Risk factors for acute rheumatic fever: Protocol for a case-control study in New Zealand Supplementary material

Michael G Baker*, Jason Gurney, Jane Oliver, Nikki Moreland, Deborah Williamson, Nevil Pierse, Nigel Wilson, Tony R Merriman, Teuila Percival, Colleen Murray, Catherine Jackson, Richard Edwards, Lyndie Foster Page, Florina Chan Mow, Angela Chong, Barry Gribben, Diana Lennon

*Corresponding author: Department of Public Health, University of Otago, Wellington Box 7343 Wellington, New Zealand 6242 Email: michael.baker@otago.ac.nz

Contents of supplement:

Supplementary Table S1: Incidence of ARF hospitalisations (numbers and annual rates per 100,000) by District Health Board, 2010–2014

Supplementary Table S2: Summary of previous ARF and RHD risk factor studies

Supplementary Table S3: Factors investigated in the ARF Risk Factors Study

Supplementary Table S4: Potential risks to study effectiveness and their management

Supplementary Figure S1: Case recruitment algorithm used by clinicians

Supplementary Table S1: Incidence of ARF hospitalisations (numbers and annual rates

per 100,000) by District Health Board, 2010–2014

District Health	Populat-	Populat-	ARF	First	First	First	First	First ARF
Board	ion 2013	ion <20	hospital-	ARF	ARF	ARF	ARF	hospital-
		years	isations,	hospital-	hospital-	hospital-	hospital-	isations
			total no.	isations,	isations,	isations	isations	<20 years,
			2010-14	total no.	<20	<20	<20	annual
				(deduct	years	years,	years	average
				readmiss	old, total	annual	% of NZ	rate
				ions)	no.	average	total	(/100,000
						no.		children)
Northland*	151692	42378	90	63	47	9.4	8.9	22.2
Waitemata*	525555	144942	80	53	42	8.4	8.0	5.8
Auckland*	436341	109014	80	65	47	9.4	8.9	8.6
Counties Manukau*	469293	150099	377	282	207	41.4	39.2	27.6
Waikato*	359310	103344	78	63	50	10	9.5	9.7
Lakes*	98187	28773	37	27	16	3.2	3.0	11.1
Bay of Plenty*	205995	56508	49	35	25	5	4.7	8.8
Tairawhiti*	43653	13782	15	14	10	2	1.9	14.5
Hawkes Bay*	151692	43116	24	20	13	2.6	2.5	6.0
Taranaki	109752	30015	6	5	2	0.4	0.4	1.3
Whanganui	60120	16407	8	6	4	0.8	0.8	4.9
Midcentral	162564	44799	12	9	8	1.6	1.5	3.6
Wairarapa	41112	10752	2	2	1	0.2	0.2	1.9
Hutt Valley*	138378	38517	38	33	23	4.6	4.4	11.9
Capital and Coast*	283704	73626	32	29	19	3.8	3.6	5.2
North Island Total	3237348	906072	928	706	514	102.8	97.3	11.3
Nelson Marlborough	136995	33891	5	5	3	0.6	0.6	1.8
West Coast	32148	7974	2	2	1	0.2	0.2	2.5
Canterbury	482178	122784	21	17	8	1.6	1.5	1.3
South Canterbury	55626	13506	0	0	0	0	0	0.0
Southern	297423	77133	6	6	0	0	0	0.0
South Island Total	1004694	255324	34	30	12	2.4	2.3	0.9
Unknown	-	-	2	2	2	0.4	0.4	-
NZ total	4242048	1161387	964	738	528	105.6	100	9.1

* RFRF case-control study = 11 DHBs in North Island

Supplementary Table S2: Summary of previous ARF and RHD risk factor studies

This structured review used the following search strategy:

- Databases searched: Medline/Pubmed, Embase plus manual search of references
- Outcomes: Acute rheumatic fever, Rheumatic heart disease
- Study design: cohort, case-control, cross-sectional
- Exclusion: Ecological studies, Non-English language, No comparison group, No statistical analysis of risk factors

Author,	Design	Outcome	Place	Population	Age	Ν	Risk factors or	Effect :
year, ref					group		interventions	OR (CI), RR (CI)
								HR (CI), aHR (CI)
ARF								
Entine	Case-	ARF	USA	Cases: Children	4-17yo	Cases: 100	Univariate:	
1949 [1]	control	incident		diagnosed with ARF		Controls:	Non-suppurative	OR 11.82 (4.0-34.93)
		case		attending outpatient		100	gingivitis	
				and ARF clinics,			Soft white tooth	OR 2.75 (1.42-5.33)
				Controls: healthy			deposit/decalcification	(,
				children attending a			Discoloration (orange-	
				periodontics			brown)	OK 9.60 (3.83-24.07)
				appointment at			Average number of	
				Temple University			Carries/Restorations/	Statistical testing not
				School of Dentistry.			Extractions (CRE) were	reported
							higher in ARF cases	
							(13.2) compared with	
							controls (8.1)	
Grave	Case-	ARF	Australia	Sydney children:	2-12	120 cases,	Univariate:	
1957 [2]	control	incident		Cases: diagnosed	years	100	Breadwinner is	"Stat. significant"
		case		with ARF, Controls:		controls	unskilled labourer/	
				out-patients with			receiving social service	"Stat significant"
				non-rheumatic			benefit	Sut. significant
				conditions.			Substandard housing	
							Sleeping space <300	"Stat. significant"
							cubic feet per person	
							Damp house	"Stat. significant"
							Poor sewage/drainage	"Stat. significant"
							i ooi sewage/uramage	"Stat. significant"
							Low family income	

Author,	Design	Outcome	Place	Population	Age	N	Risk factors or	Effect :
year, ref					group		interventions	OR (CI), RR (CI)
								HR (CI), aHR (CI)
Coburn	Cross-	ARF	USA	Families surveyed in	7-15	Cross	Univariate:	
1960 [3]	section	incident		the Bridgeport	years	section	Low egg consumption	p<0.01
		case		district to identify		1039, cases	Other distant factors	p olor
				rheumatic children,		153,	(low consumption of	NIC
				cases verified by		controls	milk, protein vitamins	185
				clinicians.		886	A&C)	
				Controls had no				
				history of				
				ARF/RHD.				
Adanja et	Case-	ARF	Yugoslavi	Cases: ARF patients	Adults	148 cases,	Univariate:	
al 1988	control	incident	а	identified through	and	444	Living space <5m2	RR 2.83 (1.19 - 6.71)
[4]*		case		reports to health	children	controls	\geq 2 people per room	RR 1.72 (1.08 - 2.72)
				within 1 year of	participa		\geq 2 people per bed	RR 1.65 (1.02 - 2.66)
				their first attack.	nts <20			
				Controls: Healthy	years		Deteriorated house	RR 1.83 (1.12 - 2.98)
				participants	old)		Damp house	RR 2.48 (1.34 - 4.61)
				matched for age,			Other poor housing	RR 2.58 (1.38-4.83)
				sex, place of			features	
				residence			Low education of	RR 2.58 (1.38 - 4.83)
							mother	RR 5 00 (1 52 - 7 93)
							Change in place of	1110.00 (1.02 7.00)
							residence in last 5 years	DD 2 01 (1 41 - 2 90)
							History of frequent sore	RR 2.01 (1.41 - 2.69)
							throat	RR 2.81 (1.68 - 4.69)
							Family history of ARF	RR 10.37 (5.31 -
							Parental unemployment	20.24)
Bahr 1989	Case-	ARF	Kuwait	Cases: ARF	Cases:	Cases: 39	Univariate:	
[5]	control	incident		diagnosis based on	children.	Controls:	Vitamin D-binding	p=0.0024 (risk
		cases		the revised (1965)	Control:	90	protein Gc2 allele (2x	measure not given)
				Jones Criteria.	Adults		more common in cases)	
				Controls: University				
				and hospital staff				
Vlajinac	Case-	ARF	Yugoslavi	Cases: ARF patients	Adults	148 cases,	Univariate:	
1989 [6]*	control	incident	a (same	identified through	and	444	ARF in family	RR 2.78 (1.67-4.63)
		case	study	reports to health	children	controls	Under-nourishment	RR 2.18 (1.33-3.58)
			populatio	administration	(95%			

Author,	Design	Outcome	Place	Population	Age	N	Risk factors or	Effect :
year, ref					group		interventions	OR (CI), RR (CI)
								HR (CI), aHR (CI)
Vlajinac 1991 [7]*	Case- control	ARF incident case	n as above: Adanja, 1988) Yugoslavi a (same study populatio n as	 within 1 year of their first attack. Controls: healthy participants matched for age, sex, place of residence Cases: ARF patients identified through reports to health administration within 1 year of 	participa nts <20 years old) Adults and children (95% participa	Cases 148, Controls 444	>2 people per room Sharing bed Home dampness Low education of mother Multivariate: Home dampness Change in place of residence in last 5 years	RR 1.60 (1.05-2.44) RR 1.43 (1.04-2.13) RR 2.70 (1.31-4.28) RR 2.01 (1.18 - 3.41) RR 2.40 (1.26- 4.58) RR 3.62 (1.15-11.35)\
			n as above: Adanja, 1988	within 1 year of their first attack. Controls: healthy participants matched for age, sex, place of residence	participa nts <20 years old)		Body weight belownormalFrequent sore throatLow education ofmotherFamily history for ARFSpace per person<5msq	RR 1.42 (1.08- 1.86) RR 2.26 (1.49- 3.39) RR 2.52 (1.29- 4.92) RR 2.98 (1.68- 5.29) RR 1.72 (0.69- 4.25) RR 1.35 (0.61- 3.00) RR 1.04 (0.99- 1.09) RR 2.08 (0.85- 5.09)
Adanja 1991 [8] *	Case- control	ARF incident case	Yugoslavi a (same study populatio n as above: Adanja, 1988	Cases: ARF patients identified through reports to health administration within 1 year of their first attack. Controls: healthy participants matched for age, sex, place of residence	Adults and children (95% participa nts <20 years old)	Cases 148, Controls 444	Univariate Food consumption Meat <3 times/wk No milk No cheese No eggs Vegetables <3 times/wk No fruit Body weight: Below normal Above normal Multivariate:	1.10 (0.73-1.66) 1.53 (0.91-2.57) 1.46 (0.83-2.57) 1.83 (0.65-5.13) 1.69 (0.56-5.13) 1.53 (0.64-3.65) 1.94 (1.23-3.07) 1.01 (0.67-1.53) 2.23 (1.09-4.53)

Author, year, ref Thomas, 1994 [9]	Design Cross- section	Outcome ARF or scarlet fever history	Place United Kingdom	Population Farmworkers: Cases with history of ARF or scarlet fever (8); Controls with no history of these illnesses	Age group	N Cases: 8 (ARF: 2, Scarlet Fever: 6) Controls: 396	Risk factors or interventions Body weight below normal No milk in diet Univariate: Exposure to dairy cattle Drinking raw milk	Effect : OR (CI), RR (CI) HR (CI), aHR (CI) 1.28 (0.97-1.63) RR 0.12 (0.02-0.99) RR 0.10 (0.01-0.85)
Zaman 1997 [10] **	Case- control	ARF incident case	Banglades	Cases with ARF, Controls with recent GAS infection	5-23 years	Cases: 44 Controls: 86	Univariate: Low income Substandard house Low height for age Low body weight for age Small dwelling space Large family size Age: <9 years 15-19 years >19 years Female gender Multivariate: Substandard house Family size >6 persons Low height for age	OR 2.37 (1.04-5.46) OR 2.93 (1.23-7.15) OR 2.68 (1.14-6.34) OR 1.36 (0.64-2.99) OR 2.14 [0.93-4.96 OR 2.03 (0.94-4.39) OR 1.19 (0.48-2.89) OR 1.52 (0.56-4.01) OR 1.52 (0.35-5.98) OR 0.59 (0.28-1.23) OR 3.18 (1.24-8.44) OR 2.08 [0.88-5.041 OR 2.68 (1.06-6.86)
Zaman 1998 [11] **	Case- control	ARF incident case	Banglades h	Cases diagnosed with ARF using Jones Criteria, Controls were hospitalised patients who did not meet the Jones criteria. Both cases and controls showed	5-20 years	Cases: 60 Controls: 104	Univariate: Higher number of siblings Larger family size Sharing bedroom Higher number of people per room Less parental schooling	(p=0.001, t-test) (p=0.89, t-test) (p=0.26, t-test) (p=0.58, t-test) (p<0.0001, t-test) (p=0.002, t-test)

year, ref group interventions	OR (CI), RR (CI)
	HR (CI), aHR (CI)
evidence of recent β- Low income	OR 3.83 (1.74-8.40)
haemolytic Low height for age	OR 2.41 (1.12-5.57)
streptococci Low weight for age	OR 3.76 (l.87-7.89)
Infection. Small upper arm	
circumference	OR 3.81 (1.95-7.63)
Food intake low in:	OR 2.60(1.36-5.08)
Egg	OR 1.67 (0.87-3.20)
Milk	OR 1.33 (0.68-2.65)
Beef	OR 2.62 (1.35-5.21)
Mutton	OR 1.07 (0.56-2.06)
Chicken	OR 1.98 (1.03-3.84)
Fish	OR 2.29 (1.20-4.45)
Pulses	OR 1.37 (0.71-2.66)
Fruits	OR 3.15 (1.61-6.34)
Parana	OR 1.02 (0.51-2.01)
Ruli (bread)	OR 1.71 (0.99-3.27)
Leafy vegetables	OR 0.28 (0.12-0.62)
Other vegetables	
Soybean	
Multivariate:	OR 2.23 (0.97-5.53)
Low height for age	OR 1.47(0.58-3.92)
Low weight for age	OR 2.40 (1.04-5.77)
Small upper arm	
circumference	
Food intake low in:	OR 2.29 (1.01-5.27)
Egg	OR 1.55 (0.66-3.61)
Milk	OR 1.11 (0.49-2.48)
Beef	OR 1.05 (0.46-2.38)
Mutton	OR 1.60 (0.69-3.74)
Chicken	OR 1.08 (0.48-2.47)
Fish	OR 1.48 (0.67-3.31)
Pulses	OR 1.66 (0.74-3.74)
	OR 0.81 (0.34-1.88)

Author,	Design	Outcome	Place	Population	Age	Ν	Risk factors or	Effect :
year, ref					group		interventions	OR (CI), RR (CI)
								HR (CI), aHR (CI)
							Fruits	OR 2.15 (0.96-4.85)
							Parana	OR 0.96 (0.42-2.15)
							Ruli (bread)	OR 1.38 (0.63-3.03)
							Leafy vegetables	OR 0.42(0.15-1.13)
							Other vegetables	
							Soybean	
Zaman	Case-	ARF	Banglades	Cases diagnosed	5-20	Cases: 44	Univariate:	
1998 [12]	control	incident	h	with ARF using	years	Controls:	Higher total protein	OR 1.06 (0.98 - 1.15)
**		case		Jones Criteria,		44	Higher albumin	OR 0.72 (0.59 - 0.88)
				Controls were			Higher cholesterol	OR 0.80 (0.41 - 1.57)
				hospitalised patients			(total)	OR 0.05 (0.01 - 0.49)
				the lones criteria.			Higher HDL	OR 1.44 (0.65 - 3.22)
				Both cases and			Higher LDL	OR 0.50 (0.15 - 1.73)
				controls showed			Higher Triglycerides	OR 0.94 (0.90 - 0.99)
				evidence of recent β -			Higher Haemaglobin	OR 0.73 (0.59 - 0.91)
				haemolytic			Higher Packed cell	OR 0.81 (0.71 - 0.93)
				streptococci			Volume	OR 0.95 (0.91 to 1.00)
				infection.			Higher Iron	
							Higher Total iron binding capacity	OR 0.89 (0.83 to 0.96)
							Higher Transferrin	
							saturation	
							Multivariate	OR 1.02 (0.92 - 1.14)
							Higher Total protein	OR 0.75 (0.60 - 0.95)
							Higher Albumin	OR1.20 (0.46 - 3.16)
							Higher Cholesterol	OR 0.38 (0.03 - 5.48)
							(total)	OR 1.56 (0.51 - 4.74)
							Higher HDL	OR 0.86 (0.15 - 4.82)
							Higher LDL	OR 0.96 (0.91 - 1.02)
							Higher Triglycerides	OR 0.69 (0.50 - 0.97)
							Higher Haemaglobin	OR 0.82 (0.68 - 0.97)
							Higher Packed cell	OR 0.96 (0.91 - 1.04)
							volume	
							Higher Iron	OR 0.90 (0.82 - 0.98)

Author, year, ref	Design	Outcome	Place	Population	Age group	N	Risk factors or interventions Higher total iron binding capacity Higher transferrin saturation	Effect : OR (CI), RR (CI) HR (CI), aHR (CI)
Berdeli 2004 [13] #	Case- control	ARF incident case	Turkey	Cases: Caucasian Turkish ARF patients meeting Jones Criteria at a University paediatric clinic. Controls: healthy child volunteers	Cases: 10.98 ±2.9 years, Controls : 8.71±1.3 (mean age ± SD)	Cases: 66, controls: 117	Univariate: FcgammaRIIA-R/H-131 polymorphisms: RR genotype (Present in 66.7% cases, 39.3% controls) HR heterozygosity (Present in 21.2% cases, 5.1% controls)	OR 4.98 (1.81-13.70) OR 3.09 (1.64-5.81)
Berdeli 2005 [14] #	Case- control	ARF incident case	Turkey	Cases: Caucasian Turkish ARF patients meeting Jones Criteria at a University paediatric clinic. Controls: healthy child volunteers.	Cases: 11.16±2. 88 years, Controls : 8.71±1.3 (mean age ± SD)	Cases: 61, controls: 91	Univariate: Arg753Arg genotype (TLR-2 polymorphism, present in 8.2% cases, 90.2% controls) Arg753Gln genotype (TLR-2 polymorphism, present in 91.8% cases, 9.9% controls) Presence of TLR-2 Gln allele	OR 0.01 (0.00-0.03) OR 100.00 (32.00– 320.00) OR 16.0 (7.6–35.00)
Berdeli 2006 [15] #	Case- control	ARF incident case	Turkey	Cases: Caucasian Turkish ARF patients meeting Jones Criteria at a University paediatric clinic. Controls: healthy adult volunteers	Cases: 10.98 ±2.9 years, Controls : 27.86±6. 8 years (mean age ± SD)	Cases: 66, controls: 107	Univariate: TNFalpha polymorphisms at -308	No association

Author,	Design	Outcome	Place	Population	Age	N	Risk factors or	Effect :
year, ref					group		interventions	OR (CI), RR (CI)
								HR (CI), aHR (CI)
Kurahara	Case-	ARF	Hawaii	Cases: ARF cases	NS	Cases 26,	Univariate:	
2006 [16]	control	incident		Controls: Other		Controls	Polynesian ethnicity	OR 4.80 (1.65-15.63)
		case		heart condition at		41	Polynesian and higher	OR 6 53 (1 90-24 10)
				Paediatric			number of children per	
				cardiology clinic.			household	
				All qualitied for			More children in case	
				Medicare			bedroom	NS
							Low parental education	NS
Hounio	Casa	APE	Brazil	Casos: ARE	Casa	Cases: 310	Univariate	
2007 [17]	control	incident	Diazii	outpatients	proband	controls.		OP 2 21 (1 00 4 40)
2007 [17]	control	case		attending a clinic	s: Mean	177	Obsessive-compulsive	OR 2.21 (1.09-4.49)
				and first degree	age		(ARE cases and first	
				relatives, Controls:	14.36		degree relatives)	
				orthopaedic	years		,	
				outpatients	(±4.60),			
				attending a clinic	Control			
				and first degree	proband			
				relatives. University	s: Mean			
				of Sao Paulo	age			
				Medical School.	11.51			
					±3.29			
Seixas	Case-	ARF	Brazil	Cases: ARF cases or	≥16	Cases: 188	Univariate:	
2008 [18]	control	incidence		first degree family	years	Controls:9	Generalised anxiety	1.71 (p<0.05)
		in family		members presenting	old	6	disorder	95%CI not supplied
				to RF Outpatient				
				Clinic,				
				Controls: patients or				
				first degree family				
				members presenting				
				to Orthopedic				
				Outpatient Clinic.				
Messias-	Case-	ARF and	Brazil	Cases: History of	8-76	Cases: 244	Univariate:	
Reason	control	RHD		ARF or RHD	years	(ARF=82,	FCN2 haplotype AGA	OR: 0.32 (0.13-0.77)
2009 [19]		prevalent		attending out-		RHD=162)		
		case		patients clinic		Controls:		
				Controls: healthy		420		
				subjects from the				

Author,	Design	Outcome	Place	Population	Age	Ν	Risk factors or	Effect :
year, ref					group		interventions	OR (CI), RR (CI)
								HR (CI), aHR (CI)
				same geographic region and socioeconomic background (not age matched).				
Walker 2011 [20]	Case- control	ARF incident case	South Africa	Cases: Index cases of ARF Controls: recruited from outpatient clinics at the time of venesection for other indications	Not stated in paper	Cases: 40 Controls: 47	Univariate: B-cells expressing D8/17	Mean difference between cases and controls cell % (not OR): 0.23 (95% CI: 0.02–0.43, p<0.05). Risk measure not given.
Col-Araz 2012 [21]	Case- control	ARF incident case	Turkey	Cases: ARF patients followed in the Pediatric Cardiology Clinic, Controls: healthy children referring to the Well-Child Outpatient Clinic for routine health checkups	5-15 years	Cases: 38, controls:40	Univariate: IFN- γ (+874) TT genotype IFN- γ (+874) gene T allele IFN- γ (+874) gene A allele	OR 8.10 (2.41–27.27) OR 3.02 (1.57–5.79) OR 0.33 (0.17–0.64)
Riaz 2013 [22]	Case- control	ARF incident cases and RHD prevalent cases (echocardi ography)	Banglades	Cases: Patients referred to National Centre for Control of Rheumatic Fever and Heart Disease, Controls: from same center or patients at Shaheed Suhrawardy Medical College Hospital with no ARF or RHD.	Not stated, no age limits implied	RF 103, RHD 102, Controls 207	ARF risk factors: Multivariate: Age >19 yo Sex (female) Urban residence Wall material (brick) Family size (>5 people) >2 siblings Higher family income Maternal illiteracy Maternal employment >3 people sharing living room Water supply (tubewell)	OR 0.1 (0.03-0.1) OR 2.2 (1.1-4.3) OR 3.1 (1.2-8.4) OR 3.6 (1.6-8.1) OR 0.3 (0.2-0.7) OR 3.1 (1.5-6.3) OR 0.9 (0.4-1.8) OR 2.6 (1.2-5.8) OR 7.0 (2.0-24.2) OR 1.2 (0.6-2.4)

Author,	Design	Outcome	Place	Population	Age	Ν	Risk factors or	Effect :
year, ref					group		interventions	OR (CI), RR (CI)
								HR (CI), aHR (CI)
							Bed (floor)	OR 1.1 (0.4-2.6)
							Using toothpaste	OR 0.9 (0.3-3.4)
							Toothbrushing ≤1/day	OR 0.6 (0.2-1.7)
							Not tooth brushing after	OR 0.9 (0.4-1.7)
							a meal	OR 2.5 (1.0-6.3)
							RHD risk factors (non-	
							rheumatic controls):	
							Multivariate:	
							Age >19 yo	OR 0.1 (0.1-0.3)
							Sex (female)	OR 2.2 (1.2-4.2)
							Urban residence	OR 2 0 (1 2-7 0)
							Wall material (brick)	OR 2.8 (1.3-5.3)
							Family size (>5 people)	OR 0.5 (0.2-0.9)
							>2 siblings	OR 4 4 (2 2-8 7)
							Maternal illiteracy	OR 25(1249)
							Maternal employment	OR (2.3 (1.2, 4.3))
							>3 persons sharing	OR 6.2 (2.1,18.4)
							living room	OK 1.9 (1.0-3.4)
							Water supply (tubewell)	
							Bed (floor)	OR 1.6 (0.7-3.6)
							Toothpaste	OR 1.5 (0.5-4.1)
							Toothbrushing ≤1/day	OR 0.7 (0.2-1.8)
							Not tooth brushing after	OR 1.3 (0.7-2.4)
							a meal	OR 1.5 (0.6-3.9)
Thornley	Cohort	ARF or	Auckland,	20,333 children in	Participa	Cases 96,	Multivariate:	
2016 [23]		RHD	NZ	Auckland who were	nts aged	Controls	5+ primary teeth	aHR 1.57 (1.20 -2.06)
۸		incident		free of RHD at	5-6 years	20,237	affected by caries	
		case		enrolment were	at first			
				of 5 years, cases				
				hospitalised with	visit.			
				ARF or RHD,				
				controls remained				
				free of ARF and				
				RHD.				

Author, year, ref Thornley 2018 [24] ^	Design	ARF or RHD incident case	Place Auckland, NZ	Population 213,957 children free of RHD at baseline, mean follow-up time 5.1 years. Cases ARF or RHD, controls remained free of ARF and	Age group Participa nts aged 3-12 years at first dental Visit.	N Cases 440, controls 213,517	Risk factors or interventions Multivariate Children diagnosed with scabies during hospital admissions	Effect : OR (CI), RR (CI) HR (CI), aHR (CI) aHR 8.98 (6.33 -20.2)
				KHD.				
RHD Caughey	Case-	ARF or	NZ	Cases: 50 Maori and		50 Maori	Univariate:	
1975 [25]	control	RHD prevalent case		50 Europeans with ARF or RHD Controls: 75 Maori and 514 European disease-free blood donors		and 50 Europeans with ARF/RHD compared with each control group	European case: HL-A28 reduced HL-A17 increased Maori cases: minor differences in frequency of HL-A3 increased HL-A8 increased HL-A10 decreased	RR 0.05 (0.00-0.90) RR 4.55 (2.12-9.77) RR 7.78 (0.37-165.63) RR 6.43 (0.70-59.37) RR 0.09 (0.01-0.70)
McLaren 1975 [26]	Cross sectional	RHD prevalent case (clinical)	South Africa	Pre-school and school children (Soweto). Cases: RHD diagnosed using clinical auscultation screening, Controls had no RHD on clinical auscultation.	2-18 years	Cross section 12,050 total children, RHD cases: 80, controls: 11,970	Univariate: Siblings>3 Language group School area Local area prevalence of pharyngeal GAS carriage Socioeconomic status No. people sharing bedroom	p<0.05 p>0.05 p>0.05 p>0.05 p>0.05
Anabwan i 1989 [27]	Cross- sectional	RHD prevalent case	Kenya	School children, semi-rural area (Emuhaya). Cases: Identified as having RHD using	5-15 yo	Cross section 3631, RHD 6, Controls 3625	Univariate None identified (including socioeconomic status, family size, no. children per bedroom).	Nil

Author,	Design	Outcome	Place	Population	Age	N	Risk factors or	Effect :
year, ref					group		interventions	OR (CI), RR (CI)
								HR (CI), aHR (CI)
				echocardiography				
				screening,				
				Control: No RHD on				
				echocardiography				
				screening.				
Coggon	Cohort	RHD	UK	Chesterfield	No age	Cases: 76	Univariate	
1993 [28]	(retro-	mortality		township address in	limits	Controls:	1.5-2.49 persons per	RR 0.9 (0.5-1.6)
	spective)	during		1936 housing survey	implied	8,062	bedroom (compared	
		1951 to		and 1939 census.			with <1.5)	
		1989		Cases identified in			>2.49 persons per	DD 07(021())
				mortality records			bedroom (compared	KK 0.7 (0.3-1.6)
				using ICD-9 coding			with <1.5)	
				to identify RHD as				
				cause of death,				
				Controls: RHD not				
				listed as cause of				
				death				
Longo-	Cross-	RHD	Democrati	Children living in	5-16	Cross	Multivariate:	
Mbenza	sectional	prevalent	c Republic	Kinshasa town and	years	section:	Birth in rainy season (vs.	RR 2.2 (0.97-4.90)
1998		case	of Congo	adjoining slums.		4848	dry season)	
[29]		(echocardi		Cases: Identified as		children;	Low birthweight	RR 1.81 (1.04–3.15)
		ography)		having KHD using		RHD cases	Low SES vs higher SES	RR 2.68 (1.43-5.01)
				screening		controls		× ,
				Control: No RHD on		4780.	Low BMI	RR 2 64 (1 48–4 70)
				echocardiography			>8 in household	RR 4 10 (1 70–9 85)
				screening.			Migrant (vs Kongo	PR 4 79 (2 14 10 68)
							native)	KK 4.79 (2.14–10.00)
Oli 1999	Cross-	RHD	Ethiopia	School children in	10-15yo	Cross	Univariate:	
[30]	sectional	prevalent	-	an urban area.	2	section	Sex (female)	OR 1 76 (1 01 – 3 06)
		case		Cases: Identified as		9378, RHD	Less (FE) and Crosseline	
				having RHD using		cases 60,	conditions at home in	
				echocardiography		Controls:	schools and in the	
				screening,		9,318	bedrooms were not	
				Control: No RHD on			associated with risk of	
				echocardiography			RHD after adjusting for	
				screening.			confounders	

Author,	Design	Outcome	Place	Population	Age	Ν	Risk factors or	Effect :
year, ref					group		interventions	OR (CI), RR (CI)
								HR (CI), aHR (CI)
Rizvi 2004 [31]	Cross- sectional	RHD prevalent case	Pakistan	Rural population (Rahim Yaar Khan district) Cases: Identified as having RHD using echocardiography screening, Control: No RHD on echocardiography screening.	Not stated, no age limits implied, 50% pop. <15 yo.	Cross section 9430 screened, RHD cases 54, Controls: 9,376	Univariate: Older mean age (29.5 years cases/20.9 years controls) Female gender Home crowding (people per room) House construction House standard Lower SES	HR (CI), aHR (CI) p<0.05 RR 1.86 (1.07-3.24) NS NS NS NS NS NS
							Case education level	
Chou 2004 [32]	Case- control	RHD prevalent case	Taiwan	Cases: RHD confirmed by echocardiography Controls: age- and sex-matched unrelated healthy volunteers	26-80 years	Cases: 115, controls: 100	Univariate: ACE I/D II genotype ACE I allele	OR 2.12 (1.21-3.71) OR 1.50 (1.02-2.21).
Messias- Reason 2009 [19]	Case- control	RHD prevalent case	Brazil	Cases: Valvular RHD lesions confirmed on echocardiography in out-patients from Children's Cardiologic Unit and Cardiology Out- patient Clinic Controls: healthy subjects from the same geographic region and socioeconomic background.	8-76 years	Cases: 106 Controls: 210	Univariate: FCN2 haplotype GGA FCN2 haplotype AGA FCN2 haplotype AGG (compared with haplotype AAA)	OR 1.56 (1.10–2.30) OR 0.32 (0.13-0.77) OR 0.44 (0.23-0.82)

Author.	Design	Outcome	Place	Population	Age	N	Risk factors or	Effect :
year, ref	0			1	group		interventions	OR (CI), RR (CI)
								HR (CI), aHR (CI)
Charm	Creation	DUD	T::::		E 1E	Creat	Theirseitete	(,, (,
2009	cross-	nrevalent	гij	confirmed by	J-15	section		
2007	sectional	case		echocardiography.	ycars	3462, RHD	Indigenous Fijian	RR 2.3 (0.97-5.6)
[33]		cuse		Controls: No RHD		cases 359,	etnnicity	RR 1.8 (1.0-3.1)
				on		Controls:	Rural school	p>0.05
				echocardiography.		3103	Lower weight for age	p>0.05
							Lower height for age	p>0.05
							Lower BMI for age	p>0.05
							Older age	
							Multivariate	RR 1.6 (0.8-3.2)
							Female gender	RR 2.0 (0.8-5.1)
							Indigenous Fijian	RR 1.3 (0.7-2.4)
							ethnicity	RR 1 7 (0 7-4 2)
							Rural school	RR 1.0 (0.4-2.4)
							Impetigo	NR 1.0 (0.4 2.4)
							Scabies	
Azevedo	Case-	RHD	Brazil	Cases: ARF patients	Cases: 7-	Cases 84,	Univariate:	Allele 1 and
2010 [34]	control	prevalent		who fulfilled the	41 years,	controls 84	Polymorphism of the IL-	genotype A1/A1 less
		case		Jones criteria with	controls		1ra gene is a relevant	frequent among
				features of RHD	>		factor for RHD severity	patients with severe
				Controls: race-	35 years			carditis compared
				matched, healthy	old.			with patients
				matched, healthy blood donors	old.			with patients without this
				matched, healthy blood donors	old.			with patients without this manifestation
				matched, healthy blood donors	old.			with patients without this manifestation (OR=0.11, p=0.031;
				matched, healthy blood donors	old.			with patients without this manifestation (OR=0.11, p=0.031; OR=0.092, p=0.017)
Saxena	Cross-	RHD	India	matched, healthy blood donors School children	old. 5-15	Cross	Univariate:	with patients without this manifestation (OR=0.11, p=0.031; OR=0.092, p=0.017)
Saxena 2011 [35]	Cross- sectional	RHD prevalent	India	matched, healthy blood donors School children living in rural	old. 5-15 years	Cross section:	Univariate: Older age	with patients without this manifestation (OR=0.11, p=0.031; OR=0.092, p=0.017) p<0.001
Saxena 2011 [35]	Cross- sectional	RHD prevalent case	India	matched, healthy blood donors School children living in rural Northern India.	old. 5-15 years	Cross section: 6270,	Univariate: Older age Female gender	with patients without this manifestation (OR=0.11, p=0.031; OR=0.092, p=0.017) p<0.001 p<0.001
Saxena 2011 [35]	Cross- sectional	RHD prevalent case	India	matched, healthy blood donors School children living in rural Northern India. Cases: Identified as having RHD using	old. 5-15 years	Cross section: 6270, RHD cases	Univariate: Older age Female gender Studying in government	with patients without this manifestation (OR=0.11, p=0.031; OR=0.092, p=0.017) p<0.001 p<0.001 p<0.001
Saxena 2011 [35]	Cross- sectional	RHD prevalent case	India	matched, healthy blood donors School children living in rural Northern India. Cases: Identified as having RHD using echocardiography	old. 5-15 years	Cross section: 6270, RHD cases 128, Controls	Univariate: Older age Female gender Studying in government funded school	with patients without this manifestation (OR=0.11, p=0.031; OR=0.092, p=0.017) p<0.001 p<0.001 p<0.001 p<0.001 p<0.005
Saxena 2011 [35]	Cross- sectional	RHD prevalent case	India	matched, healthy blood donors School children living in rural Northern India. Cases: Identified as having RHD using echocardiography screening,	old. 5-15 years	Cross section: 6270, RHD cases 128, Controls 6142	Univariate: Older age Female gender Studying in government funded school Substandard house	with patients without this manifestation (OR=0.11, p=0.031; OR=0.092, p=0.017) p<0.001 p<0.001 p<0.001 p<0.001 p<0.005 p<0.005
Saxena 2011 [35]	Cross- sectional	RHD prevalent case	India	matched, healthy blood donors School children living in rural Northern India. Cases: Identified as having RHD using echocardiography screening, Control: No RHD on	old. 5-15 years	Cross section: 6270, RHD cases 128, Controls 6142	Univariate: Older age Female gender Studying in government funded school Substandard house Home crowding	with patients without this manifestation (OR=0.11, p=0.031; OR=0.092, p=0.017) p<0.001 p<0.001 p<0.001 p<0.001 p<0.005 p<0.005 p<0.05
Saxena 2011 [35]	Cross- sectional	RHD prevalent case	India	matched, healthy blood donors School children living in rural Northern India. Cases: Identified as having RHD using echocardiography screening, Control: No RHD on echocardiography	old. 5-15 years	Cross section: 6270, RHD cases 128, Controls 6142	Univariate: Older age Female gender Studying in government funded school Substandard house Home crowding Height	with patients without this manifestation (OR=0.11, p=0.031; OR=0.092, p=0.017) p<0.001 p<0.001 p<0.001 p<0.001 p<0.005 p<0.005 p<0.05
Saxena 2011 [35]	Cross- sectional	RHD prevalent case	India	matched, healthy blood donors School children living in rural Northern India. Cases: Identified as having RHD using echocardiography screening, Control: No RHD on echocardiography screening.	old. 5-15 years	Cross section: 6270, RHD cases 128, Controls 6142	Univariate: Older age Female gender Studying in government funded school Substandard house Home crowding Height Weight <25th percentile,	with patients without this manifestation (OR=0.11, p=0.031; OR=0.092, p=0.017) p<0.001 p<0.001 p<0.001 p<0.005 p<0.005 p<0.05 p<0.05 p<0.05

Author,	Design	Outcome	Place	Population	Age	N	Risk factors or	Effect :
year, ref					group		interventions	OR (CI), RR (CI)
								HR (CI), aHR (CI)
							Waist circumferenceHistory of joint painAuscultatoryabnormalitiesMultivariate:Older ageFemale genderGovernment school	p<0.05 p<0.05 p<0.05 OR 1.93 (1.29-2.88) OR 1.84 (1.25 -2.72) OR 1.55 (1.02 - 2.34)
							Substandard house Home crowding	OR 1.16 (0.75 - 1.78)
Ba- Saddik 2011 [36]	Cross- sectional	RHD prevalent case	Yemen	School children. Cases: Identified as having RHD using echocardiography screening, Control: No RHD on echocardiography screening	5-16 yo	Cross section 6000, RHD cases 219, controls 5781	Univariate: Older age Home crowding (>4 per bedroom) Low household income Poor housing conditions (ie. home not constructed with stone and lacked water supply)	RRs not calc. but association tested p=0.001 p<0.001 p<0.001 p<0.001
Dobson 2012 [37]	Case- control (nested in cross- sectional study)	RHD prevalent case (echocarid iogram)	Fiji	School children in rural and urban settings who participated in a previous screening study. Cases with documented RHD, Controls age & sex matched without RHD	5-15yo	Cases 80, Controls 80	Univariate: Trend toward increased risk of RHD and poor- quality housing, lower SES (but not stat. sig.) People in home People per bedroom Children per classroom Maternal unemployment Maternal education	NS NS NS OR 2.6 (1.2–5.8) NS
Okello 2012 [38]	Case- control	RHD prevalent case	Uganda	Patients seen at the Mulago National Referral Hospital: cases were diagnosed with	5-60 years	Cases 243, Controls 243	Univariate: People per house >8 Space per person < 90 feet ²	OR 1.98 (1.4–2.5) OR 8.3 (6.1–10.4)

year, ref group interventions OR (CI), R	R (CI)
HR (CI), al	łR (CI)
RHD, controls had Longer distance to OR 1.48 (0.	2–3.2)
normal nearest health unit	
echocardiograms. Education level	
(compared to <primary): OR 0.38 (0.</primary): 	17–0.83)
Primary OR 1.28 (0.	59–2.74)
Secondary OR 1.47 (0.	45–4.79)
Vocational OR 2.19 (0.	95–5.09)
University OR 3.09 (2.4)4–4.72)
Unemployed	
Income (compared with	
<25USD) OR 1.95 (0)	9-4 2)
25-49.5USD OR 2.19 (0)	96-4 98)
50-99.5USD OR 14 7 (5	96-36 1)
100USD+ OR 1.26 (0.	32-1.95)
Male gender	,2 1.95)
Multivariate:	10 1 56)
Space per person < 90	10-1.50)
square feet	(1,0,07)
Longer distance to	51-0.87)
nearest health unit	
Higher number of	
people living in the	
house	
Education level OR 0.57 (0	22-1.43)
(compared to <primary). (0.1<="" 1.91="" or="" td=""><td>75–4.88)</td></primary).>	75–4.88)
Primary OR 1.8 (0.4)	5–7.21)
Secondary OR 2.93 (1.	04–8.19)
Vocational OR 1.71 (1.	05–8.19)
University	
Unemployed	
Rehman Case- RHD Pakistan Cases: patients with Cases: 150 RHD TNF-alpha(-308):	
2013 [39] control prevalent RHD, Controls: mean cases, 204 G/G genotype OR 0.39 (0.2	20-0.76)
from similar ethnic 14.5 G/A genotype $OR 1.97 (0.9)$	98–3.97)
groups and years, A/A genotype	

Author,	Design	Outcome	Place	Population	Age	Ν	Risk factors or	Effect :
year, ref					group		interventions	OR (CI), RR (CI)
								HR (CI), aHR (CI)
				geographic area as	controls:		G allele	OR 9.94 (1.21–
				cases	45 ± 12.7		A allele	217.31)
				[aim to investigate	years.		IL-6-174:	OR 0.35 (0.20-0.64)
				the role of cytokine			G/G genotype	OR 2.81 (1.55–5.14)
				gene			G/C genotype	
				polymorphisms and			C/C genotype	OR 2.6 (1.17–5.85)
				usefulness as			G allele	OR 0.92 (0.56–1.52)
				biomarkers in RHD].			C allele	OR 0.76 (0.48–1.20)
							IL-10–1082:	OR 1.5 (1.04–2.16)
							G/G genotype	OR 0.67 (0.46–0.96)
							G/A genotype	
							A/A genotype	OR 1.06 (0.66–1.71)
							G allele	OR 1.30 (0.81–2.07)
							A allele	OR 0.73 (0.46–1.17)
							IL-Ra VNTR:	OR 1.18 (0.87–1.61)
							A1/A2 genotype	OR 0.85 (0.62–1.15)
							A1/A3 genotype	
							A2/A3 genotype	OR 1.72 (0.92–3.24)
							A1 allele	OR 1.37 (0.34–5.58)
							A2 allele	Not calculable
							A3 allele	OR 0.52 (0.31–0.86)
								OR 1.50 (0.61–3.83)
								OR 0.0 (0.0–5.54)
Eriksson	Cohort	RHD	Helsinki,	Births in Helsinki	25-80 yo	Cohort	Univariate:	
2013 [40]	(retro-	hospitalisa	Finland,	maternity hospitals		20,431,	Long umbilical cord	HR 1.23 (1.04-1.45)
	spective)	tions and		1924-1944, cases		RHD cases	(risk found for RHD	
		death		identified lising		101	•• • • • • •	

2010 [10]	(retro	noopraaloa Thilana,	indefinity noopidio	_ 0)101)	Long umbilical cord	HK 1.23 (1.04-1.45)
	spective)	tions and	1924-1944, cases	RHD cases	(risk found for RHD	
		death	identified using	101,	mitral disease only)	
			hospital and	Controls	No people living in	
			mortality records	20330	rto: people n'nig ni	
			mortaney records.	20000	home (compared with	
			Cases: Received a		≤3 people):	
			diagnosis of RHD,		4 people	HR 2.1 (1.1-4.0)
			Controls: Not		rpeople	HR 2 1 (1 1-4 2)
			Controls. Not		5 people	·····
			diagnosed with			HR 2.1 (1.1-4.3)
			RHD.		≥6 people	
					People per room	NS
					r	

Author,	Design	Outcome	Place	Population	Age	Ν	Risk factors or	Effect :
year, ref					group		interventions	OR (CI), RR (CI)
								HR (CI), aHR (CI)
Mirabel	Cohort	RHD	New	4 th grade school	9-10	RHD cases	Univariate	
2015 [41]	(prospect	persistenc	Caledonia	children, RHD cases	years	114,	Number of siblings	p=0.2
	ive)	e in an		diagnosed using		Controls	House construction	p=0.9
		RHD		echocardiography,		227	Mother's education	p=0.048
		cohort		controls selected			Maternal employment	r=0.4
		compared		randomly from			Male gender	p=0.4
		with		Classmates without				p=0.3
		controis		ethnicity and			Oceanic ethnicity	p=0.9
				classroom			Lived >1year out of	p=0.2
							transport: private car	
							Number of poorle per	p=0.4
							bedroom >?	
							Multivariato .	p=0.003
							Nutrivariate .	
							Mother's education:	OR 8.27 (1.67–41.08)
								OR 1.97 (0.69–5.64)
Azevedo	Case-	RHD	NZ	Cases: confirmed	Cases	204 RHD	Univariate:	GG genotype 6.09
2016 [42]	control	prevalent		RHD and of Māori	aged 3-	cases, 116	Variant of IL6 promoter	(CI 1.23; 30.23) times
		case		and Pacific ancestry,	32 years	controls	(rs1800797 (-597G/A))	more likely to
				controls:	old at		with RHD IL1RN	develop RHD than
				Polynesian/Maori	first		variant (rs447713) with	carriers of AA
				ancestry and no	ARF		the severity of carditis	genotype (P=0.027).
				autoimmune	presenta			G allele (GG plus
				condition	tion,			AG genotype) for
					age			IL1RN rs447713 SNP
					range			had 2.36 times (CI
					not			1.00; 5.56) more
					stated			those without this
								allele (the AA
								genotype) (P=0.049)
Parks	GWAS	RHD	Eight	Melanesians (607	Age	2,852	GWAS meta-analysis:	Each copy of
2017 [43]	meta-	prevalent	Oceanian	cases and 1,229	limits	individual	Immunoglobulin heavv	IGHV4-61*02
	analyses	case	countries	controls);	not	s.	chain locus - IGHV4-61	associated with a

Author,	Design	Outcome	Place	Population	Age	Ν	Risk factors or	Effect :
year, ref					group		interventions	OR (CI), RR (CI)
								HR (CI), aHR (CI)
				Polynesians, South	stated		gene segment (IGHV4-	1.4-fold increase in
				Asians and Mixed or	(none		61*02 allele)	the risk of RHD (OR
				other populations	implied)			1.43, 1.27-1.61, P=4.1
				(399 cases and 617				x 10-9)
				controls)				
Gray	GWAS	RHD	Australia	Aboriginal	≥18	1263 total,	GWAS analysis:	
2017 [44]		prevalent		population	years	398 RHD	HLA-DQ locus was	
		case			old	cases; 865	strongest genetic marker	
						controls	associated with RHD, eg	OR = 1.44 $CI = 1.09$
							HLA-DQA1*0101_ DQB1*0503	1.90, P = 9.56×10^{-3}

The following groups of papers all drew on the same or overlapping study populations:

- * Adanja 1988, Vlajinac 1989, Vlajinac 1991, Adanja 1991
- ** Zaman 1997, Zaman 1998, Zaman 1998
- # Berdeli 2004, Berdeli 2005, Berdeli 2006
- ^ Thornley 2016, Thornley 2018

Abbreviations: NS=Not Significant/No association

OR=Odds Ratio, RR=Relative Risk, HR=Hazard Ratio

GWAS=Genome-Wide Association Study

Category of risk and	Examples of variables including in the study	Variables included in the
protective factors		primary analysis
A. Preceding infection		
Potential GAS	Preceding sore throat	• Not included as these
infections	Preceding skin infection	infections are considered
	Preceding scabies	a direct cause of ARF
	• Skin cuts, grazes, wounds, insect bites	
B. Environmental risk		
factors		
High levels of social	• Attendance at social gatherings outside own	Social gatherings outside
contact	home	home (composite of 9
	• School size (number of pupils)	Qu.)
	Overseas travel and contact with overseas	
	visitors	
Household crowding	Occupancy (people per house)	Structural household
	• Density (people per room, people per	crowding (people per
	100m²)	room)
	Bedroom deficit (Canadian National	
	Occupancy Standard (CNOS))	
	Self-assessed 'overcrowding' and bedroom	
	deficit	
Functional crowding	• Functional crowding (eg sleeping in same	• Functional crowding (eg
and bedroom	room as others just to keep warm)	sleeping in same room as
crowding	• Sleeping in communal area (eg living room)	others just to keep warm)
	• Sleeping with excess (≥ 2people) in bedroom	
Bed sharing and lack	• Bed sharing with one or more others	Bed sharing
of standard bed	• 'Hot bedding' (ie using bed others have	
	slept in)	
	• Sleeping on floor or couch	
Exposure to others	• Others in household with sore throat,	Not included
with potential GAS	cough, skin infection, scabies	

Table S3: Factors investigated in the ARF Risk Factors Study

Household washing	• Lack of hot water for washing (delaying or	• Lack of hot water for
and laundry resources	having cold/lukewarm bath/shower)	washing (composite of 2
	• Availability and use of bath or shower	Qu.)
	• Soap, own towel	
	• Laundry facilities, frequency bedding	
	changed	
	Regular swimming	
House conditions	• Self-assessed house condition (eg poor or	Not included
	very poor)	
	• Age of house (eg build prior to 1980)	
House indoor	Self-assessed cold	• Cold (composite of 4
environment,	• Self-assessed damp, mould	Qu.)
including cold, damp,	Insulation, Heating	• Damp and mould
mould and	Power disconnections	(composite of 3 Qu.)
contributing factors	• Ventilation, unflued gas heaters	
Tobacco smoke	• Living with smokers (mother, other	• Living with a smoker
exposure	household members)	
	• Exposure in house/car	
	Active smoker	
	• Hair nicotine levels	
Exposure to animals	Domestic animals (cats, dogs)	Not included
and fleas	• Fleas	

C. Healthcare assess		
Healthcare access	Access barriers (timeliness, cost, transport,	Barriers to accessing
	childcare)	primary healthcare
	• Has a usual GP or medical centre	(composite of 5 Qu)
Dental healthcare	Regular dental checks, timely visits, access	Not included
access	problems	
	Has dental care provider	
	Frequency of teeth brushing	
	Personal toothbrush	
Sore throat and skin	Access to school-based RF Prevention	Attending school that
infection treatment	Programme (RFPP)	provides RFPP

	٠	Consultation and treatment of recent sore			
		throat / skin infection			
Healthcare knowledge	٠	Knowledge of ARF causes and • Not included		Not included	
(health literacy)		consequences			
	•	Knowledge and reported management of			
		key conditions (sore throat, skin infection)			

D. Health status and				
nutrition				
Personal health history	Self-assessed general health Not included			
and status	• Asthma, eczema			
	• Tonsils and adenoids removed			
	• Frequency of previous hospitalisations,			
	including infectious diseases (linked data)			
Oral health history	Decayed, missing, and filled teeth	•	Decayed, missing, and	
and status	(dmft/DMFT)(linked data)		filled teeth (dmft of	
	• Self-assessed oral health status		primary teeth/DMFT of	
	• History of teeth filling and removal		permanent teeth)	
	• Gum disease (bleeding after brushing)			
Dietary intake	Sugar-sweetened drink intake	٠	Sugar-sweetened drink	
	• Fruit and vegetable intake		intake	
	Takeaway food intake			
Nutrient status	Vitamin D levels	•	Not included (only	
	• Irons stores (Ferritin)		available on sample)	
Body mass index	Height, weight, BMI Not included		Not included	
(BMI)				

E. Host socio-				
economic				
determinants				
Socioeconomic factors	•	Area-based deprivation (NZDep)*	•	NZDep*
	•	Caregiver Individual deprivation (NZiDep)	•	NZiDep (caregiver)
	•	Caregiver education level		
	•	Household income		

Housing tenure and	•	Tenure (rented or owned)	•	Tenure (rented or
residential mobility	٠	Short housing duration (<1year)		owned)
	•	Number of schools attended		
Location	٠	District Health Board (DHB)	•	DHB*

F Predisposing host

factors

Demographic factors	• Age*, Sex*	 Age*, Sex*
Ancestry and genetic	• Ethnicity (prioritised)*	Ethnicity*
factors	Ancestry (ethnicity of grandparents)	
	• Born in a Pacific Island country	
	• Specific genetic markers (eg HLA-DRB1)	
Family history of ARF	Family history of ARF	• Family history of ARF
Immunological factors	• Family size, Birth order	Not included
	Specific immunological markers	
Pregnancy and	• Pre-term delivery, Low birth weight	Not included
neonatal factors	• Low APGAR score	
Breast feeding	• History of breast feeding,	Not included

F. Organism factors					
Characteristics of GAS	Characterisation (<i>emm</i> typing, whole Not included (on		Not included (only		
organisms		genome sequence) of GAS organisms		available on sample)	
		isolated from throat			
Exposure to infectious	٠	Nasal detection of <i>S. aureus</i>	٠	Not included (only	
cofactors				available on sample)	

*Used for matched controls

Supplementary Table S4: Potential risks to study effectiveness and their management

Potential Risk	Approach to Risk Management
 Missing key exposures from study design - partly because of the complex nature of ARF as 2- stage autoimmune disease and lack of knowledge about its pathophysiology 	 Extensive review of existing literature on likely risk factors for ARF Knowledge of the biology of Streptococcal bacteria and their modes of transmission Active review of study questionnaire and design by the multi-disciplinary research team
2. Missing data – at conclusion of study	 Direct data entry during interviews. Built in systems for monitoring data completeness to identify and correct data gaps and improve processes Optimise data collection and review completeness regularly, identify any items with high degree of missing data and take steps to improve completeness of collection Consider analytic approaches to missing data.
3. Problems accessing dental records	 Early communication and engagement with appropriate dental service contacts. Identification of data sources and logistics required to access records. Careful statement of project objectives, confidentiality measures and ethical consent when approaching dental health providers.
4. Difficulties with data analysis -	 Establish a detailed data analysis plan. Liaise with experienced epidemiologists. Keep record of methods and steps in analysis including log of analytical code used

5.	Insufficient cases -	٠	Maximise study recruitment through engagement
			with clinicians and utilising public health services
			as back-up to avoid missing cases
		•	Ensure study includes all DHBs with a moderate
			numbers of cases (eg 5+ expected during 2-year
			study period)
		•	Extend study period and/or increase number of
			matched controls per case if required
6.	Selection bias of cases ie ARF	•	Should be low as ARF is uncommon and all
	cases included in study are not		diagnosed cases are hospitalised, notified, and
	representative of ARF cases		intensely scrutinised, and we anticipate high
	generally in terms of exposures		participation rates among identified cases.
		•	Review case recruitment and if high proportion
			of eligible cases not participating investigate
			reasons and take steps to increase participation.
		•	Collect data on non-participating eligible cases
			and compare characteristics of consenting cases
			with non-consenting case to see if there are any
			systematic differences.
7.	Selection bias of controls ie	•	NZHS control population is recruited by CBG
	controls included in study are		using a "probability-proportional-to-size (PPS)
	not representative of source		sampling design" that aims to give a sample
	population in terms of important		population that is representative of the NZ
	exposures eg population controls		population. Characteristics of the NZHS control
	recruited for NZHS may be a		population will be compared with the NZ Census
	relatively more 'stable'		population to see if there are any systematic
	population than is typical;		differences (in terms of characteristics such as
	matched controls may be		ethnicity and deprivation).
	somewhat atypical as they are	•	Matched control population will be recruited
	recruited from NZHS		from NZHS re-contact population in such a way
	participants who agree to being		as to have similar characteristics to cases for
	re-contacted, who are still		matched variables (age group, ethnicity, DHB,
			month of interview). Characteristics of these

10.	Information bias- Non	•	As above.
			perinatal exposures
		•	Rely on linked health records for maternal and
	(eg smoking near children)		than asking about exposures at a specific time
	exposures) or social desirability		exposures as recall is likely to be more accurate
	especially early childhood	•	Generally focus on asking about 'usual'
	controls (non-differential)		previously.
	some exposures by cases and		that took places more than a few weeks
9.	Information bias– Poor recall of	•	Generally we will avoid asking about exposures
			nave.
			they have had AKF and will be excluded if they
			torms. Controls will be specifically asked whether
			ARF is a rare disease, even in its sub-clinical
		•	Control misclassification as cases is unlikely as
			effect of excluding 'probable' cases.
			analysis, and a sensitivity analysis will assess the
			and 'probable' cases will be retained in the
			assign them to a case category. Only 'definite'
	non-cases		cases will undergo expert clinical review to
	controls incorrectly diagnosed as		are hospitalised. As noted in the Protocol, all
	incorrectly diagnosed as ARF,		establishing the diagnosis when suspected cases
	misclassification eg cases		consequences, considerable effort goes into
8.	Information bias- case/control	•	Because ARF is a serious illness with long-term
			selection bias in either control group.
			techniques if there is an indication of systematic
		•	Consider use of quantitative bias analysis
			household crowding levels).
			they differ in terms of important exposures (eg
	being re-interviewed		subjects in the original NZHS population to see if
	contactable, and who agree to		matched controls will be compared with similar

reporting of some exposures

that are considered undesirable	٠	Use laboratory testing to help validate recall (eg
(eg smoking near children)		hair nicotine testing) in subset of subjects.
11. Information bias – language	٠	Using ethnically appropriate interviewers (i.e.
difficulties and cultural		matched ethnicity for Māori and Pacific
differences creating non-		participants)
differential recall of exposures	•	Selection and training of interviewers to improve
by cases and controls		their interview technique
12. Information bias - Differential	٠	Use identical questions and data collection
recall of exposures by cases and		methods for cases and controls
controls (eg differences in impact	•	Minimise number of questions that ask about
of case views on disease cause)		exposures prior to illness (for cases), which is a
		different period to controls (but inevitable for a
		small set of specific exposures)
	•	Specifically ask subjects about their views on
		disease causality and use responses in sensitivity
		analysis (e.g. perform analyses that exclude cases
		who think a specific exposure is causal)
13. Information bias – Differential	•	For children, specify a consistent approach to
interview processes for cases		identifying interview subject (proxy) so that the
and NZHS controls, eg		type of person interviewed is similar across both
cases/parents will usually be		groups (for children this will usually be the main
interviewed in hospital, but		caregiver in all instances).
controls will be interviewed in	•	Standard data collection methods and
their homes		interviewer training about consistency of
		approach to cases and control regardless of
		setting.
14. Information bias – Differential	•	Interviewers cannot be blinded to case/control
effort by interviewer to identify		status
exposures for cases and controls	•	Use carefully constructed questions that focus on
		usual exposures

Supplementary Figure S1: Case recruitment algorithm used by clinicians

Rheumatic Fever Risk Factors Study – Recruitment

References

- 1. Entine, M., A survey of dental diseases as a diagnostic aid in rheumatic fever. *JAMA* **1949**, 38, (3), 303-8.
- 2. Grave, P. E., Social and environmental factors in the aetiology of rheumatic fever. *Med. J. Aust.* **1957**, 44, (18), 602-8.
- 3. Coburn, A. F., The concept of egg yolk as a dietary inhibitor to rheumatic susceptibility. *Lancet* **1960**, 1, (7129), 867-70.
- 4. Adanja, B.; Vlajinac, H.; Jarebinski, M., Socioeconomic factors in the etiology of rheumatic fever. *J. Hyg. Epidemiol. Microbiol. Immunol.* **1988**, 32, (3), 329-35.
- 5. Bahr, G. M.; Eales, L. J.; Nye, K. E.; Majeed, H. A.; Yousof, A. M.; Behbehani, K.; Rook, G. A., An association between Gc (vitamin D-binding protein) alleles and susceptibility to rheumatic fever. *Immunology* **1989**, *67*, (1), 126-8.
- 6. Vlajinac, H.; Adanja, B.; Jarebinski, M., Socio-economic factors and rheumatic fever occurrence. Differences between patients with and without frequent sore throat. *J. Hyg. Epidemiol. Microbiol. Immunol.* **1989**, 33, (4), 471-6.
- 7. Vlajinac, H.; Adanja, B.; Marinkovic, J.; Jarebinski, M., Influence of socio-economic and other factors on rheumatic fever occurrence. *Eur. J. Epidemiol.* **1991**, *7*, (6), 702-704.
- 8. Adanja, B. J.; Vlajinac, H. D.; Marinkovic, J. P.; Jarebinski, M. S., Rheumatic fever and diet. *Isr. J. Med. Sci.* **1991**, 27, (3), 161-3.
- 9. Thomas, D. R.; Salmon, R. L.; Kench, S. M.; Meadows, D.; Coleman, T. J.; Morgan-Capner, P.; Morgan, K. L., Zoonotic illness--determining risks and measuring effects: association between current animal exposure and a history of illness in a well characterised rural population in the UK. *J. Epidemiol. Community Health* **1994**, 48, (2), 151-5.
- Zaman, M. M.; Yoshiike, N.; Chowdhury, A. H.; Jalil, M. Q.; Mahmud, R. S.; Faruque, G. M.; Rouf, M. A.; Haque, K. M.; Tanaka, H., Socio-economic deprivation associated with acute rheumatic fever. A hospital-based case-control study in Bangladesh. *Paediatr. Perinat. Epidemiol.* 1997, 11, (3), 322-32.
- Zaman, M. M.; Yoshiike, N.; Chowdhury, A. H.; Nakayama, T.; Yokoyama, T.; Faruque, G. M.; Rouf, M. A.; Haque, S.; Tanaka, H., Nutritional factors associated with rheumatic fever. *J. Trop. Pediatr.* **1998**, 44, (3), 142-7.
- 12. Zaman, M. M.; Yoshiike, N.; Rouf, M. A.; Haque, S.; Chowdhury, A. H.; Nakayama, T.; Tanaka, H., Association of rheumatic fever with serum albumin concentration and body iron stores in Bangladeshi children: case-control study. *BMJ* **1998**, 317, (7168), 1287-8.
- 13. Berdeli, A.; Celik, H. A.; Ozyurek, R.; Aydin, H. H., Involvement of immunoglobulin FcgammaRIIA and FcgammaRIIIB gene polymorphisms in susceptibility to rheumatic fever. *Clin. Biochem.* **2004**, *37*, (10), 925-9.
- 14. Berdeli, A.; Celik, H. A.; Ozyurek, R.; Dogrusoz, B.; Aydin, H. H., TLR-2 gene Arg753Gln polymorphism is strongly associated with acute rheumatic fever in children. *J. Mol. Med.* (*Berl.*) **2005**, 83, (7), 535-41.
- 15. Berdeli, A.; Tabel, Y.; Celik, H. A.; Ozyurek, R.; Dogrusoz, B.; Aydin, H. H., Lack of association between TNFalpha gene polymorphism at position -308 and risk of acute rheumatic fever in Turkish patients. *Scand. J. Rheumatol.* **2006**, 35, (1), 44-7.
- Kurahara, D. K.; Grandinetti, A.; Galario, J.; Reddy, D. V.; Tokuda, A.; Langan, S.; Tanabe, B.; Yamamoto, K. S.; Yamaga, K. M.; Kurahara, D. K.; Grandinetti, A.; Galario, J.; Reddy, D. V.; Tokuda, A.; Langan, S.; Tanabe, B.; Yamamoto, K. S.; Yamaga, K. M., Ethnic differences for developing rheumatic fever in a low-income group living in Hawaii. *Ethn. Dis.* 2006, 16, (2), 357-61.
- 17. Hounie, A. G.; Pauls, D. L.; do Rosario-Campos, M. C.; Mercadante, M. T.; Diniz, J. B.; De Mathis, M. A.; De Mathis, M. E.; Chacon, P.; Shavitt, R. G.; Curi, M.; Guilherme, L.; Miguel, E.

C., Obsessive-compulsive spectrum disorders and rheumatic fever: a family study. *Biol. Psychiatry* **2007**, 61, (3), 266-72.

- 18. Seixas, A. A.; Hounie, A. G.; Fossaluza, V.; Curi, M.; Alvarenga, P. G.; De Mathis, M. A.; De Mathis, M. E.; Vallada, H.; Pauls, D.; de Braganca Pereira, C. A.; Miguel, E. C., Anxiety disorders and rheumatic Fever: is there an association? *CNS Spectr* **2008**, 13, (12), 1039-46.
- Messias-Reason, I. J.; Schafranski, M. D.; Kremsner, P. G.; Kun, J. F., Ficolin 2 (FCN2) functional polymorphisms and the risk of rheumatic fever and rheumatic heart disease. *Clin. Exp. Immunol.* 2009, 157, (3), 395-9.
- Walker, K. G.; Cooper, M.; McCabe, K.; Hughes, J.; Mathiassen, W.; Lawrenson, J.;
 Wilmshurst, J. M., Markers of susceptibility to acute rheumatic fever: the B-cell antigen D8/17 is not robust as a marker in South Africa. *Cardiol. Young* 2011, 21, (3), 328-33.
- 21. Col-Araz, N.; Pehlivan, S.; Baspinar, O.; Oguzkan-Balci, S.; Sever, T.; Balat, A., Role of cytokine gene (IFN-gamma, TNF-alpha, TGF-beta1, IL-6, and IL-10) polymorphisms in pathogenesis of acute rheumatic fever in Turkish children. *Eur. J. Pediatr.* **2012**, 171, (7), 1103-8.
- 22. Riaz, B. K.; Selim, S.; Karim, M. N.; Chowdhury, K. N.; Chowdhury, S. H.; Rahman, M. R., Risk factors of rheumatic heart disease in Bangladesh: a case-control study. *J. Health Popul. Nutr.* **2013**, 31, (1), 70-7.
- 23. Thornley, S.; Marshall, R. J.; Bach, K.; Koopu, P.; Reynolds, G.; Sundborn, G.; Ei, W. L., Sugar, dental caries and the incidence of acute rheumatic fever: a cohort study of Maori and Pacific children. *J. Epidemiol. Community Health* **2016**.
- 24. Thornley, S.; Marshall, R.; Jarrett, P.; Sundborn, G.; Reynolds, E.; Schofield, G., Scabies is strongly associated with acute rheumatic fever in a cohort study of Auckland children. *J. Paediatr. Child Health* **2018**, 54, (6), 625-632.
- 25. Caughey, D. E.; Douglas, R.; Wilson, W.; Hassall, I. B., HL-A antigens in Europeans and Maoris with rheumatic fever and rheumatic heart disease. *J. Rheumatol.* **1975**, *2*, (3), 319-22.
- McLaren, M. J.; Hawkins, D. M.; Koornhof, H. J.; Bloom, K. R.; Bramwell-Jones, D. M.; Cohen, E.; Gale, G. E.; Kanarek, K.; Lachman, A. S.; Lakier, J. B.; Pocock, W. A.; Barlow, J. B., Epidemiology of rheumatic heart disease in black shcoolchildren of Soweto, Johannesburg. *BMJ* 1975, 3, (5981), 474-8.
- 27. Anabwani, G. M.; Amoa, A. B.; Muita, A. K., Epidemiology of rheumatic heart disease among primary school children in western Kenya. *Int. J. Cardiol.* **1989**, 23, (2), 249-52.
- 28. Coggon, D.; Barker, D. J.; Inskip, H.; Wield, G., Housing in early life and later mortality. *J. Epidemiol. Community Health* **1993**, 47, (5), 345-8.
- 29. Longo-Mbenza, B.; Bayekula, M.; Ngiyulu, R.; Kintoki, V. E.; Bikangi, N. F.; Seghers, K. V.; Lukoki, L. E.; Mandundu, M. F.; Manzanza, M.; Nlandu, Y., Survey of rheumatic heart disease in school children of Kinshasa town. *Int. J. Cardiol.* **1998**, 63, (3), 287-94.
- 30. Oli, K.; Porteous, J., Prevalence of rheumatic heart disease among school children in Addis Ababa. *East Afr. Med. J.* **1999**, 76, (11), 601-5.
- 31. Rizvi, S. F.; Khan, M. A.; Kundi, A.; Marsh, D. R.; Samad, A.; Pasha, O., Status of rheumatic heart disease in rural Pakistan. *Heart* **2004**, 90, (4), 394-9.
- 32. Chou, H. T.; Tsai, C. H.; Tsai, F. J., Association between angiotensin I-converting enzyme gene insertion/deletion polymorphism and risk of rheumatic heart disease. *Jpn. Heart J.* **2004**, 45, (6), 949-57.
- Steer, A. C.; Kado, J.; Wilson, N.; Tuiketei, T.; Batzloff, M.; Waqatakirewa, L.; Mulholland, E. K.; Carapetis, J. R., High prevalence of rheumatic heart disease by clinical and echocardiographic screening among children in Fiji. *J. Heart Valve Dis.* 2009, 18, (3), 327-336.
- 34. Azevedo, P. M.; Bauer, R.; Caparbo Vde, F.; Silva, C. A.; Bonfa, E.; Pereira, R. M., Interleukin-1 receptor antagonist gene (IL1RN) polymorphism possibly associated to severity of rheumatic carditis in a Brazilian cohort. *Cytokine* **2010**, 49, (1), 109-13.

- 35. Saxena, A.; Ramakrishnan, S.; Roy, A.; Seth, S.; Krishnan, A.; Misra, P.; Kalaivani, M.; Bhargava, B.; Flather, M. D.; Poole-Wilson, P. P., Prevalence and outcome of subclinical rheumatic heart disease in India: the RHEUMATIC (Rheumatic Heart Echo Utilisation and Monitoring Actuarial Trends in Indian Children) study. *Heart* 2011, 97, (24), 2018-22.
- Ba-Saddik, I. A.; Munibari, A. A.; Al-Naqeeb, M. S.; Parry, C. M.; Hart, C. A.; Cuevas, L. E.; Coulter, J. B. S., Prevalence of rheumatic heart disease among school-children in Aden, Yemen. *Ann Trop Paediatrics* 2011, 31, (1), 37-46.
- 37. Dobson, J.; Steer, A. C.; Colquhoun, S.; Kado, J., Environmental factors and rheumatic heart disease in Fiji. *Pediatr. Cardiol.* **2012**, 33, (2), 332-6.
- Okello, E.; Kakande, B.; Sebatta, E.; Kayima, J.; Kuteesa, M.; Mutatina, B.; Nyakoojo, W.;
 Lwabi, P.; Mondo, C. K.; Odoi-Adome, R.; Juergen, F., Socioeconomic and environmental risk factors among rheumatic heart disease patients in Uganda. *PLoS One* 2012, 7, (8), e43917.
- 39. Rehman, S.; Akhtar, N.; Saba, N.; Munir, S.; Ahmed, W.; Mohyuddin, A.; Khanum, A., A study on the association of TNF-alpha(-308), IL-6(-174), IL-10(-1082) and IL-1Ra(VNTR) gene polymorphisms with rheumatic heart disease in Pakistani patients. *Cytokine* **2013**, 61, (2), 527-31.
- 40. Eriksson, J. G.; Kajantie, E.; Phillips, D. I.; Osmond, C.; Thornburg, K. L.; Barker, D. J., The developmental origins of chronic rheumatic heart disease. *Am. J. Hum. Biol.* **2013**, 25, (5), 655-8.
- 41. Mirabel, M.; Fauchier, T.; Bacquelin, R.; Tafflet, M.; Germain, A.; Robillard, C.; Rouchon, B.; Marijon, E.; Jouven, X., Echocardiography screening to detect rheumatic heart disease: A cohort study of schoolchildren in French Pacific Islands. *Int. J. Cardiol.* **2015**, 188, 89-95.
- 42. Azevedo, P. M.; Merriman, T. R.; Topless, R. K.; Wilson, N. J.; Crengle, S.; Lennon, D. R., Association study involving polymorphisms in IL-6, IL-1RA, and CTLA4 genes and rheumatic heart disease in New Zealand population of Maori and Pacific ancestry. *Cytokine* **2016**, 85, 201-6.
- 43. Parks, T.; Mirabel, M. M.; Kado, J.; Auckland, K.; Nowak, J.; Rautanen, A.; Mentzer, A. J.; Marijon, E.; Jouven, X.; Perman, M. L.; Cua, T.; Kauwe, J. K.; Allen, J. B.; Taylor, H.; Robson, K. J.; Deane, C. M.; Steer, A. C.; Hill, A. V. S.; Pacific Islands Rheumatic Heart Disease Genetics, N., Association between a common immunoglobulin heavy chain allele and rheumatic heart disease risk in Oceania. *Nat Commun* **2017**, 8, 14946.
- 44. Gray, L. A.; D'Antoine, H. A.; Tong, S. Y. C.; McKinnon, M.; Bessarab, D.; Brown, N.; Remenyi, B.; Steer, A.; Syn, G.; Blackwell, J. M.; Inouye, M.; Carapetis, J. R., Genome-wide analysis of genetic risk factors for rheumatic heart disease in Aboriginal Australians provides support for pathogenic molecular mimicry. *J. Infect. Dis.* **2017**.