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Abstract: In this study, 23 bacterial strains were isolated from a Cadmium (Cd) contaminated soil
in the industrial city, Riyadh of Saudi Arabia. Among these isolates six strains were found to
withstand cadmium contamination and grow well. From the six isolates Pseudomonas sp. strain
Al-Dhabi-122–127 were found to resist cadmium toxicity to a higher level. The isolates were subjected
to biochemical and 16S rDNA gene sequence characterization to confirm their identification. The
bacterial strain Al-Dhabi-124 showed 1.5 times higher Cd-degrading activity than Al-Dhabi-122 and
Al-Dhabi-123, and Al-Dhabi-126 exhibited 3.5 times higher Cd-degrading activity, higher than the
other strains. An atomic absorption spectrophotometer study showed that the strain Al-Dhabi-126
absorbed Cd, and that the bacterial strain Al-Dhabi-126 was found to tolerate cadmium level up
to 2100 µg/mL. The bacterial strain Al-Dhabi-126 showed a maximum Cd removal efficacy at pH
between 6.0 and 8.0. The efficacy decreased sharply after an increase in pH (9.0). An optimum
temperature of 50 ◦C and pH 6.0 were found to be effective for the Cd removal process by the
isolate. The study indicated that the bacterial strain Al-Dhabi-126 can be used effectively for the
bioremediation of heavy metals like cadmium, a major toxic pollutant in industrial effluents.
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1. Introduction

The bioaccumulation of various heavy metals in the natural environment is a concern to the
health of all living organisms. Water pollution caused by industrial effluents carrying heavy metals,
toxic sludge, and various solvents affects the quality of water and its dependents. Heavy metals from
the industrial wastes entering aquatic ecosystems cause health hazards to animals, plants, humans,
and aquatic biotopes [1]. The heavy metals, namely, mercury(Hg), copper(Cu), chromium (Cr), zinc
(Zn), cadmium (Cd), and lead (Pb) are mutagenic, toxic to the cells, and induce carcinogenic changes
in human beings and other organisms. Also, untreated or partially treated industrial wastewater
discharged with heavy metals into water bodies may critically affect the groundwater as well. Microbes
have the potential to remediate heavy metal pollutants in the environment. The microbes synthesize
various metabolites to degrade the complex wastes and also develop the ability to survive in the
presence of various toxic heavy metals in their environment [2].

Cadmium (Cd) is one of the major pollutants, and highly toxic to organisms even at very low
concentrations. Cd is mainly used in various industries including paint, copper alloy, pulp and paper,
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mining, alkaline batteries, zinc refining, and fertilizer. Cd enters into animal and human bodies through
the food web and bioaccumulate, and may cause various serious diseases [3]. Cd is not required for any
biological function but inhibits the DNA-mediated transformation in microorganisms, their cellular
enzyme functions, and affects the symbiotic relationship between plants and microbes [4]. Also, the
bioaccumulation of Cd in most of the plants may disturb various biochemical functions, structural
changes, and physiological processes, including alteration in mineral uptake, photosynthesis function,
interfering with the enzymes involved in Calvin cycle and metabolism of carbohydrates, lowers the
productivity of crops, and alters antioxidant metabolism in plants [5].

Many methods are applied to eliminate heavy metals from the aquatic environment. The common
methods include chemical oxidation, chemical precipitation, reduction, filtration, electrochemical
treatment, and extraction using solvents [6]. These traditional methods have various drawbacks
including the unpredictable removal of heavy metals and the huge amount of generation of sludge
which is highly toxic. The heavy metal removal by means of bioremediation is an alternate way to
apply recombinant and naturally available indigenous microorganisms for the effective removal of
toxic substances [7]. Bioremediation is environmentally friendly and is cheaper than chemical methods.
Also, the dead biomass of bacteria or living microbes is used for the removal of metals through the
bioaccumulation and biosorption process [8]. The bioaccumulation process needs energy and it is an
oxygen-dependent process. However, biosorption is an independent revisable process and does not
require respiration/energy [9]. The important advantage of this process is a high sorption ability, very
low operating cost, potent bio sorbent revival, and the possibility of metal recovery [10].

Gram-negative bacteria are capable of resisting and accumulate Cd from the contaminated sites.
The biomass of the P. aeruginosa strain was reported to be highly efficient for the recovery and removal
of Cd, Pb, and Cu from a polluted aquatic environment [11]. Also, the dead cells of P. aeruginosa
(dead cell biomass) have the potential for adsorption of Pb and Cd from the aquatic environment
polluted with heavy metals [12]. The Cd resistant Pseudomonas sp. is capable of biosorbing heavy
metals, namely, Ni, Cr, Pb, and Cd. The Cd resistant P. aeruginosa E1 has a higher potential for
biosorption of Cd than dead biomass [13]. The freeze-dried P. aeruginosa PAO1 cells were found to
adsorb Cd from water at an acidic pH value (pH 5.0–6.0) [14]. In a study, P. aeruginosa KUCd1 has
been reported to remove more than 75% Cd within 60 min from the medium during the active growth
periods [15]. Also, the genetically engineered P. aeruginosa effectively removed Cd [16]. It was also
reported that the strains from the genus Pseudomonas have the potential to remove Cd because of its
good biosorption efficacy [17]. Most of the microorganisms use many strategies to counter the heavy
metal stress which include active efflux of metals; metal ions sequestration, Cd accumulation, and
enzymatic detoxification [18,19].

In the present investigation, a potent Cd resistant strain Al-Dhabi 126 was isolated from industrial
effluents with Cd pollutants in Saudi Arabia. It was identified as Pseudomonas sp. based on a
biochemical characterization and 16S rDNA sequence analysis. Cadmium tolerance level and the
optimum conditions for its removal through biosorption were evaluated. Also, Cd removal efficacy
of the isolated Pseudomonas sp. Al-Dhabi-126 promises a new hope for employing it as a Cd bio
remediating agent.

2. Materials and Methods

2.1. Sample Collection

The wastewater sample was collected from three sites (Al-hair, Al-batha wally, and
Al-mansouriyah) in Riyadh, where industrial effluents are discharged. The sample was collected in the
labeled containers and kept in ice (2–8 ◦C) and transported to the laboratory for the analysis of heavy
metal degrading bacteria.
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2.2. Primary Screening of Cd Resistant Bacteria

To find out heavy metal resistant bacteria from the samples, 150 µg/L of Cd was added to Luria
Bertani (LB) agar plates (g/L) (peptone 10.0, yeast extract 5.0, sodium chloride 5.0, dextrose anhydrate
10.0 and agar 30.0 and pH 7.0) and incubated for one week at 37 ◦C. For every 24 h the colony
morphology and numbers of bacterial colonies formed were observed. After preliminary observation,
the samples showing Cd-degrading isolates were serially diluted by standard method. To the control
plates, Cd was not incorporated. The growth of bacteria was monitored continuously. From the
colonies with various morphological and growth potentials, rapid growing heavy metal tolerant
bacteria were selected and purified for further analysis [13].

2.3. Evaluation of Minimum Inhibitory Concentration

To analyze minimum inhibitory concentration (MIC) of Cd resistant bacteria, the selected strains
were grown on Cd-incorporated LB agar medium with a dose level 50 µg/mL–2200 µg/mL [9]. Initially,
the concentration of the Cd was 50 µg/mL and the strain growing on the final Cd concentration
(2200 µg/mL) was further tested and the MIC dose was the concentration at which the bacterial strains
failed to grow beyond that Cd level that is visible in the Petri plate. MIC was calculated by the method
of European food safety authority (EFSA), Parma, Italy, 2012.

2.4. Cadmium Removal Assay

The isolated bacterial strains were cultured in the Luria Bertani (LB) broth containing Cd
(500 µg/mL). The culture was incubated on a rotary shaker at 37 ◦C for 24 h. After every 4 h, the culture
was centrifuged (10,000 rpm, 10 min). To analyze the effect of temperature, the isolates were grown at
various temperatures (10–60 ◦C) and to evaluate the influence of different pH the culture was grown
at various pH values (2.0–12.0). The culture medium without Cd was used as the negative control.
The centrifuged cell-free supernatant was stored at 4 ◦C for the analysis of Cd remediation. The Cd
content of the cell-free supernatant was detected using a GBC932 atomic absorption spectrometry with
a Cd hollow cathode lamp at 228.8 nm. Also, the optical density of the bacterial isolates was registered
individually to monitor the growth rate of bacteria in relation to Cd removing efficacy [3].

2.5. Identification of Bacteria

The bacterial isolate that survived in a high dose of Cd was isolated and identified using
morphological and biochemical tests such as, Gram-staining, oxidase, citrate, arabinose, cellobiose,
raffinose, xylose, Voges–Proskauer, and lactose hydrolysis [20]. Then the selected bacterial isolate
was further subjected to 16S rDNA sequencing for identification confirmation. The genomic
DNA of the selected strain was isolated by Triton–Prep method. The 16S rDNA gene of the
selected strain was purified, amplified using bacterial universal forward and reverse primer (27F
- 5′AGAGTTTGATCMTGGCTCAG3′ and 1492R 5′ 5′TACGGYTACCTTGTTACGACTT3′). The
polymerization reaction was performed by initial denaturation (5 min) (94 ◦C), denaturation (94 ◦C)
for 35 cycles, annealing (30 s, 52 ◦C), and elongation (40 s, 72 ◦C). The final extension was performed
for 10 s at 72 ◦C. The amplified DNA was loaded on the agarose gel and separated the DNA using TBE
buffer (Tris 89 mM, EDTA 2 mM, Boric acid 89 mM, and pH = 7). Further, the purified product was
subjected to partial 16S rDNA sequencing analysis and a similar sequence was compared.

3. Results and Discussion

3.1. Screening of Cd Resistant Bacteria

The absorbance of heavy metals by bacterial biomass is an advanced bioengineering tool for the
effective removal of various metal contaminants. In the current study, Cd biodegrading bacterial strains
were isolated from the metal contaminated soil (Table 1). The isolated bacteria varied significantly in
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their effectiveness at absorbing Cd from the aqueous medium. Many factors including, pH, temperature,
and C/N ratio are reported to influence biosorption. The ability to degrade heavy metals has been
reported in Enterobacter spp., Flavobacterium spp., Pseudomonas spp., Bacillus spp., and Micrococcus spp.
and the bioremediation ability varied among different strains. In bacteria, the absorption ability was
found to be higher due to high surface-to-volume ratios and the presence of active chemo sorption sites
on cell wall surfaces [21]. However, the metal absorption ability of these bacterial isolates depends
on its tolerance limits. Both Gram-negative and Gram-positive bacteria are reported to show heavy
metal tolerance. The bacterial species such as Alcaligenes xylosoxidans, Klebsiella planticola, Pseudomonas
fluorescens, Comamonas testosteroni, Pseudomonas putida, Serratia liquefaciens, and Pseudomonas sp. showed
resistance to Cd between 3 and 11 mM [22]. In this study, bacteria showing Cd resistance was observed
when the LB agar plate was supplemented with Cd (500 µg/mL). It indicated that the bacterial isolates
can grow by effectively degrading Cd. In the present study, the control plate showed 13.2× 102 bacterial
colonies, where 32.5% of isolates were Cd resistant (Figure 1). A total of 23 bacterial strains were
isolated from the sample, among these, six bacterial strains were selected for further studies based on
their capacity to grow rapidly on the LB agar containing Cd. The growth from previous investigations
revealed that the microorganisms such as Thiobacillus ferrooxidans, Citrobacter sp., Bacillus cereus, Bacillus
subtilis, Saccharomyces cerevisiae, Micrococcus luteus, Pseudomonas aeruginosa, Aspergillus flavus, Rhizopus
arrhizus, and Acinetobacter baumannii are good to remove heavy metals from contaminated soil [23].

Table 1. Total viable cell count of bacterial colonies from the heavy metal contaminated sample.

Dilution Control Cd-Incorporated Cd Resistant

Factor LB Media Bacteria (%)

10−1 13.2 × 102 4.3 × 102 32.5
10−2 8.2 × 103 2.1 × 103 25.6
10−3 1.2 × 104 0.67 × 104 55.8
10−4 0.6 × 105 0.33 × 105 55
10−5 0.31 × 106 0.13 × 106 41.9
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Figure 1. Growth of bacteria on a Luria Bertani (LB) agar medium (A) control plate (without cadmium)
(B) 500 µg/mL cadmium incorporated in an LB agar. The sample was serially diluted and loaded onto
the LB agar and incubated at 37 ◦C for one week.

Heavy metals tolerant bacterial isolates from the natural environment play a significant role
in bioremediation of contaminated soil. Sulaimon et al. [24] isolated 12 bacterial strains capable
of degrading the heavy metals such as zinc, lead, mercury, and copper from an industrial area for
bioremediation. Alternatively, Day and Paul [25] isolated six arsenic, lead, and Cd resistant strains from
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the metal-contaminated environment. It was reported that Ochrobactrum sp. reduces lead, chromium,
zinc, Cd, cobalt, copper, and nickel in various experimental trials [26]. Naik et al. [27] isolated and
characterized hexavalent chromium degrading Bacillus cereus IST105 from electroplating effluent.

3.2. Relative Growth of Bacteria on LB Medium at Various Concentrations of Cd

Many research works have been performed for the isolation of new heavy metal tolerant bacterial
strains for the past three decades. In this study, initially, 150 µg/mL Cd was incorporated with the LB
broth with six bacterial isolates and bacterial growth in the medium with or without Cd was recorded.
Later, Cd concentration was increased to 2200 µg/mL and the bacterial strains were incubated for 24 h
and bacterial growth (OD at 600 nm) was measured using a UV-visible spectrophotometer. In the
observation, two bacterial strains showed less biomass at lower Cd concentration (100 µg/mL and
200 µg/mL) and growth was found to be higher at 300 µg/mL concentration of Cd. The growth of the
selected bacterial isolate with 300 cadmium and control (without cadmium) was described in Figure 2.
Sophia et al. [28] studied the application of Cd resistant strains which were isolated from various
environments highly contaminated by heavy metals, including, Cd.
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3.3. Bacterial Strains and Colony Morphology

Among the isolates, 73% of the bacterial strains were circular shaped and 27% bacterial strains
were an irregular shape (Table 2). About 28% of strains were flat, 47% were convex, and 26% of the
isolates were umbonate. Bacterial margins analysis documented that approximately 9% were irregular,
19% were lobate, and the remaining 72% were entire. The isolated strains also showed various colors
in their appearances. About 6% were yellow, orange (7%), brown (7%), red (10%), white (52%), and
18% were white-cream.

The isolated bacterial strains were shaped like a rod. The cellular arrangements of the bacterial
strains were scattered (84%) and single (18%). The isolated bacterial strains were both Gram-negative
(23%) and Gram-positive (77%). The isolates that thrived well in the Cd-incorporated medium
were identified to be Al-Dhabi-122, Al-Dhabi-123, Al-Dhabi-124, Al-Dhabi-125, and Al-Dhabi-126.
Al-Dhabi-124 showed 1.5 times higher Cd-degrading activity than Al-Dhabi-122 and Al-Dhabi-123,
respectively. Results indicated that the selected microbial species can absorb Cd from the medium by
binding the outer membrane with metals. The potent strain, Al-Dhabi-126 was identified as Pseudomonas
species and 16S rDNA sequence was deposited in GenBank under the accession numberMN709219.
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Table 2. Morphological and biochemical characters of the selected bacterial strains for Cd removal.

Tests
Bacterial Strains

Al-Dhabi-122 Al-Dhabi-123 Al-Dhabi-124 Al-Dhabi-125 Al-Dhabi-126 Al-Dhabi-127

Gram’s staining + + - + + -
Colony color White White milky Whitish White milky White Yellowish

Shape Rod Circle Round Rod Rod Round
Catalase + + + + + +
Oxidase - + + - + +
Indole - - - - - -
Citrate - + + - + +

Methyl-Red - - - + + -
Sucrose + + - + + -
Glucose + - - + + -
Xylose + - - - - +

Maltose - + - + + +
Lactose - + - + - -

3.4. Bioremediation of Cd by the Bacterial Isolates

To analyze total Cd biodegradation ability, the control and experimental samples were assayed
by the atomic absorption spectrophotometer and the result was compared with the control sample.
Among the bacterial strains (Al-Dhabi-122–Al-Dhabi-127), Al-Dhabi-124 showed 1.5 times higher
Cd-degrading activity than Al-Dhabi-122 and Al-Dhabi-123 respectively. However, Al-Dhabi-126
showed 3.5 times Cd-degrading activity higher than all the other strains (Figure 3). Results indicated
that the selected bacterial isolates can absorb Cd from the medium by binding the outer membrane
with metals. It was predicted that the mucous layer of the bacterial cell wall easily interacts with
heavy metals by adsorption or absorption. Also, the functional group of the cell wall of bacteria is
mostly negatively charged and most of the heavy metals are positively charged, which results in the
interaction with microbial cells or through microbial cell membranes. Many bacterial species including
Pseudomonas [29], Bacillus [30], and Streptomyces [31] have the significant ability to degrade heavy
metals by adsorption or absorption.
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Figure 3. Growth of cadmium degrading bacterial strains at various cadmium concentrations. Optical
density was measured after 12 h of incubation at 30 ± 2 ◦C.

The present investigation revealed the ability of the bacterial strains from the collected samples
tolerated Cd in the culture media (Figure 4). The selected bacterial strains showed a Cd tolerance
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level up to 2100 µg/mL. It was previously reported that bacteria such as Proteus vulgaris, Acinetobacter,
and Pseudomonas aeruginosa degrade Chromium, Cadmium, and Lead [32]. Minimum inhibitory
concentration (MIC) is the extreme lowest concentration of Cd at which the selected strain growth
was completely suppressed. In this study, the MIC of the strain Al-Dhabi-126 was found to be higher
than the other five strains. In a study, Yamina et al. [33] reported bacteria, including Micrococcus luteus
showing resistance to heavy metals such as Cr, Cd, Zn, and Pb. In this study the MIC value of Cd for
the strain Al-Dhabi-126 was 2100 µg/mL (Figure 5). Samanta et al. [34] isolated and screened heavy
metal resistant bacteria from wastewater. The MIC values of bacterial isolates from wastewater against
chromium, zinc, Cd, and lead were between 100 and 2100 µg/mL. The bacterial strain Micrococcus
luteus reported to show the maximum tolerance (MTC) value for Cr, Ni, and Cd [27,35]. In this study,
we have found that the bacterial strains Al-Dhabi-122–126 are capable of absorbing heavy metals
from the medium. Among them, strain Al-Dhabi-126 is relatively more efficient than other strains in
absorbing Cd.
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Heavy metals like Cd and Cr are nonessential elements, have no significant biological role, and
are highly toxic to the environment [36]. Many investigations have proven that metal ions at high
levels affect the metabolic process of bacteria, their function, growth of the bacterial cells, and bacterial
diversity [37].

3.5. Effect of Temperature on Cd Removal by Bacterial Strain

Temperature is one of the critical factors that affect the growth and metabolism of bacteria. The
influence of incubation temperature on Cd removal from the medium is shown in Figure 6. The present
findings suggested that the selected bacterial isolate Al-Dhabi-126 preferred an optimum incubation
temperature of 40–50 ◦C for Cd removal and metabolism of bacteria. Higher temperatures above
60 ◦C did not show any significant Cd removal activity by the selected bacterial strains. This is mainly
due to the decrease in metabolic processes at higher temperatures. High incubation temperatures of
heavy metal can also denature or inhibit enzyme activity and heavily affect the structure of the plasma
membrane and bacterial growth. At low incubation temperatures, Cd removal efficacy by the bacteria
was reduced due to the inactivation of enzymes at lower temperatures and the rate of metabolism got
decreased considerably.
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3.6. Effect of pH on Cd Removal by Pseudomonas sp. Al-Dhabi 126

The pH is one of the important factors that affect the chemical behavior of metal ions in solution
and the bacterial metabolic process. The effect of pH on Cd removal by a bacterial strain is presented
in Figure 7. In the present findings, Cd removal was found to be higher at a pH between 6.0 and 8.0. A
sharp decrease in Cd resistance was noted after pH 9.0 (Figure 7). The variation in the bioremediation
process due to pH changes could be due to the difference in the protonation of ligands of Pseudomonas
on its cell surface. The differences in external pH in the medium can significantly affect the degree of
the protonation of ligands that involves metal binding [38]. In Pseudomonas fluorescens, Cd removal
efficacy was found to be high at pH 6.8 [39]. In a study, optimum pH was reported as 7.0 for bacterial
isolates in heavy metal bioremediation [40] and this was higher than the present findings. In the
bioremediation process, pH influenced the solubility of the metal ions in the medium, and this process
mainly depends on the functional groups of bacterial cell surfaces [41]. In microorganisms, functional
groups such as hydroxyl, carboxyl, phosphate, and amino play a major role in the uptake of Cd and
this behavior varies at various pH conditions [42]. At lower pH values (less than 4.0) adsorption
behavior of the various metal is generally low and significant adsorption behavior is achieved at a
medium pH, ranged between 5.0 and 9.0 [43]. In the present study, bioremediation of Cd was found to
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be at its maximum at pH (6.0–9.0). The negatively charged phosphate, carboxylic groups enhanced the
absorption of positive-charged metal ions at higher pH values [44]. In a study, Park et al. [26] reported
that the optimum pH value for bioremediation of heavy metal ranges between 5.5 and 6.5, however
this pH ranges varied widely.
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Henriques and Love [45] reported 80% removal of Cd using Pseudomonas putida strain from the
culture medium. The cell walls or the envelope of bacteria are able to absorb metal ions from the
medium by electrostatic interactions, and the heavy metal removing mechanism is a nonspecific
interaction of heavy metals to the extracellular polysaccharides or cell envelope, proteins, teichoic
acids, siderophores, and teichronic acids [46]. Extracellular polysaccharides (EPS) are also involved
in the bioaccumulation of heavy metals. These EPS contain many functional groups namely amide,
carboxyl, imidazole, amino, hydroxyl, phosphate, sulfhydryl, carbonyl, amide, and phosphodiester
groups that give very strong negative charge [47]. So metal ions from the medium may be attracted to
the cell surface of bacteria. The heavy metals from the environment are also transported through the
membrane of the bacteria through the permeation of lipids, carrier-mediated transport, endocytosis,
complex permeation, and ion pumps.

Many bacterial genera, including Pseudomonas and Bacillus, have potential heavy metal removing
efficacy [48]. It was previously reported that the outer membrane of the bacteria can absorb more than
30 varieties of metals [49]. Panwichian et al. [18] stated that Pseudomonas aeruginosa strain eliminated
more than 75% of the Cd from Cd-amended industrial wastewater under laboratory conditions.
Bioremediation of metal pollution of the soil environment has various applications, including being a
low-cost procedure for the maintenance of the soil structure. The present finding shows that the isolate
Al-Dhabi 126 can be well used for bioremediation.

4. Conclusions

The ability of the selected bacterial strain Al-Dhabi 126 to grow in the presence of Cd would
be highly useful in the wastewater treatment or bioremediation of toxic xenobiotic components. In
this study, Pseudomonas strain Al-Dhabi-126, isolated from the metal-contaminated environment, was
highly resistant to Cd and had grown well at a dose level of 2100 µg/mL. Al-Dhabi-126 effectively
removed Cd at a pH between 6.0 and 8.0. This present study suggests the application of the strain
Al-Dhabi-126 for the effective bioremediation of water contaminated with Cd.
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