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Abstract: Non-optimal air temperatures can have serious consequences for human health and 
productivity. As the climate changes, heatwaves and cold streaks have become more frequent and 
intense. The ClimApp project aims to develop a smartphone App that provides individualised 
advice to cope with thermal stress outdoors and indoors. This paper presents a method to predict 
indoor air temperature to evaluate thermal indoor environments. Two types of input data were used 
to set up a predictive model: weather data obtained from online weather services and general 
building attributes to be provided by App users. The method provides discrete predictions of 
temperature through a decision tree classification algorithm. The data used to train and test the 
algorithm was obtained from field measurements in seven Danish households and from building 
simulations considering three different climate regions, ranging from temperate to hot and humid. 
The results show that the method had an accuracy of 92% (F1-score) when predicting temperatures 
under previously known conditions (e.g., same household, occupants and climate). However, the 
performance decreased to 30% under different climate conditions. The approach had the highest 
performance when predicting the most commonly observed indoor temperatures. The findings 
suggest that it is possible to develop a straightforward and fairly accurate method for indoor 
temperature estimation grounded on weather data and simple building attributes. 
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1. Introduction 

Exposure to extreme temperature indoors or outdoors may have severe implications for human 
health. Gasparrini et al. [1] estimated that 7.7% of the total mortality in 384 locations around the globe 
could be attributed to non-optimum ambient temperatures. In the forthcoming years, climate change 
will increase the intensity and frequency of extreme weather events, in particular, high temperatures 
[2]. According to the European Environmental Agency, 80% of the European population is expected 
to live in urban areas by the year 2020, where health consequences of thermal exposures will be more 
severe [3–5]. However, occupational risks related to thermal exposures of outdoor workers in rural 
areas may also increase.  

The increasing risk of health impacts from future climate events requires the development of 
adaptation mechanisms that help people to withstand thermal stressful situations. Heat Shield [6] 
and ClimApp [7] are ongoing projects that will develop tools for better adaptation to suboptimal 
thermal environments. ClimApp is a smartphone application that combines climate forecasts, human 
thermal models, user characteristics and human physiology to improve decision making towards 
thermal adaptation strategies. Thermal exposure indoors is also considered within the scope of the 
ClimApp project since it affect the well-being, health and performance of building occupants in 
particularly fragile populations such as the elderly or young children [8,9]. The estimation of indoor 
air temperature is essential for the evaluation of thermal comfort and energy consumption in built 
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environments [10,11]. In ClimApp, the estimated temperature will be used as input to the calculation 
of the Predicted Mean Vote index (PMV). On a seven-point scale ranging from cold to hot, the PMV 
predicts the average thermal sensation of a group of people exposed to the same thermal conditions 
[11]. Other input parameters required to calculate PMV are the mean radiant temperature, air 
humidity, mean air velocity, clothing insulation and metabolic rate. These five parameters will be 
estimated based on season, geographical location and simple user input. In the future, smartphones 
with built-in or auxiliary thermal environment sensors may be a useful tool to assess people’s local 
thermal environment. However, even though most phones are equipped with temperature sensors, 
they only measure the internal temperature in the phone, which may be heated, e.g., by the phone’s 
electronics or from lying in a pocket. Technology to measure the thermal environment that occupants 
are exposed to is not yet fully developed or commonly available [12]. 

The indoor air temperature depends on multiple factors related with building characteristics, 
occupants and outdoor climate. Nguyen et al. [13,14] observed that the degree to which indoor and 
outdoor temperatures are associated depends on the climatic region and that the association is 
particularly strong during warm seasons. Oreszcyn et al. [15] analysed different factors that 
influenced indoor temperatures in 1600 low-income English dwellings during the heating season. 
Their findings indicated that indoor temperatures depended mostly on building characteristics (e.g., 
construction year and thermal efficiency-related factors, such as insulation level, air tightness of the 
building envelope) and occupant-related factors (e.g., age and number of occupants). Hamilton et al. 
[16] found that indoor temperatures in English houses increased with increasing household income 
and that old houses had significantly lower indoor temperatures than new houses. French et al. [17] 
analysed temperature data from 400 houses in New Zealand. Their results showed that heating type, 
climate and house age had the largest influence on winter indoor temperatures, whereas the 
availability of air conditioning, house age and outdoor climate influenced temperature levels more 
during summer. Magalhães et al. [18] also analysed the factors that influence indoor temperatures 
using enhanced linear regression models with measurements from field studies in 141 dwellings. 
Their findings showed that the variability of daily mean indoor air temperatures was influenced by 
building characteristics (73% to 85% of the surveyed households), socio-economic factors (4% to 14% 
of the surveyed households) and outdoor air temperatures (1% to 3% of the surveyed households). 
Building characteristics included parameters such as age of construction, wall insulation, window 
characteristics and type of space heating equipment. Moreover, their method to estimate indoor 
temperature showed a high predictive performance (R2 from 0.89 to 0.91) when comparing predicted 
and measured temperature values. White-Newsome et al. [19] applied mixed linear regression 
models to predict hourly indoor temperature measurements during summer in 30 residences. The 
combination of outdoor temperature, solar radiation and dew-point temperature explained 38% of 
the variability in the indoor temperature values in their study. Several studies developed more 
advanced techniques for indoor temperature prediction than merely linear regression models. Some 
of them used Time-Series analysis [20] and others used a combination between Time-Series and 
Artificial Neural Networks (ANN) [21–24]. Time-Series is an approach used for data forecasting 
based on statistical analysis of measured values over a defined period. Such a method is normally 
used for Model Predictive Control (MPC), applied in modern Heating, Ventilation and Air-
Conditioning (HVAC) operation strategies. Mateo et al. [25] applied different machine learning 
techniques to forecast indoor air temperatures based on outdoor climate parameters (air temperature 
and relative humidity) and variables related to space heating use (temperature set point and heating 
power). Their approach focused on short-term temperature forecasting (24 hours), reaching an 
average error of approximately 0.1 °C. The framework proposed by Kelly et al. [26] was able to predict 
indoor air temperatures with an error of 0.71 °C at 95% confidence. Their method used behavioural, 
environmental and building efficiency variables as inputs, which were processed through panel 
Time-Series methods. In general terms, the outcome of Time-Series forecasting is restricted to the 
specific design and operation conditions of a building. Its complexity prevents its implementation in 
smartphone applications.  
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The framework suggested in this study uses occupants’ observations and weather data as input 
to estimate indoor air temperatures. It is expected that the indoor module of the App will be 
particularly useful in environments hosting fragile individuals, such as young children and the 
elderly, and where heat or cold spells may result in unusual thermal exposures. Under these 
conditions, the App’s output may assist in an evaluation of coping actions. All input parameters were 
combined through a decision tree algorithm which was constructed based on measured data and 
building characteristics obtained from field studies. The framework was developed to be integrated 
into ClimApp to enable the assessment of thermal exposures indoors by calculating the Predicted 
Mean Vote based on weather data and simple building descriptors. The scope of this paper is limited 
to the development of a prediction framework for indoor air temperature. 

2. Materials and Methods  

Weather data and building-related parameters were obtained from field studies to determine to 
which degree they are related to measured air temperatures (TA). As presented in Figure 1, the first 
step was to gather data from field studies. Local weather data was obtained from weather forecast 
agencies available online, whereas building-related parameters were collected through 
questionnaires given to the occupants of each building. This information will normally be provided 
through the ClimApp interface based on what occupants know about the building and what they can 
observe from their surroundings. Then, the input data was processed and used to train a decision 
tree model. The performance of the model to predict TA values correctly was tested based on the data 
collected from field studies. In addition, a building simulation model was developed, which was used 
to evaluate how generalizable the framework was in predicting TA in different climate conditions. A 
parametric analysis was then carried out to evaluate which variables contributed to the predictive 
power of the algorithm. In practical use after implementation in the app, correct estimation of TA 
depends to a high degree on the quality of the feedback provided by the users of the app. 

 

Figure 1. Process map of the methodology applied in this study. The data collected from field studies 
is represented with a solid line, whereas the simulated data is illustrated with a dashed line. 

2.1. Data Collection 

The input data used to construct and test the framework presented in this paper was obtained 
from measurements performed in seven dwellings located in Copenhagen, Denmark. This database 
was originally obtained through field studies by Andersen et al. [27] and Fabi et al. [28]. Indoor 
environment parameters (temperature, relative humidity and CO2 concentration), outdoor climate 
(air temperature (TAO), relative humidity (RHO) and solar radiation (SR)) and parameters related to 
occupant behaviour were measured and monitored across different seasons during the period from 
March to August 2008. As presented in Table 1, the dwellings analysed in the field study had either 
natural or mechanical ventilation. The heating system of all the residencies was based on water 
radiators connected to a district heating network and none of them had mechanical cooling systems. 
In each dwelling, the measurements were taken either from the master bedroom (BR), from the living 
room (LR) or from both rooms. 
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Table 1. Characteristics of the dwellings investigated related. LR: living room, BR: bed room. 

Dwelling 
index 

Number of 
residents 

Floor 
area 
(m2) 

Ventilation 
type 

Construction year 
(renovation) 

Closest 
meteorological 

station (km) 

Room 
measured 

1 2 145 Natural 1928 13 LR,BR 
2 2 130 Natural 1956 (1976) 4 BR 
3 2 83 Mechanical 1981 (2001) 11 LR,BR 
4 2 86 Natural 1945 5 LR,BR 
5 1 83 Mechanical 1981 (2001) 11 LR 
6 3 87 Natural 1945 5 LR,BR 
7 2 77 Natural 1945 5 LR 

All the variables presented in Table 2 were considered as input parameters to construct the 
algorithm, except the indoor CO2 concentration, which was used to estimate whether the room was 
occupied or not. The hourly running mean outdoor temperature (TRM) was calculated as the 
exponentially weighted moving average, considering the previous values of mean hourly outdoor 
air temperatures (Equation 1). 𝑇𝑅𝑀௧ = ሺ1 − 𝛼ሻ[𝑇𝐴𝑂തതതതതത௧ିଵ + 𝛼𝑇𝐴𝑂തതതതതത௧ିଶ + 𝛼ଶ𝑇𝐴𝑂തതതതതത௧ିଷ + ⋯ ]  

 

 
 

(1) 

where 𝑇𝑅𝑀௧ is the running mean outdoor temperature for an instant t; 𝑇𝐴𝑂തതതതതത௧ିଵ, 𝑇𝐴𝑂തതതതതത௧ିଶ and 𝑇𝐴𝑂തതതതതത௧ିଷ 
are the mean hourly outdoor temperatures for the previous hours; and α is a constant between 0 and 
1 that defines the speed at which the running mean reacts to variations of the outdoor temperatures. 
The TRM was finally calculated using the three previous values of hourly outdoor temperature with 
a coefficient α equal to 0.9, since the correlation between TA and TRM reached its highest value 
(Pearson coefficient = 0.14) under such conditions. Outdoor environment parameters (TAO, RHO and 
SR) were obtained from the meteorological station closest to the dwellings [29]. Indoor climate 
parameters (TA, CO2) were measured using Hobo U12-012 data loggers (Onset Computer 
Corporation, Bourne, USA) connected to Vaisala GMW22 CO2 transmitters (Vaisala Corporation, 
Helsinki, Finland). Window opening (WO) was measured using HOBO UA-004-64 Pendant G 
accelerometers (Onset Computer Corporation, Bourne, USA). The heating set point was measured on 
the thermostatic radiator valves (TRV) connected to the Hobo U12-012 data loggers [30]. The value 
of the TRV could be adjusted between −1 and 6, depending on the desired set point (from 7 to 30 °C). 

Table 2. List of attributes used to train air temperature (TA)-prediction method. 

Variable Type Unit 
Indoor air temperature, TA Continuous measurement °C 

Running mean outdoor temperature, TRM Continuous parameter °C 
Outdoor relative humidity, RHO Continuous measurement % 

Global solar radiation, SR Continuous measurement W/m2 
Position of the heating set point, TRV Continuous measurement from −1 to 6 - 

Window opening, WO Discrete value: open = 1, closed = 0 - 
Indoor CO₂ concentration, CO2 Continuous measurement ppm 

Floor area of the room, FA Continuous parameter m2 
Construction year, CY Continuous parameter years 

Nominal number of occupants in the room, NO Discrete value from 0 to 4 - 

2.2. Data Processing 

Indoor climate sensors were placed on internal walls with a minimum distance to the closest 
radiator of one meter and at a height of approximately 1.8 m above the floor. The temperature sensor 
was placed inside the casing of the Hobo U12-012 data logger which could have been heated by direct 
solar radiation. Placing the temperature sensors in shaded areas was intended so that they were not 
affected by direct sunlight. However, this was not possible in all cases, due to practicalities and the 
acceptance of the residents. Consequently, the indoor temperature measurements were corrected 
when direct sunlight hit the sensors by applying a linear interpolation of the temperature 
measurements between 30 min and one hour after the illuminance level measured on the sensors was 
larger than 1000 lux.  
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Only measurements during occupied hours were considered in the framework. The CO2 
concentration level was used as an indicator of occupancy in each room, considering that occupants 
were the main source of CO2 indoors [31]. It was assumed that a room was unoccupied when the CO2 
level was equal to or below 430 ppm. This value was observed to correspond to the average outdoor 
CO2 concentration plus the sensors’ uncertainty in the CO2 measurement. According to Andersen et 
al. [27], one of the most common reasons for closing windows is people leaving their dwelling. 
Therefore, it was considered that a room was also unoccupied when the windows were closed and 
the CO2 concentration decreased continuously until a level of 430 ppm or below. The occupancy level 
was determined as a binary variable (occupied or not occupied) as it was not possible to verify the 
exact number of occupants present in a room within a defined period. 

2.3. Model Construction 

To estimate TA, it was necessary to find its relationship with discrete (WO, NO and CY) and 
continuous (TRM, RHO, TRV, FA and SR) variables that could influence its value. The problem was 
solved with a classification model which could handle both discrete and continuous variables. TA 
values were converted into a pre-defined number of categories, depending on the desired precision 
of the prediction. In this study, the measured TA values were between 16 °C and 30 °C. As presented 
in Table 3, temperatures were divided into seven categories that each account for an interval of ±1 °C. 
In other words, the outcome of this method was the prediction of a temperature interval where the 
actual TA value is included. According to Liu et al. [32], the discretization of a continuous variable 
simplifies the construction of a rule-based algorithm, making the predictions more understandable 
and often leading to a higher predictive accuracy. The method developed in this study was thought 
to be implemented in a smartphone App. Thus, it was essential to as simple and reliable as possible.  

Table 3. List of input variables used for the TA prediction framework. 

Classes Interval 
A 16 ≤ TA < 18 
B 18 ≤ TA < 20 
C 20 ≤ TA < 22 
D 22 ≤ TA < 24 
E 24 ≤ TA < 26 
F 26 ≤ TA < 28 
G 28 ≤ TA ≤ 30 

A C4.5 decision tree algorithm was the tool used to predict TA [33]. A decision tree is an 
algorithm that makes predictions by calculating the probability of an outcome to occur, based on 
attributes that influence it. It is a tree-shaped algorithm, where each node represents an attribute, a 
branch corresponds to a decision rule and the leafs are the possible outcomes [34]. The C4.5 decision 
tree was implemented in Java using WEKA (version 3.9, University of Waikato, Hamilton, New 
Zealand) as a machine learning workbench [35].  

The learning method used by the C4.5 algorithm is based on the concept of divide-and-conquer, 
whereby a certain attribute X divides the training data set of T into n subsets 𝑇ଵ,𝑇ଶ, … ,𝑇௡ , where each 𝑇௜ is a subset of instances. In this study, an instance or data point corresponded to a discrete group 
of attributes that was aligned with a matching TA measurement (e.g., a data point composed by the 
following attributes: WO = 1, RHO = 50, SR = 0, TRV = 1, TRM = 16, CY = 1954, FA = 24 and NO = 2, 
corresponded to a TA inside class c). The algorithm then used the concepts of Information Entropy 𝐻 and Information Gain to define the relevance of each attribute to estimate each class c. Information 
Entropy is used to measure the homogeneity of a sample distribution, which corresponds to the 
amount of information needed to identify a class. For this, it is needed to determine 𝑝்೔,௖ that is the 
proportion of instances of 𝑇௜  that belong to a class c (Equation 2). Then, the Information Gain is 
applied to calculate how much an attribute contributes to estimate c, which is defined as the change 
in entropy (Equation 3) [34].  
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𝐻(𝑇௜) = −෍𝑝்೔,௖ ∙ 𝑙𝑜𝑔ଶ(𝑝்೔,௖)஼೅
௖ୀଵ  (2) 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛(𝑋,𝑇) = 𝐻(𝑇) −෍ |𝑇௜||𝑇| ∙ 𝐻௡
௜ୀଵ (𝑇௜) (3) 

where 𝑝்೔,௖ is the proportion of data points or instances belonging to a class c, CT is the total number 
of classes and 𝑇௜ is one sample among all the n subsets in which the total amount of training data T 
was divided due to an attribute X. Considering a group of data points or instances, the algorithm 
grows an initial tree evaluating which is the attribute that diminishes more the entropy of the 
partition. Each of the partitions is treated again as a new tree, repeating the process until there are no 
misclassifications.  

2.4. Building Simulation Model 

It is challenging to obtain datasets across a wide variety of climates that contain indoor and 
outdoor thermal environmental measurements as well as HVAC operation parameters in real 
applications. To overcome this constrain, a comprehensive dataset was generated through a dynamic 
building simulation model implemented in IDA-ICE (version 4.8, EQUA Simulation AB, Stockholm, 
Sweden), which is a simulation tool that models a building, its systems and their control [36]. This 
allowed the evaluation of the potential generalization of the framework presented in Section 2.3. 
Three different locations were considered for the simulations: Copenhagen in Denmark (55.62 °N, 
12.65 °E), Athens in Greece (37.9 °N, 23.73 °E) and Abu Dhabi in the United Arab Emirates (24.4 °N, 
54.5 °E). Those locations were chosen since they account for climates with different air temperature, 
relative humidity and solar radiation levels, as shown in Table 4. The meteorological data used in the 
simulations were obtained from ASHRAE’s IWEC (International Weather for Energy Calculations) 
[37].  

Table 4. Summary of the weather data parameters used in the building simulation model for 
Copenhagen (CPH), Athens (ATH) and Abu Dhabi (AUH). The format corresponds to: 
Minimum/First Quartile/Median/Third Quartile/Maximum. 

Parameter CPH ATH AUH 
TAO, °C −10 /3 /8 /14 /27 1 /12 /17 /24 /38 11 /22 /28 /32 /45 
RHO, % 21 /69 /81 /88 /100 12 /49 /61 /73 /100 7 /49 /64 /78 /100 

SR, W/m2 0 /0 /3 /208 /960 0 /0 /75 /487 /951 0 /0 /44 /532 /986 

The model corresponded to a single-family house with a master bedroom (BR) and a kitchen-
living room (LR). The main characteristics of the model are presented in Appendix 1. Considering 
the age of the houses analysed in the field study (see Table 1), the envelope characteristics of the 
model (see Table A1 and Table A2 in Appendix 1) accounted for a typical single-family Danish house 
constructed in the period 1951–1960 [38]. The models were mechanically heated with ideal heaters 
(heating components without thermal inertia) and cooled through window opening. The dwelling in 
Abu Dhabi also had mechanical cooling to avoid overheating, implemented as a mixed-mode cooling 
system [39]. The control approach for window opening and the heating/cooling system was based on 
the Adaptive Thermal Comfort model, which determines the indoor comfort temperature based on 
outdoor climate [40]. The set point to turn on/off water radiators corresponded to the lower limit of 
the Adaptive regression model presented in EN15251 [41] for an indoor climate Category II. Windows 
were opened based on the upper limit of the same model minus 0.5 °C, whereas the set point for 
mechanical cooling used the same upper limit plus 0.5 °C. All control signals were determined by 
proportional controllers with a proportional band of 1 °C. As a result, the operation of the control 
system for window opening was able to open windows when the indoor temperature was lower than 
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the upper limit of the adaptive model. When the indoor temperature was over that limit, the windows 
were closed and mechanical cooling was applied. This approach aimed to simulate occupants 
opening windows to maintain the indoor temperature within their thermal comfort limits. 
Mechanical cooling was then used when cooling by the opening of windows was not enough to 
maintain occupants’ comfort levels. 

The data obtained from the simulations were implemented to provide input data for a model 
that determines TA based on the prevalent outdoor climate, building-related parameters and 
occupancy level. 

2.5. Performance Evaluation 

The performance of the method was evaluated based on the F1-score of a multi-class classifier 
[42]. This performance indicator was calculated based on the precision and recall indicators. Precision 
represents the proportion of instances correctly classified as positives (Equation 4), whereas recall 
corresponds to the effectiveness of an algorithm to identify positives (Equation 5). In this study, a 
positive refers to a particular TA class that is being predicted and a negative corresponds to the rest 
of the classes. Considering the task of predicting a TA value in class A, a high precision means that 
the method is able to correctly predict that such TA is in class A out of all the predictions of A, while 
a high recall reveals that is also able to correctly predict that a TA is in A out of all the correct 
predictions. According to Kautz et al. [43], the outcome of those indicators can be misleading with 
imbalanced data, i.e., categories with a different number of data records. The number of TA 
measurements in each of the classes in Table 3 was expected to differ, leading to an uneven 
distribution of data. The F1-score is a measure of a test’s accuracy and it was used to account for the 
imbalance. However, unlike a simple accuracy calculation (number of correct predictions over the 
total number of predictions), the F1-score requires a similar number of correct predictions across all 
the classes to reach a value close to 100%. It is calculated as the harmonic mean of precision and recall 
(Equation 6). 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ∑ 𝑡𝑝௜௟௜ୀଵ∑ (𝑡𝑝௜௟௜ୀଵ + 𝑓𝑝௜) (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 = ∑ 𝑡𝑝௜௟௜ୀଵ∑ (𝑡𝑝௜௟௜ୀଵ + 𝑓𝑛௜) (5) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (6) 

l corresponds to the total number of classes; 𝑡𝑝௜ is the number of true positives per class i; 𝑡𝑛௜ is the 
number of true negatives per class i; 𝑓𝑝௜ is the number of false positives per class i; 𝑓𝑛௜ is the number 
of false negatives per class i. 

Two approaches were applied to evaluate the performance of the algorithm. The first approach, 
named Validation, randomly mixed the data obtained from all dwellings and then divided it for 
training and testing. In this method, a 10-fold cross-validation was used, which comprised the 
division of the data set into 10 smaller groups or folds with an equal number of data points. Nine 
folds were used to train the algorithm and one was used to test it. This process was repeated 10 times, 
averaging the F1-score of each step. The second method, called Application, used the data obtained 
from six dwellings to train the algorithm and testing it by using the TA measurements from the 
seventh dwelling, repeating this process seven times (each one considering a different dwelling to 
test the algorithm). This concept was used to evaluate the performance of the framework using an 
unbiased data set by testing it with data from a completely different building.  
  



Int. J. Environ. Res. Public Health 2019, 16, 4349 8 of 19 

 

3. Results  

This section presents the main results of the analysis. Table 5 shows all the measured variables 
in each of the bedrooms and living rooms. All the TA measurements were between 17 °C and 30 °C, 
with the median between 19 °C and 24 °C depending on the dwelling. The TRV values showed a low 
variability in some dwellings (D3-LR, D4-BR, D5-BR and D11-LR). However, this did not necessarily 
cause a lower variability in the TA measurements in those dwellings.  

Figure 2 shows that the measured TA values were distributed differently among the temperature 
categories in Table 3. Categories with the lowest and highest TA values (e.g., the intervals 16 ≤ TA < 
18 and 28 ≤ TA ≤ 30), had a lower number of data points compared to the other categories. Moreover, 
the distribution of TA values shows that not all the classes were considered in the data sets from all 
dwellings. 

 
Figure 2. Number of data points in each TA class obtained from all the dwellings (D1, D2, D3, D4, D5, 
D6 and D7), considering BR and LR together. 
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3.1. Attribute Selection 

Table 5. Main descriptive statistical parameters of the monitored variables used as input parameters 
for the TA prediction algorithm. STD: Standard deviation. DN: Dwelling number. 

Bedrooms (BR)  Living rooms (LR) 
DN   TA TAO RHO SR TRV CO2 DN   TA TAO RHO SR TRV CO2 

1 Mean 23 14 71 265 14 809 1 Mean 21 14 72 262 14 634 
  Median 22 14 71 150 14 650   Median 21 14 72 155 14 618 
  Min 17 0 30 0 3 441   Min 17 0 30 0 3 435 
  Max 30 27 100 918 22 1670   Max 28 27 100 918 22 1669 
  STD 3 5 19 286 3 350   STD 2 5 19 283 3 139 
                                
2 Mean 22 8 75 207 8 1089 3 Mean 24 9 75 213 9 643 
  Median 22 8 75 69 8 1017   Median 24 9 76 83 10 628 
  Min 19 -7 28 0 -3 438   Min 22 -7 28 0 -3 448 
  Max 26 24 100 904 19 3065   Max 28 26 100 906 21 1798 
  STD 1 6 19 256 5 522   STD 1 6 19 258 5 128 
                                
3 Mean 19 4 86 96 4 674 4 Mean 25 9 69 206 9 1002 
  Median 19 5 91 0 5 707   Median 24 9 71 68 9 989 
  Min 17 -7 42 0 -3 461   Min 21 -5 25 0 -3 441 
  Max 21 13 100 717 10 1140   Max 28 24 98 904 20 2149 
  STD 1 4 15 161 3 119   STD 1 6 19 256 5 275 
                                
4 Mean 23 9 69 210 9 1353 5 Mean 21 9 80 113 10 594 
  Median 23 9 70 75 9 1209   Median 21 9 84 4 11 584 
  Min 18 -5 25 0 -2 446   Min 18 -7 30 0 -3 435 
  Max 26 24 98 904 20 3634   Max 27 29 100 904 24 1280 
  STD 1 6 19 257 5 650   STD 1 6 17 185 6 104 
                                
6 Mean 23 10 70 169 11 601 6 Mean 23 8 74 126 9 674 
  Median 23 10 72 30 11 530   Median 22 7 77 7 8 615 
  Min 19 -4 29 0 -1 438   Min 19 -4 31 0 -1 461 
  Max 28 26 98 904 21 2913   Max 29 21 98 872 21 2965 
  STD 2 5 19 236 4 216   STD 2 4 18 199 4 241 
                                
                7 Mean 22 8 71 167 9 558 
                  Median 22 8 74 21 8 543 
                  Min 20 -5 27 0 -3 450 
                  Max 25 26 98 904 20 1026 
                  STD 1 6 20 242 5 89 

The C4.5 algorithm applied in this study uses the concept of Information Gain to select the most 
important attributes affecting TA. Hence, Information Gain (Equation 3) was calculated for each 
input parameter to assess its importance for the construction of the set of rules of the decision tree. 
Moreover, the correlation between the input parameters and their corresponding TA values was 
evaluated through Pearson’s correlation coefficient. The results presented in Table 6 show that TRV 
was the input parameter that added most to the prediction, as it had the highest Information Gain. 
Attributes with higher correlation coefficients were not necessarily those that provided more 
information to develop the algorithm. 

Table 6. Information Gain and Pearson’s correlation coefficient for all input parameters, which were 
also ranked based on each index. 

Attribute Information Gain Correlation (Pearson) 
 Value Rank Value Rank 

TRV 0.55 1 0.14 1 
NO 0.10 6 0.10 6 
FA 0.23 2 0.13 3 
CY 0.15 4 0.03 8 
WO 0.03 8 0.11 5 
TRM 0.20 3 0.14 2 

SR 0.12 5 0.05 7 
RHO 0.09 7 0.11 4 
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3.2. Performance Evaluation 

The results from the Validation approach showed that the performance of the algorithm had its 
highest increment when the number of data points used for training was below 10,000 (Figure 3). The 
precision and the recall of the method had similar values regardless of the amount of training data. 
The similarity between both indicators and the high F1-score achieved (92%) suggests that the 
method was able to classify the TA values with a similar performance for all the TA classes. This was 
a result of the equivalent distribution of the training and testing data, as both were extracted from 
the same data set. Figure 3 shows that the maximum performance was reached with 95,000 training 
data points. Considering that each data point corresponded to different parameters measured every 
10 minutes, 1000 data points was equivalent to 6.9 days of continuous measurements. Hence, the 
method required 3.3 days of continuous measurements to have a predicting performance of at least 
50%. 

 

Figure 3. Overall performance of the prediction algorithm using the Validation approach as a function 
of the number of data points used as training set. 

The Application method was applied with the same amount of training data and the same 
amount of testing data in each evaluation. The size of the data set used for testing (7131 data points) 
corresponded to the minimum number of measurements in a single dwelling among all seven 
dwellings. The minimum number of measurements in the remaining six dwellings corresponded to 
the size of the training data set (74,582 data points). The results show that the Recall outweighs the 
Precision for all the tested cases (Figure 4). In other words, the algorithm is better at predicting certain 
TA values correctly, but not all of them. This is due to an uneven distribution among the different 
classes presented in Table 3. The lack of correct predictions for categories that contained fewer data 
points affected the overall Precision of the method and therefore, the F1-score. 

 
Figure 4. Overall performance of the method when the Application approach was used, which 
accounts for the data from the seven dwellings (D1, D2, D3, D4, D5, D6 and D7) evaluated in the field 
study. 
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The results from Figure 5 show that the method was not able to estimate the TA included in 
categories A and G correctly, corresponding to the temperatures inside the intervals 16 ≤ TA < 18 and 
28 ≤ TA ≤ 30, respectively. When comparing these results with those from Figure 1, it can be seen that 
the method had a higher performance when predicting the most prevalent TA values. 

 
Figure 5. F1-score for all seven TA classes when the Application approach was used, which accounts 
for the data from the seven dwellings (D1, D2, D3, D4, D5, D6 and D7) evaluated in the field study. 

3.3. Building Simulation Results 

The data from the field experiment were applied to train the TA-prediction method, whereas the 
data obtained from the building simulation model were used as testing data. Four additional TA 
classes were added to the method to account for the higher TA values obtained from the simulations 
from Athens and Abu Dhabi. Such classes considered the following TA intervals: 30 ≤ TA < 32, 32 ≤ 
TA < 34, 34 ≤ TA < 36 and 36 ≤ TA ≤ 38, which only applied to the data obtained from the two locations 
previously mentioned. The results presented in Table 7 show that the F1-score differed depending 
on the location and the input parameters taken into account. The performance of the method using 
real data corresponded to a parametric evaluation using the average results from the Application 
analysis presented in Section 3.2. Overall, the method showed a lower performance when predicting 
the simulation data set than for the real data. Within the simulation results, the F1-score was the 
highest for Athens, compared to the results using the data from Copenhagen and Abu Dhabi. The 
performance decreased when some of the attributes were not considered as input parameters 
(highlighted values in Table 7), which depended on the climate considered. However, the absence of 
SR, TRM and NO decreased the performance of the algorithm when using the testing data from 
Athens and Copenhagen. However, only the omission of RHO and SR had a negative impact on the 
performance when the data from Abu Dhabi were used for testing. The presence of mechanical 
cooling in the model used for that location probably influenced the prediction of the TA values, which 
was also reflected in the lower performance achieved in that scenario (13.3% for the optimal case). 
When no mechanical cooling is taken into account, SR, TRM, and NO can be considered as the 
necessary inputs that the TA-method requires in order to reach the highest overall performance. 
Other additional attributes such as the cooling set point could be included as input when a building 
is mechanically cooled.  

Unlike the results obtained from the Information Gain analysis, the TRV and FA did not 
contribute to the accuracy of the method tested on the simulation model data. The reason was that 
the simulation model included data for a full year rather than only for six months as the field study 
data. This had an effect on the influence on TA of the TRV, which expectedly was higher during the 
heating season. Moreover, the data from the field experiment were acquired from buildings with 
different dimensions and the data from the simulation model were obtained from only one building 
type, decreasing the importance of the floor area (FA) as the input parameter in that case. 
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Table 7. Overall predictive performance of the method depending on the input parameters 
considered. “All” refers to all eight attributes; The prefix “w/o” means that this particular attribute 
was not included as input (e.g., w/o CY: all the attributes were considered as input except CY); The 
“Optimal case” included all attributes that decreased the performance when omitted, i.e., those that 
contributed to the predictive performance (highlighted cells). Results given in % of F1-score. 

Input CPH (Real) CPH (Simulation) ATH (Simulation) AUH (Simulation) 
All 29.8% 14.6% 25.8% 0.7% 

w/o WO 29.5% 16.9% 26.1% 0.7% 
w/o RHO 29.6% 15.1% 23.8% 0.6% 

w/o SR 29.7% 14.8% 24.4% 0.7% 
w/o TRV 30.7% 23.7% 24.7% 0.7% 
w/o TRM 25.4% 11.7% 11.6% 0.7% 
w/o CY 31.1% 10.6% 22.9% 6.8% 
w/o FA 27.3% 21.3% 26.9% 0.7% 
w/o NO 24.3% 9.2% 21.5% 9.4% 

Optimal case 30.0% 24.8% 26.9% 13.3% 

Figure 6 shows that the prediction reached a maximum performance of 68% with the most 
frequent TA values from Athens, whereas it had a more modest performance of 50% when predicting 
the data from Copenhagen and Abu Dhabi. As mentioned in Section 2.5, the F1-score takes into 
account the number of incorrectly predicted TA classes as well as the correctly predicted ones. Thus, 
the results show that the method is able to correctly predict the most frequent TA temperatures with 
a probability of 68% and an uncertainty of ±1 °C. The distribution of the TA values in the testing data 
was within a broader temperatures range for Athens (from 16 °C to 38 °C) and a higher temperature 
level for Abu Dhabi (from 24 °C to 38 °C) than for Copenhagen (16 °C to 30 °C). The results from the 
building simulation evaluation show that the highest performance was achieved when predicting the 
most populated TA classes from the training data, which corresponded to temperatures between 16 
°C and 30 °C (see Figure 2). Hence, the method requires that the TA values in the training data are 
distributed as evenly as possible across a broad range of temperatures. This maximizes the 
performance of the method under diverse climate conditions. 

 

Figure 6. Distribution of the TA values and performance of the TA-prediction method when 
forecasting data from the building simulation model located in Athens (ATH), Copenhagen (CPH) 
and Abu Dhabi (AUH). 

3.4. Estimation of the Predicted Mean Vote 

This study focused on the development of a TA-prediction approach to assess thermal indoor 
environments based on the Predicted Mean Vote (PMV). In practice, the App users will be presented 
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with a visual indicator based on the PMV rather than predicted TA values. Table 8 shows that the 
prediction of TA in intervals of ±1 °C resulted in estimation of the PMV with an overall uncertainty 
of ±0.2 and ±0.3 for clothing levels of 1 clo and 0.5 clo, respectively. The uncertainty level was 
calculated as the mean distance between the maximum and minimum PMV within the estimated TA 
interval. The estimation of the PMV was based on a relative humidity of 50%, an air velocity of 0.1 
m/s, a metabolic rate of 1.2 met and a mean radiant temperature equal to the room air temperature. 
The results from Table 8 show that the accuracy (F1-score) of estimating the PMV depended on how 
many TA values from the testing data set were within an interval. This value was different for the 
data from Copenhagen, Athens and Abu Dhabi and yielded maximum accuracies of 50%, 68% and 
49% at these locations. 

Table 8. Estimation of the Predicted Mean Vote index (PMV) depending on the TA interval taken into 
account. 

TA interval PMV (clo = 1), - PMV (clo = 0.5), - F1-score (CPH/ATH/AUH), % 
16 ≤ TA < 18 −1.0 ± 0.2 −2.4 ± 0.3 0/0/0 
18 ≤ TA < 20 −0.6 ± 0.2 −1.7 ± 0.3 50/2/0 
20 ≤ TA < 22 −0.1 ± 0.2 −1.1 ± 0.3 35/68/0 
22 ≤ TA < 24 0.3 ± 0.2 −0.5 ± 0.3 9/43/19 
24 ≤ TA < 26 0.8 ± 0.2 0.1 ± 0.3 6/20/49 
26 ≤ TA < 28 1.2 ± 0.2 0.7 ± 0.3 0/11/28 
28 ≤ TA ≤ 30 1.7 ± 0.2 1.3 ± 0.3 0/1/31 

4. Discussion 

As expected, the measured TA values were not evenly distributed among the different 
temperature classes. In particular, none of the dwellings except D3 provided TA values inside all 
classes. As described by Liu et al. [32], when a binning discretization method is used (division of a 
continuous attribute into a specified number of bins), there is a trade-off between creating classes 
with equal frequency and creating classes with equal width. In this study, discretizing the TA values 
comprised the creation of temperature ranges with equal width to define beforehand an estimation 
of the uncertainty of every TA value predicted, corresponding to ±1 °C. This definition caused an 
uneven distribution of the data records used to develop the classification algorithm, but it may have 
allowed predicting the PMV with reasonable accuracy. 

The outcome of the Validation evaluation shows that the algorithm had a performance of 92%, 
estimated based on its precision, recall and F1-score. However, the training data and validation data 
were separate data sets extracted from the same group of measured values. Therefore, the 
distribution of the training data and the data used for validation was similar, which explains the 
similarity between recall and precision. The Validation evaluation showed that the algorithm’s 
performance is probably high when the testing conditions are taken into consideration during the 
training phase. This means that the magnitude of variables, such as type of building, outdoor climate, 
heating system and occupant behaviour were similar during the training and testing phases. 
However, such type of evaluation did not estimate how generalizable the TA-prediction method may 
be. The Application evaluation showed that the performance of the algorithm decreased significantly 
when tested in a completely different dwelling (Figure 4). The prediction performance was affected 
by an uneven distribution of TA values across the predicted classes, producing differences between 
the obtained recall and precision. The results show that the method presented in this study had a 
higher probability of predicting correctly the most prevalent temperatures in the different dwellings. 
The discretization of the TA measurements prevented the method from correct estimations in 
temperature categories lacking data points. This class imbalance is unavoidable, given that in reality, 
it is not possible to have equal number of measured TA values during equal periods. Predicting 
incorrectly the most extreme temperature values implies that the method will not be able to assess 
the most critical situations when occupants are under unacceptable thermal environments (e.g., 
inactive heating system during winter, windows opened during cold outdoor temperatures). 
However, one evident solution to increase the prediction performance of the excessively high or low 
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indoor temperatures is to use training data from a longer period. As suggested by Japkowicz and 
Stephen [44], increasing the size of the training set decreases the effect of the class imbalance, 
improving the performance of the method. For that, the training set should account for variations of 
TA values during different seasons, where the heating and cooling needs change.  

The initial criteria to select the input parameters was to include variables that can be obtained 
from weather services online and from relatively simple user-provided feedback. The literature 
review presented in the introduction showed that building-related parameters, outdoor climate and 
occupant behaviour had an effect on indoor temperature values in several studies [13–26]. A 
comprehensive database extracted from field studies [27,28] was used to train and test the method. 
This database contained building descriptors (floor area and construction year) and occupant 
behaviour (heating set point, window opening and nominal occupancy level). However, since the 
database was obtained only from one climatic zone (Copenhagen, Denmark), the method was tested 
under different climate conditions using dynamic simulations. Even though eight parameters were 
used as inputs, the results from Table 7 show that not all of them had the same impact on the 
performance of the method. Depending on the parameters considered, using more descriptors has 
the potential to improve the prediction performance. Nonetheless, this will probably make the task 
of getting input from occupants more difficult and may induce over-fitting (a predictive model that 
is highly specific to only one set of data [45]). 

Based on the building simulation analysis, it was found that the outdoor climate affected the 
performance of the TA-prediction method, which also had an impact on building-related attributes 
used as input parameters. The method had its highest performance (68%) when predicting the most 
frequent TA values. Hence, the training data should account for a wide range of temperatures evenly 
distributed among the TA prediction classes. When the method was applied to the data from 
Copenhagen and Athens, three attributes were relevant as input to predict TA (solar radiation, hourly 
running mean temperature, and number of occupants), whereas only two variables (relative 
humidity outdoors and solar radiation) were important when using the data from Abu Dhabi. The 
simulations considered the same building type for Copenhagen, Abu Dhabi and Athens using Danish 
construction regulations. According to the studies from Böhnke [46] and Giusti and Almoosawi [47], 
a representative dwelling for Athens and for Abu Dhabi is less tight with significantly higher heat 
losses than a Danish household. Nevertheless, the building type was not changed in the simulations 
performed in this study to better analyse the influence of climate-related parameters on the 
performance of the method.  

The hourly running mean outdoor temperature was calculated based on past hourly values of 
outdoor temperature. Due to the thermal mass of a building, the outdoor air temperature does not 
have an instant effect on the air temperature indoors, which explains the importance of TRM as an 
input parameter to estimate TA. Vant-Hull et al. [48] observed that hourly averages of indoor and 
outdoor temperatures were correlated with a time lag of 2 hours, based on a study performed in 30 
residences located in New York City, USA. Their results differed with the period of 3 hours 
considered to calculate the TRM in this study, probably due to discrepancies between the thermal 
mass of the buildings analysed in both studies. The results were in agreement with the findings from 
Nguyen et al. [14] and French et al. [17], since the TA predictions depended on outdoor climate 
variables (TRM and RHO) during the warm season. Building-related parameters, such as CY and FA, 
only had a modest influence on the prediction performance, regardless of how well they correlated 
with the TA values and their Information Gain measure. The results were not entirely in accordance 
with the studies by Oreszyn et al. [15], which observed that TA values in households were influenced 
by building age. Their study was carried out during wintertime, when the building envelope 
characteristics have a more noticeable effect on the temperature indoors. The field study presented 
in this paper was not restricted to a single season as it was performed during winter, spring and 
summer. Therefore, the TA values were probably less dependent on the envelope of the buildings 
analysed. Moreover, the study by Kragh and Wittchen [38] showed that the overall heat transfer 
coefficient of Danish dwellings did not change significantly during the years that the households 
analysed in this study were originally constructed (between 1928 and 1981). However, Oreszyn et al. 
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[15] found that the number of occupants was a factor that significantly affected the TA values, which 
is in accordance with the results from this study. The presence of humans in indoor environments 
increases the heat load and therefore, TA, which varies depending on the number of occupants and 
most likely, their metabolic activity rate. The parametric analysis in the current study only analysed 
the absence of one attribute at a time, evaluating its influence on the overall performance of the 
method. In practice, more than one parameter can be missing or some of them can be incorrectly 
provided by the App user. This type of issue will probably have a greater effect when predicting TA 
values, which were not possible to estimate in this study. 

The results suggest that the relationships between the different parameters used in the model 
and TA are context-dependent. Diverse heating/cooling systems may have a larger or smaller 
influence on TA (i.e., higher or lower influence of TRV), which could be caused by technologies using 
different heat transfer principles or because of different climates. Furthermore, occupants’ control 
possibilities over their thermal environment could be reduced or even non-existent in some cases, 
whereas in other buildings with personal control systems, individuals are able to control their 
immediate surroundings. Even though the value of TA relies on the context, it is evident that the 
outdoor climate parameters have multiple direct or indirect possibilities to influence the TA values. 
Namely, they have an effect over human behaviour, over the performance of heating/cooling systems 
and a direct influence over TA. A TA-prediction model is not capable of generalizing such 
relationships for all different circumstances (e.g., different building types, climates, human 
behaviour). Nevertheless, the framework presented in this study is able to learn from those 
circumstances, making meaningful predictions of TA. 

The main outcome of this study was a method to predict indoor air temperature to estimate PMV 
and assess indoor thermal comfort with incomplete knowledge of the real thermal conditions. When 
the method has been implemented in the app, the user may enter specific information on the building 
and behaviour related parameters, such as the state of thermostats or window opening, which will 
increase the accuracy of the predicted exposure. The user may also be unaware of these building 
descriptors, in which case default values will be used as input to the PMV prediction. Thus, in 
addition to the uncertainty of the predicted indoor air temperature, several other factors will affect 
the accuracy of the estimated PMV. Therefore, a conservative approach should be used when users 
apply the app to assess thermal strain indoors. This can be done by introduction of a safety margin, 
e.g., corresponding to the uncertainty shown in Table 8. Under non-comfort conditions, the predicted 
air temperature may also be used to calculate other indices, typically with more extreme thermal 
exposures that are more common outdoors, such as the wet-bulb globe temperature (WBGT), 
predicted heat strain (PHS), or required clothing insulation (IREQ) [49–51].These other indices are 
already used in the app to assess outdoor thermal exposure. After implementation of the suggested 
method in the app, its functionality will be tested in a range of field studies as part of the ClimApp 
project. 

The framework presented in this study neglects the time-dependent nature of the parameters 
used to develop the model using a classification approach rather than a time-series regression model 
to predict indoor air temperatures. Moreover, it applies univariate discretization only based on 
temperatures, which inevitably also divides the input parameters into categories, affecting its 
prediction performance. However, the application of a more complex discretization approach or a 
regression model that accounts for time-dependent variations will increase the need for more 
computing power. The simplicity of the method proposed in this paper is grounded in the possibility 
of its application into mobile devices, giving a meaningful thermal evaluation of users’ indoor 
environments. Additionally, this method could be used in future research studies to develop 
techniques to monitor indoor environments with fewer or no sensors. Tronchin et al. [52] highlighted 
the importance of limiting the number of sensors in buildings to increase the possibility of monitoring 
at multiple scales. 

The generalization of the TA-prediction model depends on its ability to produce correct 
predictions under different conditions (e.g., building type, climate, occupants). The measured data 
considered in this study accounted for only one climate and one building code. The simulated data 
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had a wider geographical scope to include different climates and improve the generalizability of the 
prediction. However, more research efforts should be made to develop a comprehensive database 
that allows the analysis of building performance, indoor environment and occupant behavior under 
an even wider range of conditions and improves the prediction power of data-driven models. 

5. Conclusions  

This paper proposed a method to predict indoor air temperatures based on weather data and 
simple building descriptors, which are obtained from users of the method. Eight input parameters 
were tested: three outdoor climate parameters (outdoor running mean temperature, outdoor relative 
humidity and solar irradiation), three building-related parameters (floor area, number of occupants 
and construction year) and two parameters related with occupant behaviour (thermostat setting and 
window opening). The method was analysed based on data from seven Danish dwellings obtained 
during a measuring period of six months. Building simulations were used to test the method under 
different climate regions due to the lack of comprehensive datasets from other climates. The method 
had an accuracy of 92% (F1-score) to predict indoor air temperatures with an error of ±1 °C when 
tested under previously known conditions (e.g., same building type and occupant behaviour). The 
accuracy for the same prediction was only 30% when evaluated under completely new conditions 
under the same climate and it decreased when tested in new climates. The performance of the method 
was affected by considering a discretization of indoor air temperatures and by only applying 
measured data from a single climate for its construction. However, the method was able to correctly 
predict approximately 68% of the most frequent temperature levels. Solar irradiation, outdoor 
running mean temperature and number of occupants were the parameters that were most important 
and increased the accuracy of the predictions of indoor air temperature, whereas building related 
parameters (construction year and floor area) only had a minor influence. Finally, the outcome of this 
study shows that it is possible to develop a simple method that predicts indoor air temperature with 
reasonable accuracy based only on weather data and occupant-provided feedback. 
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Appendix A. Parameters used for the building simulation model 

Table A1. Main parameters included in the building simulation model corresponding to a single-
family house with a bedroom (BR) and a kitchen-living room (LR). (1) All external walls were south-
facing. (2) Only considered for the model located in Abu Dhabi. (3) The schedules for were adopted 
from EN16798 [53]. 

Parameter  Detail 
Envelope  

Floor/Glazing/External wall area, m2 
(1) 

16/4.8/10 (BR), 24/6.8/15 (LR)  

Length/Width/Height, m 4/4/2.5 (BR), 6/4/2.5 (LR) 
Glazing  

Type 
2-pane glazing, 12 mm air-gap, wooden frame (10% of window 

area) 
U-value, W/m2K 2.8 

Solar heat gain coefficient, - 0.76 
Heating, cooling and ventilation  

Ventilation rate, CAV, m3/h 40 
Heating power per area, W/m3 125 (BR), 83 (LR) 

Cooling power per area, W/m2 (2) 125 (BR), 250 (LR) (2)  
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Internal gains  

Number of occupants 2 
Emitted heat from appliances, W/m2 3.1 (BR), 1.8 (LR) 

Lighting specifications 7.2 W/m2, 300 lux, 60 lm/W 
Schedule for internal gains (3) Defined in EN16798 for a single-family dwelling  

Table A2. Characteristics of the opaque components used in the simulation model. 

Envelope element U-value, W/m2K Thermal conductivity, W/mK Thickness, m 
External floor 0.3  0.61 
Floor coating  0.18 0.01 

Heavy insulation  0.05 0.15 
Concrete  1.70 0.16 
Gravel  2.00 0.30 

External wall 0.6  0.26 
Concrete  1.70 0.09 

Light insulation  0.07 0.08 
Brick  0.58 0.10 
Roof 1.3  0.35 

Waterproof barrier  0.05 0.01 
Light insulation  0.07 0.03 

Concrete  1.70 0.04 
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