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Abstract: Maize straw biochar-supported nanoscale zero-valent iron composite (MSB-nZVI) was
prepared for efficient chromium (Cr) removal through alleviating the aggregation of zero-valent iron
particles. The removal mechanism of MSB-nZVI was investigated by scanning electron microscopy
with energy dispersive X-ray (SEM-EDX), X-ray diffractometry (XRD), and X-ray photoelectron
spectroscopy (XPS). Cr(VI) removal from aqueous solution by MSB-nZVI was greatly affected
by pH and initial concentration. The removal efficiency of Cr(VI) decreased with increasing pH,
and the removal kinetics followed the pseudo-second-order model. XRD patterns of MSB-nZVI
before and after reaction showed that reduction and precipitation/co-precipitation (FeCr2O4, Fe3O4,
Fe2O3) occurred with the conversion of Cr(VI) to Cr(III) and Fe(0) to Fe(II)/Fe(III). The produced
precipitation/co-precipitation could be deposited on the MSB surface rather than being only coated
on the surface of nZVI particles, which can alleviate passivation of nZVI. For remediation of
Cr(VI)-contaminated saline–alkali soil (pH 8.6–9.0, Cr 341 mg/kg), the released amount of Cr(VI) was
70.7 mg/kg, while it sharply decreased to 0.6–1.7 mg/kg at pH 4.0–8.0, indicating that the saline–alkali
environment inhibited the remediation efficiency. These results show that MSB-nZVI can be used as
an effective material for Cr(VI) removal from aqueous solution and contaminated soil.
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1. Introduction

Chromium is a highly toxic contaminant in industrial wastewater that is discharged from
metallurgy, leather tannery, electroplating process, and dyeing, etc. Hexavalent chromium (Cr(VI)) and
trivalent chromium (Cr(III)) are the main valence states present in the wastewater and contaminated
soil, and Cr(VI) is much more soluble, mobile, and toxic than Cr(III) [1]. The Cr(VI) species including
chromate (CrO4

2−, HCrO4
−) and dichromate (Cr2O7

2−) can cause serious health issues. According to
the World Health Organization (WHO) guidelines and Chinese standards (GB5749-2006), less than
0.05 mg/L Cr(VI) is acceptable for the required quality of drinking water [2,3]. Thus, the efficient
removal of Cr(VI) from wastewater in recent years has become an urgent environmental issue.

Nanoscale zero valent iron (nZVI) refers to iron with a size below 100 nm, which has great
application potential in the field of environmental remediation because of its high surface activity
and strong reduction ability. In recent years, nZVI has been successfully used for the treatment
of many contaminants from wastewater and contaminated soil, including inorganic pollutants
(e.g., Cr(VI), As(V), Cu2+, NO3

−), and organic pollutants (e.g., Polychorinated biphenyls (PCBs),
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Dichlorodiphenyltrichloroethane (DDT), organic dyes, halogenated hydrocarbons) [4–7]. However,
there are many limiting factors for nZVI application. There is always a danger of prior oxidation for
nZVI particles, which happens on the surfaces of the nanoparticles and then makes them non-reactive.
The transport of nZVI particles is usually very difficult when added into soil. In addition, nZVI particles
have a tendency to aggregate, which can result in a decrease in reactivity and removal efficiency for
contaminates. In order to overcome this drawback, many supporting materials (such as activated
carbon and clay minerals) have been used to prevent nZVI aggregation and increase the reactivity [8].
Biochar is a high-carbon, fine-grained, and stable material that is produced via pyrolysis of biomass
feedstocks in limited oxygen environment or absence of oxygen. In recent years, biochar has been
successfully used for carbon sink, wastewater treatment, and soil remediation. Due to its high stability
and large specific surface area, biochar is one of the most promising supporting materials for nZVI [9].
Meanwhile, biochar demonstrated high adsorption capacity due to its abundant surface functional
groups and large specific surface area. Some raw and modified biochars were used for the remediation
of wastewater and contaminated soil [1,10–13]. Biochar could perform better if combined with nZVI for
the remediation of Cr(VI) from aqueous solution and soil. Shang et al. (2017) synthesized nZVI particles
supported on herb-residue biochar and it exhibited a high removal efficiency for Cr(VI) removal from
aqueous solution [9]. Zhou et al. (2014) prepared a novel sorbent through combing biochar, chitosan,
and nZVI, which showed the enhanced ability to remove Pb, Cr(VI), As(V), phosphate, and methylene
blue from aqueous solution [14]. Su et al. (2016) prepared biochar-supported nanoscale zero-valent
iron (nZVI-BC) for enhanced transport and in situ remediation of Cr(VI) in soil, and the remediation
reduced the phytotoxicity of Cr(VI) [15].

Most of the literature only focuses on Cr(VI), and there are few studies on both total Cr and Cr(VI)
removal by nZVI supported on biochar. A large amount of maize straw is produced every year in
northern China, and some has not been effectively used, which can result in a great waste of resources.
Conversion of maize straw into biochar is an environmentally friendly way to utilize maize straw. It is
important to reveal the exact removal mechanism of Cr(VI) by biochar-supported nZVI for wastewater
and soil remediation for large-scale practice.

In this study, to enhance the reactivity of nZVI particles, maize straw biochar (MSB) was
investigated to support nZVI particles for Cr(VI) removal from aqueous solution and contaminated
saline–alkali soil. The objectives of this study are to (1) synthesize and characterize MSB-supported
nZVI composites, (2) analyse the removal efficiency of Cr(VI) and total Cr from aqueous solution and
contaminated saline–alkali soil by MSB-nZVI in different experimental conditions, and (3) reveal the
removal mechanisms to provide basic information for the application of this synthetic composite.

2. Materials and Methods

2.1. Synthesis of MSB-nZVI

Maize straw samples were collected in one farm in Shandong province, China, and pyrolyzed at
500 ◦C for 2 h in a limited-oxygen environment (without nitrogen gas flow), using a muffle furnace
(SX2-5-12, Longkou Xianke Instrument company, Shandong, China). After cooling, MSB samples were
washed with deionized water several times and then dried for the preparation of MSB-supported
nZVI composite (MSB-nZVI). MSB-nZVI samples were synthesized as follows: 1 g MSB sample was
added into the solution (5 g analytical grade FeSO4·7H2O dissolved in 500 mL deionized water) for
24 h at room temperature (20–25 ◦C). The solution was purged with nitrogen gas for 30 min to remove
dissolved oxygen, and then 100 mL sodium borohydride solution (analytical grade NaBH4, 0.5 M) was
added dropwise into the suspension with nitrogen gas bubbles. The solid products were separated
from the solution by vacuum filtration, washed several times with ethanol, and then vacuum dried
at 60 ◦C for 24 h [9,16]. The MSB-nZVI samples were stored in a sealed plastic (PE) bag to prevent
oxidization at 4 ◦C.
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2.2. Sample Characterizations

The specific surface areas of MSB and MSB-nZVI were analyzed using an ASAP 2020 surface area
and porosity analyzer (Micromeritics, Norcross, GA, USA). A scanning electron microscope (SEM,
Quanta FEG 250, Hillsboro, OR, USA) coupled with an energy dispersion spectrometer (EDX, X-Max50,
Oxford, UK) was used to observe surface morphology and chemical elements of MSB-ZVI before and
after reaction with Cr(VI). The surface functional groups of the samples were examined by a Nicolet
380 FTIR spectrometer (Thermo Scientific, Waltham, MA, USA). Mineralogical characterization of
MSB-nZVI before and after reaction with Cr(VI) was performed by a powder X-ray diffractometer
(XRD, Bruker D8 ADVANCE, Berliln, Germany).

2.3. Remediation of Cr(VI) and Total Cr from Aqueous Solution

2.3.1. Effect of pH, Initial Concentration, and Contact Time

To determine the effect of solution pH on Cr(VI) and total Cr removal by MSB-nZVI, 0.1 g sample
and 25 mL Cr (VI) solution (0.48, 0.96, 1.92 mM) were mixed without shaking for 48 h. Considering
electroplating wastewater containing high concentration of Cr(VI), the concentrations of 0.48, 0.96, and
1.92 mM (25, 50, and 100 mg/L) were chosen for the experiments. The solution pH was adjusted in
the range of 2.0–8.0 by addition of NaOH or HNO3 solution. The solution pH was measured with
a pH meter (Leici PHS-3C, Shanghai, China). For the effect of initial concentration, 0.1 g MSB-nZVI
sample was added into a series of PET plastics bottles containing 25 mL Cr(VI) solution with different
concentrations at pH 2.5. The mixtures were centrifuged and filtered through 0.45 µm filter paper for
Cr(VI) and total Cr concentration analysis after mixing for 48 h. For the effect of contact time, 2 g
MSB-nZVI sample was mixed with 500 mL Cr(VI) solutions (1.92 mM) at pH 2.5. The samples were
withdrawn at different time intervals.

The concentration of Cr(VI) was determined by the standard 1, 5-diphenylcarbazide
spectrophotometric method (GB7647-87) using a UV-Vis spectrophotometer (UV-2550
spectrophotometer, Shimadzu, Japan) at 540 nm. The detection limit of Cr(VI) was 0.004 mg/L.
The concentration of total Cr was determined by atomic absorption spectroscopy (AAS, AA-7000
model spectrometer, Shimadzu, Japan).

2.3.2. Methods to Reveal Cr(VI) Removal Mechanism

In order to reveal the mechanisms of Cr(VI) removal by MSB-nZVI, XRD analysis was performed
to analyze the crystallinity formed on the surface of MSB-nZVI after reaction with Cr(VI). The surface
morphological structure and elemental composition before and after Cr(VI) removal were characterized
by SEM-EDX. The valence state of Cr and Fe on the surface of MSB-nZVI before and after reaction
with Cr(VI) was determined by X-ray photoelectron spectroscopy (XPS, Thermo ESCALAB 250XI, MA,
USA), in order to reveal the conversion of valence state of Cr and Fe during the reaction.

2.4. Remediation of Cr(VI)-Contaminated Soil

2.4.1. Analytical Methods for Soil Characterizations

The Cr(VI)-free soil sample was collected in Binzhou, Shandong province, China. The pH
of the soil sample was measured with a pH meter (Leici PHS-3C, Shanghai, China) (soil/water
(1:2.5)) [17]. The water-soluble salt content was measured by residue drying method (soil/water
(1:5)) [18]. Cr(VI)-contaminated soil samples were prepared as follows: K2Cr2O7 solution (500 mL) at
the desired concentration was added into air-dried soil (500 g), and the mixture was mixed thoroughly
and air-dried to a constant weight.
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2.4.2. Remediation Experiments of Cr(VI)-Contaminated Soil

The soil remediation tests were conducted with 5 g soil and 50 mL deionized water (soil-to-solution
ratio of 1:10) at room temperature (20–25 ◦C) for the water-soluble released amounts of Cr(VI) or total
Cr. In order to study the effect of pH on Cr(VI) remediation, the mixture was adjusted to be 4, 5, 6, 7,
8, and 9, respectively. To study the dosage of MSB-nZVI on released amounts of total Cr and Cr(VI),
the soil samples were mixed with MSB-nZVI at pH 7.0, and the dosages of MSB-nZVI were 0, 2, 5, 10,
20, and 40 g/kg, respectively. To investigate the effect of reaction time on Cr(VI) remediation, the soil
samples were mixed with MSB-nZVI (40 g/kg dosage) at pH 7.0. Samples were withdrawn at 1, 2, 4,
6, 8, 12, 24, 36, and 48 h, respectively. All the soil experiments were conducted in triplicate, and the
average values were presented.

3. Results and Discussion

3.1. Characterization of MSB-nZVI

The surface morphologies of MSB-nZVI before and after reaction with Cr(VI) are shown in
Figure 1a–d. Many spherical particles (ZVI) with sizes ranging from 40 to 100 nm are evenly attached
to the surface of MSB. The surface of the MSB-nZVI after reaction with Cr(VI) appears to be coarser
with rough aggregates on the surface, which could be related to the corrosion of nZVI particles and
chromium/iron oxides via redox reactions. The specific surface area of MSB was 24.5 m2/g and it
increased to 30.5 m2/g for MSB-nZVI. As shown in Figure 2, XRD patterns (without smooth treatment)
showed that quartz and calcite were the main minerals for MSB, and the clear characteristic peaks of
ZVI (2θ = 44.7, 64.9, and 82.2) for MSB-nZVI.

The Fourier transform infrared (FTIR) spectra (Figure 3) for MSB showed that the broad band
around 3421 cm−1 was related to the -OH vibration, indicating hydroxyl groups and adsorbed water
existing on the surface of MSB. The bands around 2923 cm−1 correspond to the −CH2 and −CH3 group
of long-chain aliphatic components. The characteristic bands at around 1620 cm−1 and 1097 cm−1

correspond to C=O and Si–O stretching vibrations, respectively. The band at around 781 cm−1 is
attributed to aromatic C–H [19]. The intensity of the typical bands all decreased for MSB-nZVI due to
the surface of MSB being coated by nZVI particles.
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3.2. Cr(VI) Removal from Aqueous Solution

3.2.1. Effect of pH

The effect of pH on the removal efficiencies of Cr(VI) and total Cr by MSB-nZVI is shown in
Figure 4. For the initial Cr(VI) concentration of 0.48 mM, more than 99.9% of Cr(VI) was reduced at
pH 2.0–8.0, and the removal efficiency of total Cr increased from 23.5% to more than 99.9% with pH
increasing from 2.0 to 8.0. This is because increasing pH was favorable for the converted Cr(III) ions
precipitated as Cr(III) hydroxides and/or the form of mixed Fe/Cr (oxy) hydroxides (Equations (1)–(3)).
For the initial concentration of Cr(VI) 0.96 mM, the removal efficiency of Cr(VI) decreased from more
than 99.9% to 89.4% with pH increasing from 2.0 to 8.0. The removal of total Cr increased from 60% to
99.8% with pH increasing from 2.0 to 7.0, and then decreased to 85.7% at pH 8.0. For Cr(VI) 1.92 mM,
the removal efficiency of Cr(VI) decreased from more than 99.9% to 23.8% with pH increasing from
2.0 to 8.0. The removal of total Cr increased from 89.7% to 99.9% with pH increasing from 2.0 to 2.5,
and then decreased to 13.5% at pH 8.0. The removal efficiencies of Cr(VI) were significantly higher at
pH 2.0–2.5 than those observed at different pH values (p < 0.05), indicating that the solution pH greatly
affected the removal performance of Cr(VI) by MSB-nZVI. Acidic environment is favorable for Cr(VI)
removal according to the following reactions [16,20]:

2HCrO4
− + 3Fe(0) + 14H+

→ 2Cr3+ + 3Fe2+ + 8H2O (1)

HCrO4
− + 3Fe2+ + 7H+

→ 2Cr3+ + 3Fe3+ + 4H2O (2)

(1− x)Fe3+ + xCr3+ + 3H2O→ CrxFe1−x(OH)3 + 3H+ (3)
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For initial concentration of Cr(VI) 1.92 mM, the equilibrium pH after reaction increased to 4.0, 6.2,
and 7.6 for the initial pH 2.0, 5.0, and 7.0, respectively. The larger degree of pH increase for initial pH 2.0
further suggested that the oxidation–reduction reaction between Cr(VI) and Fe(0)/Fe(II) intensified at
low pH. Meanwhile, the electrostatic attraction between MSB and Cr(VI) could be enhanced at lower
pH, which consequently facilitated the adsorption of Cr(VI) on MSB-ZVI and promoted the reaction
between Fe(0) and Cr(VI).

The removal efficiency of total Cr at pH 2.0–2.5 was 23.5–79.2%, 57.9–60%, and 89.7–99.9% for
0.48, 0.96, and 1.92 mM, respectively. It showed that the removal efficiency of total Cr increased with
initial Cr(VI) concentration increasing from 0.48 to 1.92 mM. At pH 2.0–2.5, more than 99.9% of Cr(VI)
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was reduced for the initial Cr(VI) concentration of 0.48, 0.96, and 1.92 mM. Thus, the removal of total
Cr is dependent on Cr(VI) reduction to Cr(III) and subsequent Cr(III) precipitation removal, which
is mainly controlled by solution pH. As shown in Figure 4d, the equilibrium pH after reaction for
Cr(VI) 0.96 mM (initial pH 2.0–2.5) only increased to 2.2–2.8, while the equilibrium pH for Cr(VI)
1.92 mM (initial pH 2.0–2.5) increased sharply to 4.0–6.5, which was favorable for the converted Cr(III)
precipitation and the removal of total Cr.

3.2.2. Effect of Initial Concentration

The effect of initial Cr(VI) concentration on its removal efficiency was investigated in the range of
0.48–4.81 mM at pH 2.5. As shown in Figure 5, at an initial Cr(VI) concentration of 0.48–1.92 mM, the
removal efficiency of Cr(VI) was over 99.9%, and it decreased to 89.6% and 58.3% for 3.85 and 4.81 mM,
respectively. At an initial Cr(VI) concentration of 0.48, 0.96, 1.92, and 3.85 mM, about 0.13, 0.26, 0.48, and
0.81 mmol/g of the Cr(VI) were removed within 48 h, respectively. It appeared that the removal capacity
of Cr(VI) significantly increased with increasing initial Cr(VI) concentration. However, when the
initial Cr(VI) concentration increased to 4.81 mM, the unit removal capacity decreased to 0.68 mmol/g.
According to the theoretical calculation, the nZVI supported by MSB in the solution was enough to
reduce Cr(VI) for all the treatments (0.48–4.81 mM). High Cr(VI) concentrations caused intensive
oxidation of nZVI and the rapid formation of a compact passivation layer of Cr/Fe oxides/hydroxides
coated on the MSB-nZVI surface, so that the subsequent redox process was inhibited [21].
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Cr(VI) initial concentrations.

3.2.3. Effect of Contact Time

The effect of contact time on the removal efficiencies of Cr(VI) and total Cr is shown in Figure 6.
It shows typical biphasic kinetics with rapid removal at 6 h, followed by a slower one. During
the first 6 h, the removal efficiencies of Cr(VI) and total Cr increased rapidly to 90.8% and 78.9%,
respectively, and then removal equilibrium was reached within 48 h, equivalent to 96.4% and
94.5%. The pseudo-first-order model and the pseudo-second-order model were used to study the
adsorption kinetics process. The calculated removal capacity was closer to the experimental value
for the pseudo-second-order model than for the pseudo-first-order model. The kinetic data fitted the
pseudo-second-order model better than the pseudo-first-order model. It indicated that Cr(VI) removal
by MSB-nZVI was controlled by a chemical process and that adsorption, reduction, and coprecipitation
could occur during Cr(VI) and total Cr removal.
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1.92 mM Cr(VI), pH 2.5).

3.2.4. Removal Mechanisms

The SEM images of MSB-nZVI before and after reaction with Cr(VI) are shown in Figure 7. For
the MSB-nZVI before reaction with Cr(VI), iron particles were distributed on the surface of MSB in
the shape of a sphere. The EDX spectra showed the presence of Cr and Fe on the surface of MSB-ZVI
after reaction with Cr(VI), and the spherical nZVI particles disappeared with rough aggregates on
the surface, which could be related to the corrosion of the nZVI particles and chromium oxides via
redox reactions.
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In order to reveal the mechanism of Cr(VI) removal by MSB-nZVI, XRD analysis was performed
to analyze the possible mineral precipitates. The minerals of MSB-nZVI before and after reaction
are shown in Figure 8. The XRD patterns of MSB-nZVI before reaction with Cr(VI) showed a clear
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characteristic peak of Fe(0) (2θ = 44.7, 64.9, and 82.2), which disappeared after the reaction with
Cr(VI) [22–24]. The XRD patterns of MSB-nZVI after reaction might indicate the presence of Cr2FeO4,
Fe3O4, and Fe2O3, which demonstrated the redox reactions between nZVI particles and Cr(VI). Cr(VI)
was reduced to Cr(III) and nZVI was converted to Fe(II) and Fe(III).
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The detailed XPS spectra of the MSB-nZVI before and after Cr(VI) reaction in aqueous solution are
shown in Figure 9. The full survey peaks of Cr at binding energy 578 eV appeared after the reaction,
indicating that Cr existed on the surface of the MSB-nZVI and participated in the removal processes
(Figure 9a). In addition, Cr(VI) and Cr(III) coexisted in the spectra of Cr 2p after the reaction. As shown
in Figure 9b, the two peaks at 586.9 eV (Cr 2p1/2) and 577.0 eV (Cr 2p3/2) were assigned to insoluble
Cr(III) oxygen/hydroxide (Cr2O3/Cr(OH)3) (accounting for 85.2% of total Cr according to peak area
semi-quantitative analysis). The peaks at 580 eV (Cr 2p3/2) and 590 eV (Cr 2p1/2) corresponding to
Cr(VI) accounted for 14.8% of total Cr. It is evident that most of the Cr adsorbed on the surface of
MSB-nZVI was reduced to Cr(III) (85.2%) with zero-valent iron as electron donors [25], with only 14.8%
remaining as Cr(VI) (Figure 9b). Therefore, the reduction of Cr(VI) to insoluble Cr(III) was the primary
Cr(VI) removal mechanism, and the adsorption process of Cr(VI) was involved in Cr(VI) removal [26].

For the original MSB-nZVI, the peaks at binding energies of 725.2 eV (Fe 2p1/2) and 711.5 eV
(Fe 2p3/2) could be assigned to Fe(III) in Fe2O3, and the two peaks at binding energies of 710.4 eV
(Fe 2p3/2) and 723.8 eV (Fe 2p1/2) can be attributed to Fe(II) in Fe3O4. The peaks at 706.9 eV correspond
to Fe(0), which only accounts for 2.9% of Fe species (Figure 9c–d). This is because the iron oxides layer
(Fe2O3 and Fe3O4) existed on the nZVI particle surface, and XPS technique is only used for surface
detection (only 2–5 nm probing depth). After the Cr(VI) reaction, the Fe(0) peaks in the spectra totally
disappeared, indicating that the Fe(0) was involved in the reaction between nZVI and Cr(VI). Further
analysis of the binding energy of Fe 2p suggested that Fe2O3, Fe3O4, and FeCr2O4 could be the main
reaction product of MSB-nZVI after reaction with Cr(VI) [27,28].
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Based on the above analysis of EDX, XRD, and XPS, the proposed mechanism of Cr(VI) removal
by MSB-nZVI is shown in Figure 10. Adsorption, reduction, and precipitation/co-precipitation
could be involved in the removal process of Cr(VI) by MSB-nZVI. Cr(VI) was adsorbed onto the
material surface and reduced to Cr(III) by oxidizing Fe(0) to Fe(II) and Fe(III). Subsequently, the
converted Cr(III) ions could form the co-precipitates as FeCr2O4 (Equation (3)). One portion of the
generated Fe(III)/Cr(III)(oxy) hydroxides could be coated onto the surface of MSB because of the
large surface area, which can alleviate passivation of nZVI. Compared with bare nZVI particles,
the existence of biochar can enhance the reduction of nZVI due to effective dispersion of the nZVI
nanoparticles [9,15,16,21–23,28–30].
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3.3. Remediation of Cr(VI)-Contaminated Soil

3.3.1. Characterization of Soil Sample

The soil belongs to sandy loam according to international standards for soil texture classification.
The pH of soil sample was 8.6–9.0. The water-soluble salt content was 2.8 g/kg, according to residue
drying method (soil/water (1:5)), indicating that it belonged to saline–alkali soil. The Cr(VI) content of
contaminated soil was 341 mg/kg. The soil sample was ground and passed through a 2 mm sieve for
the remediation experiments.

3.3.2. Effect of MSB-nZVI Dosage

The effect of MSB-nZVI dosage on the released amounts of Cr(VI) and total Cr is shown in
Figure 11. The released amounts of Cr(VI) and total Cr from soil decreased as the MSB-ZVI dosage
increased, due to the increased reactive sites. When MSB-nZVI dosage was 0, 2, 5, 10, 20, 40 g/kg,
the released amount of Cr(VI) was 162.1, 145.5, 103.2, 43.6, 32.2, and 3.5 mg/kg from contaminated
soil within 48 h, and the released amount of total Cr was 166.5, 161.8, 104.1, 46.5, 39.6, and 4.5 mg/kg,
respectively. This was mainly attributable to the increased surface area and active sites. Similarly,
a dramatic decrease in total Cr was also observed, and its downtrend was close to that of Cr(VI),
indicating that most of the reduced Cr(III) had been transformed to the solid phase. The dosage 40 g/kg
was larger than that reported in literature. For example, Su reported that the optimum dosage of the
nZVI–Biochar composite was 8 g/kg when the remediation time was 15 d [29]. This is probably due
to the less remediation time (2 d) and relatively lower surface area of MSB (24.5 m2/g) in this study,
compared to literature.
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Figure 11. The effect of MSB-nZVI dosage on the released amount of Cr from soil.

3.3.3. Effect of pH

The effect of soil pH on the released amount of Cr(VI) and total Cr is shown in Figure 12. The
released amount of Cr(VI) and total Cr decreased with soil pH increasing from 2.0 to 8.0, though
they were in the range of 0.6–1.7 mg/kg and 1.1–2.1 mg/kg at pH 4.0–8.0, respectively. Compared to
Cr(VI)-contaminated saline–alkali soil (pH 8.6–9.0), the immobilization efficiency reached over 99%
with the remediation of MSB-nZVI at adjusted pH 4.0–8.0, and the release of Cr(VI) was significantly
inhibited (p < 0.05). However, when soil pH increased to 9.0, the amounts of Cr(VI) and total Cr
released from soil sharply increased to 70.7 mg/kg and 82.6 mg/kg, respectively. An acidic environment
was favorable for Cr(VI) reduction to Cr(III), and the remediation performance for alkaline soil was
relatively poor [30].
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3.3.4. Remediation Kinetics

The effect of contact time on Cr(VI) release from contaminated soil is shown in Figure 13. The
released amount increased from 38.3 mg/kg to 201.7 mg/kg, with contact time increasing from 1 h
to 48 h for the contaminated soil. Meanwhile, for the MSB-nZVI treated soil, the released amount
decreased from 57.9 mg/kg to 34.4 mg/kg, with contact time increasing from 1 h to 48 h. Compared with
contaminated soil, the released amount of Cr(VI) for MSB-nZVI treated soil significantly decreased
due to the remediation of MSB-nZVI.
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4. Conclusions

In this study, maize straw biochar supported nanoscale zero-valent iron composite (MSB-nZVI)
was synthesized for efficient Cr removal. Cr(VI) removal from aqueous solution by MSB-nZVI was
dependent on pH and initial concentration. Adsorption, reduction, and precipitation/co-precipitation
were involved in the Cr(VI) removal process by MSB-nZVI, and the formed precipitate/co-precipitates
(FeCr2O4, Fe3O4, and Fe2O3) were partially coated on the surface of MSB, which can alleviate
passivation of nZVI. For the remediation of Cr(VI)-contaminated saline–alkali soil (pH 8.6–9.0), the
immobilization efficiency of Cr(VI) was significantly inhibited, while it could reach over 99% with
MSB-nZVI in adjusted pH 4.0–8.0. These results show that MSB-nZVI can be used as an effective
material for Cr(VI) removal from aqueous solution and contaminated soil.
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