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Abstract: Background: Many methods for measuring body fat have been developed, but applications
in clinical settings are limited. For this reason, researchers have tried to identify different formulas
for its estimation but most of are hard to incorporate into daily work due to the variability in
population and difficulty of use. The aim of this study was to develop and validate a new equation
for the simplified estimation of body fat using the Clínica Universidad de Navarra – Body Adiposity
Estimator (CUN-BAE) as a reference. Methods: This research was conducted in two phases. In the
first, the new body fat estimation equation was developed. The developed equation was validated in
the second phase. Pearson’s linear correlation, raw and adjusted linear regressions, the intraclass
correlation coefficient, and Bland–Altman graphs were used. Results: The variables that best adjusted
the body fat percentage were age, sex, and the Napierian logarithm of Body Mass Index (LnBMI),
forming the Equation Córdoba for Estimation of Body Fat (ECORE-BF) model. In its validation, the
model presented correlation values of 0.994, an intraclass correlation coefficient of 0.960, with the
Bland–Altman graph indicating means differences of 1.82 with respect to the estimation with the
CUN-BAE. Nevertheless, although the aim was to simplify the CUN-BAE, the main limitation of this
study is that a gold standard, such as air displacement plethysmography (ADP) or dual-energy X-ray
absorptiometry (DXA), was not used. Conclusions: The proposed equation (ECORE-BF) simplified the
CUN-BAE and provided a precise method, respecting the principle of parsimony, for the calculation
of body fat.

Keywords: adults; anthropometry; body fat; obesity

1. Introduction

Obesity is defined as being an excess of adipose tissue that may cause health problems [1] and
is considered a key risk factor in the development of several chronic diseases such as ischemic heart
disease, arterial hypertension, the onset and recovery difficulties of osteo-articular problems, some
types of cancer, alterations in the fecundity capacity of men and women, and all-cause mortality [2–6].
The prevalence of being overweight and obesity is continuously increasing, having increased up to
39% and 13%, respectively in 2016 worldwide [7].
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Scientific evidence has demonstrated how the amount of body fat and its distribution are
influenced by diverse factors, like sex, age, and suffering from certain pathologies or under particular
circumstances [8–10]. Body fat, both visceral and subcutaneous, is closely related to increased insulin
resistance and the subsequent development of metabolic syndrome and type 2 diabetes mellitus [11],
which makes it a useful clinical parameter for the prediction and prevention of these diseases.

Several methods are available for measuring body fat, including computerized axial tomography
(CT), magnetic resonance imaging (MRI), dual-energy X-ray absorptiometry (DXA), air displacement
plethysmography (ADP), and the evaluation of body composition with a four-component model.
The latter is based on several techniques (ADP or hydrostatic weighing (UWW), deuterium dilution,
and DXA), and is considered to be the gold standard [12,13]. However, given the issues with using these
techniques (large-size devices, high costs, use of radiation, etc.), using them for a body composition
study in clinical practice, despite their accuracy, is challenging [14,15].

For that reason, researchers have formulated diverse equations for the estimation of different
parameters. With regard to body fat percentage (BF%), simple access indexes are available, such as the
body mass index (BMI) [16] or the body adiposity index (BAI) [14], among others [17]. Other formulas
frequently employed, as they are non-invasive and easy to apply [18], are based on the measurement
of body folds. However, deciding which formula to use for its precision and efficiency continues to
be a controversial subject both in clinical and research contexts. BMI and BAI are still under debate
due to their low correlation with body fat percentage for two reasons: Both do not consider important
variables such as age, sex, and because they do not indicate body composition [14,16]. Similarly, due to
the large variability in the population to which they are applied, and depending on the professional
obtaining the measurements, estimations based on the study of skin folds are also disputed [18–20].

Gómez-Ambrosi et al. developed a body fat estimator, the Clínica Universidad de Navarra-Body
Adiposity Estimator (CUN-BAE), using ADP, and obtained a correlation of 0.89 with only three
variables (age, sex, and BMI) [21]. This formula also achieved good results for the detection of
cardiometabolic risk factors when compared with other indexes used for this purpose. CUN-BAE has
shown a strong association with metabolic syndrome risk in women (odds ratio (OR) = 6.12) and men
(OR = 5.83) [22], arterial hypertension, and type 2 diabetes mellitus [23], which pathologies with a
high prevalence [24,25]. As has been demonstrated in other works [26], this estimator is complex due
to requiring a calculation with nine components ((CUN − BAE (BF%) = −44.988 + (0.503×Age)
+ (10.689× Sex) + (3.172× BMI) −

(
0.026× BMI2

)
+ (0.181× BMI × Sex) − (0.02× BMI ×Age)

−

(
0.005× BMI2

× Sex
)
+
(
0.00021× BMI2

×Age
)
, in which a man = 0 and a woman = 1 for the

sex variable). However, despite the relevance of CUN-BAE, it could be improved for two reasons.
Firstly, as highlighted in other research, it is difficult to calculate because it requires nine components.
The principle of parsimony, or Ockham’s razor principle, recommends using the simplest model that
best fits the measurements. Thus, over-fitting, which means adding more variables to the model,
to explain more variability, is considered a methodological limitation [27,28]. However, its complexity
means that in clinical real settings, in which software for calculation may not be available, CUN-BAE
cannot be used. Since the CUN-BAE is associated with the risk of suffering from the most frequent
chronic diseases, its access must be guaranteed in all circumstances, demonstrating the need for the
simplest modeling possible, as has been conducted in other populations [29].

For these reasons, the objective of this study was to develop and validate a new body fat estimation
equation, reducing the factors required, simplifying the final formula, respecting the principle of
parsimony for multivariate modeling, and using the estimations of the CUN-BAE as a reference.

2. Materials and Methods

2.1. Study Design, Population, and Sample

This research was conducted in two phases. All data were collected from the staff at the City
Council of Córdoba (Spain).
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2.1.1. Phase I

Phase I was a cross-sectional study with the aim of creating a tool for the estimation of BF% with
respect to the reference method (CUN-BAE). The sample (n1) was composed of 906 workers selected
randomly among those who had underwent an occupational health examination at the City Council
Occupational Health Uni, during the period between 2017 and 2019.

2.1.2. Phase II

The purpose of the second phase was to verify the precision of the proposed estimation method.
It was performed with a sample (n2) of 2000 workers, randomly selected among those employed
during the period between 2018 and 2019. The workers included in the one sample did not participate
in the other (the n1 and n2 samples were mutually exclusive).

2.2. Study Variables and Measurement

The BF% (result variable) was calculated using the formula proposed by the Clínica Universidad
de Navarra, the CUN-BAE [21], and used as the reference method (gold standard):

CUN − BAE (BF%) =

−44.988 + (0.503 × Age) + (10.689 × Sex)
+ (3.172× BMI) −

(
0.026 × BMI2

)
+ (0.181 × BMI × Sex)

− (0.02 × BMI × Age) −
(
0.005 × BMI2

× Sex
)

+
(
0.00021 × BMI2

× Age
)

The independent variables collected were: Sex (men and women), age (in years), weight (kg),
height (cm), and BMI (kg/m2).

The anthropometric measurements were recorded following the recommendations in the
standardized anthropometry reference manual [30] by experienced staff to decrease the variation
coefficient. Each measurement was recorded three times and the mean value was calculated. The height
and weight were measured with a precision of 0.1 cm and 0.1 kg, respectively, using a stadiometer and
Atlántida S11 balance (Básculas y Balanzas Añó-Sayol, Barcelona, Spain)

To classify the nutritional state of the study population according to their BMI, the recommendation
established by the World Health Organization (WHO) [31] was followed. The sample was categorized
in terms of the body fat estimated by the CUN-BAE formula, in accordance with the cut-off points
for a Caucasian population [32]: For women: Normal weight, ≤30%; overweight, 30.1%–35%; obese,
>35.1%; and Men: normal weight, ≤20%; overweight, 20.1%–25%; obese, >25.1%.

2.3. Ethical and Legal Aspects

All the workers were informed, verbally and in writing, of the objectives of the health study to
which they were being submitted, and an informed consent was obtained from each in compliance with
the current regulations. The study’s protocol complied with the Declaration of Helsinki for conducting
medical research involving human subjects and was approved by Bioethics Committee of Córdoba
(Spain) (4427/Acta number 295).

2.4. Statistical Analysis

The quantitative variables are presented as the mean and standard deviation, the qualitative
values presented as frequencies and percentages.

To contrast the goodness-of-fit to a normal distribution of the data from the quantitative variables,
the Kolmogorov–Smirnov test with the Lilliefors correction was employed. The Student’s t-test for two
means was performed for the bivariate hypothesis contrast, whereas for the qualitative variables, the
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Chi-square and Fisher exact test were used when necessary. In addition, for the correlation between
the quantitative variables, the Pearson’s correlation coefficient (r) was used.

We used raw linear regressions with each predictive variable and adjusted linear models to obtain
new body fat estimation formulas. To determine the goodness-of-fit of the models, we analyzed the
standard error, the adjusted coefficient of determination, the F statistic, the linearity analysis, and
the residues.

We quantitatively analyzed the degree of concordance with the reference method with the
intraclass correlation coefficient (ICC) and, graphically, with the Bland–Altman Method, used the
sample n2 for this purpose.

For all the statistical analyses, the probability of an α error of below 5% (p < 0.05) was considered
statistically significant and the confidence interval was calculated at 95%. For the statistical analysis,
IBM SPSS Statistics 22.0 software (IBM, Chicago, IL, USA) and Epidat 4.2. (Department of Sanidade,
Xunta de Galicia, Galicia, Spain) were used.

3. Results

3.1. Prevalence of Overweight and Obesity (n1)

Out of a total of 906 workers, 63.1% were men. The mean age was of 42± 9.5 years (95% CI: 41.4–42.7
years). The prevalence of obesity following BMI criteria (≥30 kg/m2) was 17.5% (95% CI: 15.1%–20.2%),
reaching 19.9% (95% CI: 16.7%–23.4%) in men, and 13.5% (95% CI: 10%–17.6%; p < 0.001) in women.
However, according to the body fat percentage of the CUN-BAE, global obesity prevalence was 53%
(95% CI: 49.7%–56.3%), at 57.5% (95% CI: 53.3%–61.6%) in men and 45.2% (95% CI: 39.8%–50.7%) in
women (p < 0.001). Table 1 summarizes the main characteristics of sample n1.

Table 1. Description of sample n1.

Variable
Total

n = 906
Men

n = 572
Women
n = 334 p

Mean (SD) or n (%) Mean (SD) or n (%) Mean (SD) or n (%)

Age (years) 42 (9.5) 42.3 (9.9) 41.3 (8.7) 0.071
Weight (kg) 75.4 (15) 81.6 (12.9) 64.6 (12.2) <0.001
Height (m) 168.9 (8.8) 173.4 (6.4) 161.2 (6.5) <0.001

BMI (kg/m2) 26.3 (4.4) 27.1 (3.9) 24.9 (4.7) <0.001
Underweight 11 (1.2%) 5 (0.9%) 6 (1.8%) 0.221

Normal weight 358 (39.5%) 168 (29.4%) 190 (56.9%) <0.001
Overweight 378 (41.7%) 285 (49.8%) 93 (27.8%) <0.001

Obesity 159 (17.5%) 114 (19.9%) 45 (13.5%) <0.05
CUN-BAE 29.6 (7.3) 26.4 (5.7) 34.9 (6.5) <0.001

Normal weight 137 (15.1%) 58 (10.1%) 79 (23.7%) <0.001
Overweight 289 (31.9%) 185 (32.3%) 104 (31.1%) 0.707

Obesity 480 (53%) 329 (57.5%) 151 (45.2%) <0.001

Note: BMI, body mass index; CUN-BAE, Clínica Universidad de Navarra-Body Adiposity Estimator.

3.2. Bivariate Analysis and Unadjusted Linear Regression

With respect to the BMI categories, statistically significant differences were found between the BMI
categories and age, weight, and BF% according to the CUN-BAE (p < 0.001). The means of age, weight,
and BF% increased from one category to the next, and the means were lower in the underweight
category and higher in the obesity category (p < 0.001).

A direct correlation between the BF% using CUN-BAE and weight (r = 0.273), age (r = 0.373),
BMI (r = 0.640), and its Napierian logarithm (LnBMI) (r = 0.625) was observed. We found an inverse
correlation with height (r = −0.478). All the correlations found were statistically significant (p < 0.001).
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The correlation between predictive variables and body fat (CUN-BAE) was higher when each sex
was analyzed independently, and higher in women than in men, except for BMI (Table 2).

Table 2. Bivariate correlation by sex using CUN-BAE.

Sex Age Weight Height BMI LnBMI

Men 0.471 ** 0.822 ** −0.115 * 0.970 ** 0.977 **

Women 0.541 ** 0.868 ** −0.225 ** 0.969 ** 0.986 **

Note: * p < 0.01; ** p < 0.001; BMI, body mass index; Ln: Napierian logarithm.

Finally, after performing unadjusted regression models, BMI was the best variable adjusting
to CUN-BAE, with a coefficient of determination (R2) of 0.408, followed by LnBMI (R2 = 0.390).
The determination coefficients were higher for women, except for BMI (Table 3).

Table 3. Raw simple regression.

Global

Variable R2 Constant 95% CI Coefficient SE 95% CI p

Age 0.138 17.589 15.594–19.584 0.285 0.024 0.239–0.332 <0.001
Sex 0.318 26.433 25.948–26.937 8.552 0.415 7.708–9.336 <0.001

Weight 0.074 19.587 17.246–21.928 0.113 0.016 0.102–0.163 <0.001
Height 0.227 96.788 88.708–104.868 −0.398 0.024 −0.446–−0.350 <0.001

BMI 0.408 1.370 −0.874–3.614 1.072 0.043 0.988–1.156 <0.001
LnBMI 0.390 −63.445 −71.044–−55.847 28.562 1.187 26.232–30.892 <0.001

Men

Age 0.221 14.974 13.160–16.789 0.270 0.021 0.228–0.312 <0.001
Weight 0.675 −3.419 −5.141–−1.696 0.366 0.011 0.345–0.387 <0.001
Height 0.011 44.118 31.542–56.694 −0.102 0.037 −0.174–−0.029 <0.001

BMI 0.940 −12.453 −13.268–−11.637 −1.434 0.015 1.287–1.359 <0.001
LnBMI 0.955 −105.321 −107.677–−102.964 40.046 0.364 39.330–40.761 <0.001

Women

Age 0.291 18.248 15.387–21.115 0.405 0.035 0.337–0.472 <0.001
Weight 0.752 5.070 3.188–6.951 0.462 0.015 0.433–0.491 <0.001
Height 0.048 71.521 54.453–88.590 −0.227 0.054 −0.333–−0.121 <0.001

BMI 0.939 1.977 1.056–2.897 1.323 0.018 1.287–1.359 <0.001
LnBMI 0.971 −82.439 −84.616–−80.263 36.685 0.345 36.006–37.364 <0.001

Note: BMI, body mass index; Ln: Napierian logarithm; R2, coefficient of determination (goodness of fit); SE, standard error;
CI, confidence interval.

3.3. Multiple Linear Regression Models (Adjusted) and Clinical Agreement of the Proposed Models

Table 4 presents the multiple linear regression models (adjusted, BF%n) obtained for the prediction
of body fat percentage together with the correlation and goodness-of-fit of the model with respect to
the reference model (CUN-BAE).

The BF%1 model explained 98.5% of the variability of the fat percentage estimated by the
CUN-BAE formula and has a coefficient of clinical agreement of 0.992 (95% CI: 0.991–0.993). Although
the BF%2 model explained 95.8% of the variability, the clinical agreement coefficient was 0.625 (95% CI:
0.584–0.663). Similarly, the BF%3 model accounted for 97.3% of the variability but its ICC was 0.631
(95% CI: 0.590–0.670).

When age is incorporated into two models (BF%2 and BF%3), the equations obtained agreed
more with the CUN-BAE, although the variations in the adjusted coefficient of determination are not
significant. The BF%4 model explained 98.6% of the variability and had a higher correlation and similar
agreement to that demonstrated by the first model (0.993; 95% CI: 0.992–0.994). Finally, BF%5 best
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fit CUN-BAE. This model explained a greater variability (99.6%), had better correlation (0.998) and a
higher clinical agreement (0.998; 95% CI: 0.997–0.998).

Table 4. Multiple linear regression models.

Model Standardized
Beta Coefficient R2 SE r p

BF%1
52.316 + 0.142 (age) + 11.521 (sex) + 0.456 (weight) – 0.399 (height)

Age 0.185

0.985 0.888 0.992 <0.001
Sex 0.763

Weight 0.941
Height −0.478

BF%2
−11.034 + 11.535 (sex) + 1.382 (BMI)

Sex 0.764
0.958 1.496 0.979 <0.001BMI 0.824

BF%3
−100.045 + 11.982 (sex) + 38.442 (LnBMI)

Sex 0.793
0.973 1.202 0.986 <0.001LnBMI 0.841

BF%4
−14.181 + 0.134 (age) + 11.483 (sex) + 1.288 (BMI)

Age 0.176
0.986 0.871 0.993 <0.001Sex 0.760

BMI 0.768

BF%5
−97.102 + 0.123 (age) + 11.900 (sex) + 35.959 (LnBMI)

Age 0.161
0.996 0.461 0.998 <0.001Sex 0.788

LnBMI 0.787

Note: BF%n, body fat estimation model; Sex, men = 0, women = 1; BMI, body mass index; Ln: Napierian logarithm;
R2, coefficient of determination (goodness of fit); SE, standard error; r, Pearson’s linear correlation.

We found the correlation and clinical agreement of sex were reduced in BF%1 and BF%2 for both
men and women. A similar phenomenon occurred with BF%3, except that it maintained the correlation
at 0.986 for women. The BF%5 model remained robust for both measurements, its correlation was
not altered and its ICC only diminished by one thousandth (Table 5), which confirms its predictive
superiority compared to the other models.

Table 5. Bivariate correlation and ICC by sex.

Gold
Standard Test BF%1 BF%2 BF%3 BF%4 BF%5

Men

CUN-BAE
r 0.991 * 0.970 * 0.977 * 0.993 * 0.998 *

ICC 0.991
(0.989–0.992)

0.481
(0.415–0.541)

0.492
(0.427–0.551)

0.992
(0.991–0.994)

0.997
(0.996–0.997

Women

CUN-BAE
r 0.987 * 0.969 * 0.986 * 0.985 * 0.998 *

ICC 0.985
(0.982–0.988)

0.606
(0.533–0.669)

0.600
(0.527–0.664)

0.985
(0.981–0.988)

0.997
(0.996–0.998)

Note: * p < 0.001; 95% CI shown in parentheses; BF%n, body fat estimation model; CUN-BAE, Clínica Universidad
de Navarra-Body Adiposity Estimator; r, Pearson’s linear correlation; ICC, intraclass correlation coefficient.

Table 6 and Figure 1 show that according to the Bland–Altman graphs, the model with the greatest
clinical concordance is BF%5, demonstrating a difference in means and a lower dispersion than the
other models.

Depending on sex (Table 6), model BF%5 agreed the best with CUN-BAE. As such, the BF%5

was considered the best equation for estimating body fat and we called it the Equation Cordoba for
Estimation of Body Fat (ECORE-BF).
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Table 6. Model agreement with CUN-BAE.

Model Mean Difference (±SD) p 95% CI

Global

BF%1 −0.002 (±0.899) 0.959 −1.763 to 1.760
BF%2 0 (±6.249) 1.000 −12.247 to 12.247
BF%3 0 (±6.227) 1.000 −12.205 to 12.205
BF%4 −0.002 (±0.886) 0.948 −1.739 to 1.735
BF%5 −0.000 (±0.466) 0.989 −0.913 to 0.913

Men

BF%1 −0.002 (±0.776) 0.961 −1.523 to 1.519
BF%2 −1.351 (±6.226) 1.000 −13.553 to 10.851
BF%3 1.298 (±6.138) 1.000 −13.329 to 10.733
BF%4 −0.001 (±0.688) 0.977 −1.349 to 1.348
BF%5 0 (±0.440) 0.991 −0.863 to 0.863

Women

BF%1 −0.001 (±1.079) 0.981 −2.115 to 2.113
BF%2 2.314 (±5.581) 1.000 −8.625 to 12.252
BF%3 2.224 (±5.738) 1.000 −9.023 to 13.470
BF%4 −0.004 (±1.150) 0.953 −2.258 to 2.251
BF%5 −0.001 (±0.507) 0.973 −0.994 to 0.993

Note: BF%n, body fat estimation model; CI, confidence interval.
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3.4. Validation of the ECORE-FW Method with n2 Sample

Of the 2000 workers composing sample n2, 1022 (51.1%) were women, with a global mean age of
43.6 ± 10.9 years (95% CI: 43.1–44.0). The mean BMI was 26.7 ± 5.5 g/m2 (95% CI: 26.6–27.0). Given the
characteristics of n2, statistically significant differences were found between sex, age, and BMI with
respect to sample n1. With respect to the body fat percentage, the mean was 33.7 ± 10.6% (95% CI:
33.2–34.2) and 31.9 ± 8.8% (95% CI: 31.5–32.3) for CUN-BAE and ECORE-BF, respectively.

The correlation obtained between both methods for estimating the body fat percentage (CUN-BAE
and ECORE-BF) was 0.994. With regard to sex, the correlation increased to 0.998 for men and women.
For the clinical agreement, we observed that the global ICC value was 0.960 (95% CI: 0.957–0.964). For men
and women, the ICC was 0.997 (95% CI: 0.997–0.998) and 0.910 (95% CI: 0.897–0.917), respectively.

We found a difference in the Bland–Altman agreement means of 1.819 (±2.079), the limits being
−2.256 and 5.895. In terms of sex, the difference in means for men was 0.032 (±0.487), with the limits of
−0.922 and 0.985, and 3.531 (±1.498) with the limits for 0.595 and 6.470 for women (Figure 2).Int. J. Environ. Res. Public Health 2019, 16, x 9 of 14 

 

 
Figure 2. Validation of the proposed model (ECORE-BF: Equation Córdoba for Estimation of Body Fat). 

4. Discussion 

The objective of this study was to develop and validate an equation that would simplify the 
CUN-BAE equation considering the principle of parsimony for multivariate modeling [21]. 

First, the prevalence of overweight (41.7%) and obesity (17.5%) found in sample n1 according to 
BMI criteria was higher than that presented by the WHO in its latest report [7]. Sex-wise, the men 
showed a significantly higher proportion of obesity than the women, which has already been 
observed in a working population [26]. However, the BMI taken as a single reference, as has been 
reported previously [33], underestimates obesity prevalence as it does not differentiate fat mass from 
muscle mass [14]. The results show how the obesity prevalence rises to 53% when studied in terms 
of the percentage of body fat. Regardless, most field studies use BMI as a classification method [34] 
and it is also employed as an estimator of the body fat percentage [35] due to the good correlation (r 
= 0.640) found in different populations [36]. 

However, although the BMI and other indexes are used to estimate body fat [17], in their 
calculation, they do not include important variables like age (r = 0.373) and sex [15]. Sex has an increased 
correlation with all variables, especially BMI (r = 0.640 at 0.970 for men and 0.969 for women). 

New estimation equations adjusted for sex and age improve the versions that do not include 
those variables in their adjustment [21]. In this respect, we observed how BMI (BF%2 and BF%4) 
improved capacity to explain the variability when age and sex were incorporated (R2 = 0.408 up to R2 

= 0.986) and had high levels of clinical agreement. Age is the variable least modifying the goodness-
of-fit the model evaluated through the adjusted coefficient of determination [26]. 

Liu et al. [37] published three equations to estimate the body fat in the Chinese population and 
successfully explained 81.1% of the variability. As with CUN-BAE, it is a complex formula with over 
six terms and including one more variable, the waist perimeter. Similarly, Kanellakis et al. [38] 
proposed two methods for the estimation of body fat but, despite possessing good intraclass 
correlation values (0.955 and 0.976), the formulas presented are complicated and require several 
anthropometric measurements. 

The validation of several estimation formulas in different populations has produced highly 
variable results in the adjustment with respect to the reference method, obtaining R2 values between 
0.66 and 0.77 [39]. The validation in menopausal women showed similar results, with a high 
dispersion in the estimation of body fat, and the formulas, including the BMI, explained the 
variability best over and above skin folds [40]. However, the use of the transformation of the BMI by 
calculating its Napierian logarithm (LnBMI) significantly improves the fit of the models presented 
(BF%3 and ECORE-BF). Individually, the LnBMI poorly fitted the estimated value of the BF% (R2 = 
0.390) compared with BMI. However, when introducing sex and age into the equation, the 
explanation of the variability rose to 99.6% and the clinical agreement increased both globally and 
when differentiated by sex. These values were maintained when applying the formula to another 
working population with similar characteristics, showing better fits that other studies   that used 
the bioelectrical impedance analysis (BIA) as the gold standard [26]; the latter has not shown a good 
correlation when using the DXA as a reference test [41]. 

Figure 2. Validation of the proposed model (ECORE-BF: Equation Córdoba for Estimation of Body Fat).

4. Discussion

The objective of this study was to develop and validate an equation that would simplify the
CUN-BAE equation considering the principle of parsimony for multivariate modeling [21].

First, the prevalence of overweight (41.7%) and obesity (17.5%) found in sample n1 according to
BMI criteria was higher than that presented by the WHO in its latest report [7]. Sex-wise, the men
showed a significantly higher proportion of obesity than the women, which has already been observed
in a working population [26]. However, the BMI taken as a single reference, as has been reported
previously [33], underestimates obesity prevalence as it does not differentiate fat mass from muscle
mass [14]. The results show how the obesity prevalence rises to 53% when studied in terms of the
percentage of body fat. Regardless, most field studies use BMI as a classification method [34] and it is
also employed as an estimator of the body fat percentage [35] due to the good correlation (r = 0.640)
found in different populations [36].

However, although the BMI and other indexes are used to estimate body fat [17], in their calculation,
they do not include important variables like age (r = 0.373) and sex [15]. Sex has an increased correlation
with all variables, especially BMI (r = 0.640 at 0.970 for men and 0.969 for women).

New estimation equations adjusted for sex and age improve the versions that do not include those
variables in their adjustment [21]. In this respect, we observed how BMI (BF%2 and BF%4) improved
capacity to explain the variability when age and sex were incorporated (R2 = 0.408 up to R2 = 0.986)
and had high levels of clinical agreement. Age is the variable least modifying the goodness-of-fit the
model evaluated through the adjusted coefficient of determination [26].

Liu et al. [37] published three equations to estimate the body fat in the Chinese population and
successfully explained 81.1% of the variability. As with CUN-BAE, it is a complex formula with over
six terms and including one more variable, the waist perimeter. Similarly, Kanellakis et al. [38]
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proposed two methods for the estimation of body fat but, despite possessing good intraclass
correlation values (0.955 and 0.976), the formulas presented are complicated and require several
anthropometric measurements.

The validation of several estimation formulas in different populations has produced highly variable
results in the adjustment with respect to the reference method, obtaining R2 values between 0.66 and
0.77 [39]. The validation in menopausal women showed similar results, with a high dispersion in the
estimation of body fat, and the formulas, including the BMI, explained the variability best over and
above skin folds [40]. However, the use of the transformation of the BMI by calculating its Napierian
logarithm (LnBMI) significantly improves the fit of the models presented (BF%3 and ECORE-BF).
Individually, the LnBMI poorly fitted the estimated value of the BF% (R2 = 0.390) compared with
BMI. However, when introducing sex and age into the equation, the explanation of the variability rose
to 99.6% and the clinical agreement increased both globally and when differentiated by sex. These
values were maintained when applying the formula to another working population with similar
characteristics, showing better fits that other studies that used the bioelectrical impedance analysis
(BIA) as the gold standard [26]; the latter has not shown a good correlation when using the DXA as a
reference test [41].

In all the formulas proposed, the BMI was the variable most influencing the determination of body
fat, followed by sex. This changed with the incorporation of LnBMI in which the sex was the variable
with more influence (0.788). Thus, this variable increases in importance in body fat determination due
to women having 10% more body fat on average [32]. The results established based on standardized β

coefficients cannot be compared with other works because they have not been published.
The use of estimation equations may cause various problems as the correlation of the formulas

developed vary depending on the reference method used [42] and on the selection of the reference
population [34]. For those reasons, as posited by other authors [9], the use of one model or another
has to be conditioned by the population studied and by its situation or condition. In addition to the
other factors mentioned, the ethnic group may also be a determining factor [13], which complicates the
comparison of the results. Furthermore, most of the estimation formulas used in the literature were
validated in highly varied populations with distinct characteristics, which complicates their use in
current populations [38]. The proposed equation was developed and validated in a population with
similar characteristics to that studied by the CUN-BAE, so it is suitable for use in a similar population.

Another issue arising in this study is that a tendency exists to overestimate body fat in slim
people and underestimate it in obese people, regardless of the method used [18]. This has been amply
corroborated [43] and causes the correlations found to be lower than the most up-to-date values [38].
This situation is aggravated when the overweight or obesity present extreme values, which may affect
the CUN-BAE formula as it was calculated by employing the ADP [44] as a reference.

The above evidence demonstrates the need to use equations that best adapt themselves to a
specific population with given characteristics (sportspeople, pathologies, slim people, etc.) [9,45–49].

Despite these difficulties, using estimation formulas continues to be a feasible strategy as it
guarantees a reduction in the costs and time required to take measurements [45]. In addition, the
formulas have shown a good correlation for the detection of the risk of prevalent pathologies and
cardiovascular danger factors [16,21,50]. Formulas based on skin folds guarantee a good correlation
with respect to DXA [20], but anthropometric measurements, especially in extreme cases like obesity,
cause underestimation problems due to their measurement difficulties [51]. However, no formula or
method is free from limitations [13,17,52–54].

Given the above, we think that employing ECORE-BF is an efficient method for the estimation of
body fat could guarantee accuracy, speed, and simplicity. Since only weight and height are required
for its calculation in clinical settings, only basic anthropometry skills from healthcare professionals
are necessary. However, as a surrogate method was used as a reference for its development and the
population with which the formula was validated (individuals with work capacity and aged between
18 and 65 years), these limitations should be highlighted. Despite these limitations, the CUN-BAE
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showed a high correlation concerning ADP (r = 0.89) and a strong association with chronic health
problems [21,22,55]. For this reason, the simpler ECORE-BP could be useful when more precise tools
are not available.

Limitations

The main limitation of this study is that a gold standard, such as ADP or DXA, was not used.
The use of the CUN-BAE as a reference method does not allow evaluating the real capacity of the
proposed method to estimate body fat, due to the limitations of the original equation. Therefore,
future work should compare the results obtained by ECORE-BP with more precise methods such as
those mentioned. Another limitation of the study is that we found variability in the composition of
samples n1 and n2 in terms of sex, age, and BMI. Nevertheless, the model was shown to be accurate in
both samples, even when we found significant differences between them. ECORE-BP not being more
accurate on a particular population over another could be one strength of this formula.

5. Conclusions

ECORE-BF is a simplification of the CUN-BAE formula that produced precise results with a
reduction of the components involved in its calculation. Since ECORE-BF followed the principle
of parsimony from multiple regressions, the new formula could be considered as a methodological
improvement on CUN-BAE. This simplification is an adaptation of the formula that increased its
usability in clinical settings, only requiring basic anthropometry skills from healthcare professionals.
ECORE-BF could be applied in settings where more precise tools or specifically trained personnel are
not available, or when exposure to radiation must be avoided.
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