s41598-019-42339-y
http://www.ncbi.nlm.nih.gov/pubmed/30988405
https://rdc28.cwb.gov.tw/TDB/
http://agora.ex.nii.ac.jp/digital-typhoon/
http://dx.doi.org/10.1175/JCLI4188.1
http://dx.doi.org/10.1175/2010JCLI3710.1
http://dx.doi.org/10.1175/2010JCLI3751.1
http://dx.doi.org/10.1016/j.eswa.2012.02.114
http://dx.doi.org/10.1007/s00376-013-2237-6
http://dx.doi.org/10.1175/WAF-D-17-0082.1
https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/RSMC_HP.htm
https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/RSMC_HP.htm
http://www.typhoon2000.ph/multi/
http://www.typhoon2000.ph/multi/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Methodology
	The Core of the Comparison Model
	Static Sector and Dynamic Sector
	Computation Optimization
	Comparison Order

	Implementation
	Data Source
	Information Display Panel

	Discussion
	Effect of Time Weighting
	Over gRDW
	Positive Relative Time Weighting
	Static Sector
	Negative Relative Time Weighting
	Repulsion Force Weight
	Reverse Similarity

	Contributions
	Limitations

	Conclusions
	References

