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Abstract: Water eutrophication caused by agricultural production has become one of the most
important factors that impede sustainable rural environmental governance in China. As a result, the
Chinese central and local governments want to reduce the use of nitrogen and phosphorus fertilizer
and gain socioeconomical profit simultaneously by promoting crayfish and rice integrated system
(CRIS) in the rural areas with abundant water resources. In this article, we investigated whether CRIS
in Qianjiang, Hubei, the origin place of the system in China, contributes to fulfilling the governments’
expectations. We found that CRIS efficaciously cuts the fertilizer rate in rice production and boosts
farmers’ incomes because crayfish has a demand for water quality and holds a large internal market
requirement. However, higher profit encourages farmers to expand crayfish production and thus
discourages the initiatives in rice production. The area of the ditch for crayfish production expands
ceaselessly and exceeds the limit of regulation of CRIS. As a result, the CRIS in the areas has emerged
as a practice of aquaculture but in farmland. This is a regulatory gap. The input–output analysis of
CRIS by material balance method can also reveal that excessive feed for crayfish has become a new
source of agricultural pollution. Beyond that, due to the changed irrigation system and increased
water exchange frequency of CRIS, the pollution has transformed from passive distribution to active,
which will increase the risk of water eutrophication on a large area.

Keywords: water eutrophication; environmental governance; integrated agriculture–aquaculture
systems; crayfish and rice integrated system

1. Introduction

Excessive nitrogen (N) and phosphorus (P) can result in eutrophication due to water enrichment
with reactive N and P for excessive algal and other aquatic plant growth [1]. More seriously, N and P
can spread to a broader range by water cycle system. Thus, in most cases, eutrophication is caused by
non-point sources and is hard and expensive to control. Although N and P can derive from a variety
of sources, nutrient fertilizers and animal waste are the primary sources of excessive N and P. As a
result, rural areas and developing countries are especially affected by this environmental problem with
their agricultural activities [2,3], and China is no exception. According to statistics, from 2005 to 2016,
fertilizer application in plant production increased from 26 million tons to 60 million tons in China [4].
However, the effects of these loads of nitrogen and phosphorous extend beyond the field and past the
growing season. Only 35% of the N and P can be absorbed by plants, while the rest finally ends up in
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rivers, lakes, and oceans [5,6]. Thus, agriculture has been the most significant contributor for both N
and P emissions (e.g., 57.2% and 67.4% emissions of N and P, respectively), and has displaced industry
as the primary source of water pollution in China [7,8].

Due to increasing deteriorating water quality associated with eutrophication, a variety of strategies
have been suggested to control the pollution, including (1) transfer of excess N and P [9], (2) changing
nutrient ratios [10], (3) physical mixing [11], and (4) application of potent algaecides and herbicides [3].
However, because of the complexity and hugeness of ecosystems, these strategies had less success in
dealing with the problem [3]. A more effective way to control the water eutrophication is to reduce N
and P input into water cycle system [12,13]. Because integrated farming can diminish agroindustry
inputs by recycling the agricultural byproduct, it is widely accepted that integrated farming can reduce
the use of pesticides and fertilizers to limit the diffusion of N and P [14]. Thus, integrated farming, such
as integrated agriculture–aquaculture systems (IAAS) as well as recirculating aquaculture systems, has
been practiced in many countries [15,16].

China has a long history of integrated farming, especially IAAS [17]. Up to 2017, the IAAS area
in China has reached 1.87 million hectares, and the trend is increasing [18]. Along with a booming
crayfish market, crayfish and rice integrated system (CRIS), a typical example of IAAS, is taking up
a more significant share of China’s IAAS production area in recent years. Chinese center and local
governments hope to promote CRIS in the rural areas with abundant water resources for reducing
the use of N and P fertilizer and gaining socioeconomical profit simultaneously. As pesticides and
fertilizer adversely affect crayfish production, CRIS efficaciously cuts the pesticides and fertilizer rate
in rice production. Recent research found that CRIS largely achieved the goals that the governments
set when seeking a way to increase rural incomes and reduce the use of pesticides and fertilizer [19–21].
However, most studies have focused solely on the economic benefits of crayfish. Moreover, recent
studies on the ecological benefits of CRIS and IAAS focused on its benefits for rice production, which is
just a part of the system [22–24]. There is a concern about whether crayfish production of CRIS presents
new problems for the rural ecological environment. Under this scenario, whether increased water
exchange frequency and water consumption of CRIS could exacerbate current levels of the agricultural
non-point source pollution, causing widespread environmental problems.

To address the research gap, this paper focuses on the analysis of N and P inputs in the CRIS
of crayfish breeding, as well as the potential impact of water exchange in the system on the rural
environment. In the following section, we introduced the standardized production mode of CRIS in
China and its ecological interactions of the integrated system. In Section 3, we introduced the research
area, data sources as well as the reason why we chose Qianjiang as the case area. In Section 4, we
first introduced the practice of CRIS in Qianjiang and its problems, while at the end of this section we
measured the concentration of N and P from several vital points in CRIS. In the discussion section, we
discussed the reason for the higher concentrations of N and P in the crayfish production of CRIS, and
then, the potential risk for further expanding the non-point source pollution from the perspective of
water exchange of CRIS. Finally, the recommendations for controlling the environmental pollution and
improvement of CRIS were suggested.

2. The Standardized Production Mode of CRIS in China

Crayfish (Procambarus clarkii) is a member of the crustacea decapoda family of crayfish which is
of considerable economic value in recent years in China. However, during the past several decades,
crayfish was regarded as an invasive species or a pest, as crayfish impair young rice plants [25,26],
devastate the water drainage systems [27], and so on. Some regions affected severely by crayfish
invasion thus tried to use pesticides to eliminate the crayfish. The method is not proving entirely
successful in most cases due to the problems of tolerance or toxicity [28]. As a result, many researchers
aim to explore a system that integrates crayfish populations and rice fields for leveraging the synergistic
effect of ecological cultivation.
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Most of these studies and practices can be included in the IAAS, and the most prevalent form of
IAAS is rice/fish culture [29]. Generally, rice provides a pleasant external environment for aquacultures,
such as lowering water temperature and increasing microorganisms for fish consumption. Fish also
help loosen the surface soil, increasing soil permeability and oxygen levels [30]. Nutrients in the soil
also degrade faster, making it easier for the rice to absorb. Another contribution of fish is preying on
pests and weeds in the field. In addition, their excrement is both the natural fertilizer for rice and
soil [31]. In this way, both fish and rice are in an excellent ecological environment, with a virtuous
cycle of the circulatory system, enhanced overall function and enhanced productivity [17].

CRIS continues the pattern of IAAS. According to the FAO Fishery Statistic, two central producer
countries of crayfish are the United States (US) and China, where CRIS is most widely practiced [32].
In general, the US usually adopted rice–crayfish rotation. Crayfish can be raised in two basic rotation
systems. One is rice–crayfish–rice, and the other is rice–crayfish–fallow. In both strategies, crayfish
farming is carried out with the harvest of rice, while the crop stubble can provide food for crayfish.
Unlike the US, China usually uses rice–crayfish co-culture that realized the symbiosis between crayfish
and rice. The annular crayfish ditch dug along the ridge of the rice field (Figure 1a). During the rice
transplanting season, the crayfish seedlings are placed in the crayfish ditch to grow. When the rice
seedlings grow strong, then the young crayfish in the ditch led back to the paddy field. In this way,
crayfish can be harvested around June and September each year. After September, the winter crayfish
seedlings can be harvested the following March again (Figure 1b).
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Figure 1. The standardized production mode of crayfish and rice integrated system (CRIS) (a) and the
production phases of CRIS (b).

3. Data Source and Methods

3.1. Data Sources

Qianjiang, Hubei, is located in the Jianghan Plain of China. The practice of CRIS originated in
Qianjiang. By the end of 2017, the area of crayfish cultivation in the paddy fields of Qianjiang reached
33,000 hm2, the annual processing capacity reached 300,000 tons, and the overall output value of the
city’s crayfish industry exceeded 23 billion yuan. According to its practical experience, Qianjiang
Bureau of Aquatic Products formulated the Breeding Technical Regulations of CRIS and gradually
promoted it nationwide. As a result, we chose Jiyukou, Wangchang, Haokou, and Xiongkou, the four
towns of a large scale of CRIS in Qianjiang, as the research areas, as seen in Figure 2. We surveyed
280 farmers in August 2018. Eighty percent (n = 224) of them are on household basis in agricultural
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production. The data we collect includes the area of CRIS, the yield of rice and crayfish per mu, as
well as the inputs of pesticides, fertilizers, feed, and so on in the production process over the past
three years. In addition to this, we also investigated 20 farmers in the research areas that adopted rice
monoculture and collected their input-output data for comparative study.
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3.2. Methods

As an open agricultural production mode, CRIS frequently exchanges water with the outside
environment. As a result, it is hard to accurately calculate the displacement, inflow, and concentration
of pollutants in water [33,34]. Therefore, this paper adopted the material balance method to calculate
the input and output of N and P in this CRIS [35–38]. The material balance method considers feed,
fertilizer, and agrochemical as the only source of waste in the CRIS. By calculating the N and P content
in feed, fertilizer and pesticide input minus the N and P content used in the growth process of rice and
crayfish, it is the amount of various pollutants entering the environment. The formula is:

K =

 n∑
j=1

WBj ×DBj +
n∑

j=1

WFj ×DFj −WCray f ish ×DCray f ish −WRice ×DRice

× 10−3 (1)

K (kg/hm2) is the total amount of N or P in a total year for the CRIS. N is the number of terms in
the summation formula. Here, n represents the sum of N and P inputs for all feeds, fertilizers, and
pesticides. WBj (kg/hm2) is the total amount of an individual feed, DBj (g/kg) is the content of N or P of
the feed. WFj (kg/hm2) is the total amount of fertilizers and pesticides, DFj (g/kg) is the content of N or
P in the fertilizers or pesticides. WCray f ish (kg/hm2) is the receipt quantity of crayfish, DCray f ish (g/kg) is
the content of N or P in the body of crayfish. WRice (kg/hm2) is the total rice harvest, DRice (g/kg) is the
content of N or P in rice. The contents of N and P in feed and fertilizer were mainly determined by the
ingredient list. Retained N and P in the crayfish set at 16 g and 0.45 g per kg of its body weight gain
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respectively [39]. The contents of N and P in rice (including grain, husk, leaf, root and stem) were
22.17 g per kg and 4.88 g per kg, respectively [40].

4. Result: The Practice and Input-Output Analysis of CRIS in the Study Areas

According to our investigation, the area of ditches for crayfish production in CRIS accounts for
about 15%–20% of the total field area. Tables 1 and 2 is the average value of material input and output
of CRIS and rice monoculture. As indicated in Table 1, CRIS significantly reduced the amount of
fertilizers used in the rice production process compared with the rice monoculture. The dosage of N,
P fertilizer decreased from 300 kg and 75.5 kg per hectare to 135 and 60 kg per hectare, respectively.
Due to the decline in rice area and the use of fertilizers and pesticides, rice production dropped from
9500 kg per hectare to 7400 kg per hectare (Table 2).

Table 1. The input of CRIS and rice monoculture.

Raw

CRIS Rice Monoculture

Rice Crayfish Rice

Name Quantity
(kg/hm2) Name Quantity

(kg/hm2) Name Quantity
(kg/hm2)

Fertilizer
(kg/hm2)

N 135 - - N 300
P 60 - - P 75.5

Feed
(kg/hm2)

- - Animal Bait 50 - -
- - Artificial Diet 5330 - -

Note: Pesticides are essential P input sources. However, in the surveyed areas, farmers hardly use pesticides in CRIS.

Table 2. The output of CRIS and rice monoculture.

CRIS Rice Monoculture

Yield (kg/hm2)
Rice Crayfish Rice
7400 2525 9500

Table 3 is the total number of N and P inputs in the CRIS in one year. In the CRIS, N and P input
from fertilizer were 63.05 kg per hectare and 0.9 kg per hectare, respectively. In contrast, the total
N and P inputs made by animal bait and artificial diet were 296.45 kg per hectare and 67.90 kg per
hectare, respectively. In other words, the feed input required to feed crayfish in CRIS has replaced the
fertilizer as the largest source of N and P (Figure 3).

Table 3. The N and P input of CRIS.

Input Quantity
(kg/hm2)

Content of N
(g/kg)

Content of P
(g/kg)

Application of
N (kg/hm2)

Application of
P (kg/hm2)

Rice Seed 37.5 12.38 3.07 0.46 0.12

Crayfish Seed 255 - - - -

N Fertilizer 135 467 - 63.05 -

P Fertilizer 60 - 15 - 0.90

Animal Bait 50 27.50 4.10 1.38 0.21

Artificial Diet 5330 55.36 12.70 295.07 67.69
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According to the results of material balance method, the output of N and P in CRIS is 76.46 kg per
mu and 17.05 kg per mu respectively (Table 4).

Table 4. The N and P output of CRIS.

Amount of N (kg/hm2) Amount of P (kg/hm2)

Crayfish 177.02 52.12
Rice −100.56 −35.07

Amount 76.46 17.05

5. Discussion: The Potential Environmental Risk of the Practice of CIRS in the Case Areas

5.1. Profit-Driven Production and the Destruction of Ecological Balance of CRIS

The practice of CRIS in Qianjiang has indeed raised farmers’ incomes and reduced the use of
fertilizers. However, this is not due to the ecological benefits of CRIS. Because there is a considerable
profit gap between rice and crayfish, and because crayfish production is more straightforward than
rice production, farmers are not very active in rice production. Farmers thus increase the area of the
crayfish ditch to expand the crayfish production further. Moreover, farmers are generally reluctant
to use fertilizers due to the adverse effect on the yield and quality of crayfish. The decrease in rice
planting area and the amount of fertilizer per mu have affected the yield of rice. In fact, in order to
ensure the stability and security of grain production, the Chinese government has many restrictions on
the protection of basic farmland. The Technical Specification for Integrated Farming of Rice and Aquaculture
Animal (TSIFRAA) require the aquaculture ditch to be less than 10% in an IAAS. However, driven by the
enormous profits of crayfish, many farmers have expanded the area to even more than 20% according
to our investigation. Under this scenario, though crayfish production has risen, rice production has
fallen. As mentioned above (Table 2), the average per mu yield of rice has even been lower than the
requirement of TSIFRAA of 500 kg per mu.

More importantly, the expansion of crayfish production has upset the balance of ecological
exchange in the CRIS. In the CRIS of Qianjiang, because the density of crayfish farming is too high,
merely relying on the exchange of substances in the CRIS is not enough to maintain the growth of
crayfish. Different from many cases abroad, crayfish and rice production in CRIS of case areas do
not have a symbiotic relationship. To ensure the production of crayfish, farmers generally increase
the application of feed. According to the investigation, the crayfish in CRIS must be fed every
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day; otherwise, the crayfish will grow slowly, and the death rate will increase. Additionally, it can
be confirmed from another aspect that the crayfish farming density in the case areas is too high.
Many crayfish ditches even need to use oxygen pumps to add oxygen to the crayfish. Many studies
have proved that in the process of aquaculture, only about 1/3 of the feed nutrients are absorbed by
fish or other aquaculture animals, and 2/3 of the nutrients are left in the water [14,29]. As a result,
most of the feed nutrients put into aquaculture are released into the environment. The empirical
research also confirms this (Figure 4). Therefore, the production process of farmers in the case areas
is closer to aquaculture than to CRIS. Rice production remains in CRIS only because of legal and
standard restrictions.
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5.2. Water Exchange of CRIS: The Potential Risk of the New Non-Point Source Pollution

The wastewater produced by aquaculture is also an important source of water pollution that
cannot be ignored. Excessive N and P loading into the surface water system are considered to be
the most important cause of eutrophication [12,13]. The Ministry of Agriculture of China has set the
Regulation on Quality and Safety Management of Aquaculture to supervise the discharge of aquaculture
wastewater. Although the practice of CRIS in the case area is closer to aquaculture, local governments
and farmers still consider it as IAAS. As a result, wastewater discharged in the process of crayfish
production is not included in the regulatory system of this regulation.

As mentioned above, crayfish production has become the primary source of N and P input in
CRIS. The results calculated by material balance method ignore the self-purification capacity of the
water body and the adsorption of bottom silt. However, from the perspective of environmental security,
the extra N and P will increase the pressure on the rural environment. In fact, the local governments in
the case area have been aware of this risk. They require some farmers having relatively large farmland
(more than 50 mu) to set up a wastewater tank for further treatment. However, according to the
investigation, the wastewater is directly discharged into the surrounding water system through the
farmland irrigation system. Some farmers are not even aware of the regulation. The increase of water
exchange frequency and the generation of new N and P input sources undoubtedly increase the risk of
non-point source pollution (Figure 5).
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CRIS practices in China have indeed reduced the amount of fertilizer and pesticides used by
farmers. Moreover, crayfish can be harvested three times during a single season of rice planting,
which increased farmers’ incomes. However, according to our research, farmers are reducing fertilizer
and pesticide use mainly because of concerns about the impact on crayfish production. Moreover,
due to the huge profit difference between crayfish and rice, many farmers have expanded the area
of aquaculture ditch and increased the quantity and frequency of feed delivery. Rice acreage also
decreases accordingly. Therefore, the practice of CRIS in these study areas deviated from the original
intention of IAAS and turned out to be an aquaculture. However, since CRIS is not included in the
aquaculture regulatory system, N and P, mainly derived from crayfish feed, become the new sources
of eutrophication.

Due to the high requirements of crayfish growth on water quality, the frequency of water exchange
among farmers in the surveyed areas is very high, especially between June and August. The untreated
sewage was discharged directly into the surrounding water system of the study area. Therefore, it can
be considered that due to the lack of supervision on the production of CRIS, the crayfish production
in the CRIS system has become a new source of eutrophication in the rural area. Moreover, as the
irrigation system is directly connected to a broader range of surrounding water systems, there is a risk
of further expansion of non-point source pollution. As a result, it is necessary for the local governments
to regulate the practice of CRIS, especially limiting the area and density of crayfish farming. In addition,
it is urgent to incorporate wastewater from CRIS farming into the supervision system of aquaculture
wastewater discharge.
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