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Abstract: Brucellosis occurs periodically and causes great economic and health burdens. Brucellosis
prediction plays an important role in its prevention and treatment. This paper establishes relationships
between human brucellosis (HB) and land surface temperature (LST), and the normalized difference
vegetation index (NDVI). A seasonal autoregressive integrated moving average with exogenous
variables (SARIMAX) model is constructed to predict trends in brucellosis rates. The fitted results
(Akaike Information Criterion (AIC) = 807.58, Schwarz Bayes Criterion (SBC) = 819.28) showed
obvious periodicity and a rate of increase of 138.68% from January 2011 to May 2016. We found
a significant effect between HB and NDVI. At the same time, the prediction part showed that the
highest monthly incidence per year has a decreasing trend after 2015. This may be because of the
brucellosis prevention and control measures taken by the Chinese Government. The proposed model
allows the early detection of brucellosis outbreaks, allowing more effective prevention and control.

Keywords: brucellosis; remote sensing; time-series; SARIMAX

1. Introduction

Brucellosis is a common zoonosis afflicting humans and animals and causes heavy economic
and health burdens around the world [1–3]. There are four types of brucellosis [4,5] affecting sheep,
cows, pigs, and dogs, with transmission to humans mainly occurring through close contact with
infected animals and their wastes, or by eating unsterilized animal products such as fresh milk [4,6–8].
Aborted sheep fetuses are highly infectious. Farmers, butchers, and veterinarians who come into
contact with animals are at high risk of infection. Brucellosis often causes a series of symptoms in
infected people [9,10], and it leads to animal production and abortion [11–14]. Brucellosis is mainly
distributed in Asia, the Middle East, sub-Saharan Africa and the Balkan Peninsula [1,15,16]. More than
500,000 cases occur globally every year [17]. Sheep brucella vaccine rev.1 is not suitable for human
use [18,19]. The United States, New Zealand, and other countries have adopted quarantine or culling
measures [20,21] but these measures cannot eradicate brucellosis completely.

As a country with a vast agricultural industry, China’s brucellosis prevention and control situation
is very serious [13]. The number of brucellosis cases is on the rise and the affected region is gradually
spreading from the north to the south. The north is a high-incidence area [22], especially in Inner
Mongolia. Meanwhile, the south has sporadic outbreaks [23], especially in recent years in Hainan
Province, which was previously free of the disease. The first case of brucellosis occurred in China in
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1905 and high rates of incidence occurred before 1980 that have since improved [13,24]. This is related
to a series of measures taken by the Chinese Government: (1) A reporting system was established in
1950 [13]; (2) vaccination began in 1964 in high-risk areas; (3) a definition of the disease, test standards,
control measures, and treatment programs were formulated in 1977; and (4) in 1980, a monitoring
project of serum-positive rates at brucellosis sentinel sites was implemented. However, from the
middle to late 1990s to the beginning of this century, the incidence of brucellosis increased sharply
and has continued to increase in recent years, which presents great challenges to public health and
social economic systems. Therefore, new theories and forecasting methods are urgently needed to
meet these challenges.

Previous publications have focused on the epidemiological characteristics and spatial distribution
of the disease [15,25–27], while time series-based predictive models have been used to provide
early warnings of disease occurrence. Common models include residual autoregression models,
the exponential smoothing method (ES) [28], grayscale models, negative binomial regression
models, artificial neural network models [26], autoregressive integrated moving average models
(ARIMAs) [29,30], and their syntheses [31]. ARIMA models are optimal when the time series contains
long-term trend, periodicity, and disturbance terms [32–35]. Previous ARIMA models only considered
the model itself without considering the influence of other variables. An improved ARIMA model, the
autoregressive integrated moving average with exogenous variables (ARIMAX) model, overcomes
this defect by incorporating other factors. Some epidemics involve factors such as hydatids [36] and
Oncomelania snails. These factors have been modelled in other papers using factors such as temperature,
precipitation, insolation time, relative humidity, average wind speed, vegetation cover, etc. [24].
Remote sensing has been applied in many fields as it can estimate many of these factors [16,37–43].
Although ARIMAX has been used to study air pollution [44], corn yields [45], and to predict various
illnesses [46], no one has used it to study brucellosis in recent years. In addition, the use of ARIMAX
models helps to explore the relationship between time series and other factors. Therefore, this study
aims to fill this research gap. Brucellosis bacteria are particularly sensitive to temperature [26], especially
surface temperature. In addition, vegetation cover can provide suitable hydrothermal conditions for
bacterial survival. In this paper, on the basis of predecessors’ ARIMA models that consider seasonal
factors, we use remote sensing data on land surface temperature and vegetation cover to construct an
ARIMAX model of the short-term onset of brucellosis.

The aims of this paper are to: (1) Establish an ARIMAX model using surface temperature
and vegetation cover as input variables; and (2) use it to predict the incidence of brucellosis in
mainland China.

2. Materials and Methods

2.1. Data Sources

2.1.1. Human Brucellosis Data

Data on human brucellosis (HB) cases were collected on a monthly basis by the Chinese Centre
for Disease Control and Prevention (CDC) [47] from January 2011 to December 2016. Brucellosis is a
class b infectious disease, as stipulated by the law of prevention and treatment of infectious diseases in
China. Cases of brucellosis must be reported within 24 h and suspected cases are subject to clinical and
serological testing or isolation as required by the World Health Organization. In this study, monthly
means of HB cases across China from January 2011 to May 2016 were used in the model to fit the
ARIMAX model, while the data from June 2016 to May 2017 were used for validation.

2.1.2. Land Surface Temperature Data

Land surface temperature (LST) has an important impact on surface-dwelling organisms and is
an important variable for studying biological change. In the present study, LST data were obtained
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for January 2011 to May 2016, and monthly means were used as input for the ARIMAX model of
brucellosis. The data was provided by the International Scientific Data Mirror website [48] of the
Computer Network Information Centre of the Chinese Academy of Sciences. We used the MODLT1T
China 1 km surface temperature monthly composite product. Then, ArcGIS10.4 software (Environment
Systems Research Institute, Redlands, CA, USA) was used to obtain monthly mean daytime and
night-time surface temperatures across China (the monthly product includes daily and evening monthly
average images), and a monthly mean national temperature was calculated.

2.1.3. Normalized Difference Vegetation Index Data

The normalized difference vegetation index (NDVI) is an important indicator of land cover. It is
provided by the International Scientific Data Mirror website [48] of the Computer Network Information
Centre of the Chinese Academy of Sciences. The MODND1M China 500 m NDVI monthly synthesis
product from January 2011 to May 2016 was adopted, and ArcGIS software was used to calculate
national mean monthly NDVI values.

2.2. Methods

2.2.1. General Concepts

The steps used to build the overall model are as follows. The input HB, LST and NDVI data are
differentiated to stabilize them. Independent variables of LST and NDVI are fitted to the ARIMA
model. Each independent variable model is used to filter the HB data and determine a fitted model,
as shown in Figure 1. The detailed data processing procedure is shown in the following section.
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2.2.2. Seasonal Autoregressive Integrated Moving Average with Exogenous Variables
(SARIMAX) Models

As a classical time series model [29], ARIMA (p, d, q) is a further development of the AR (p) and
MA (q) models, where p is the number of AR autoregression terms, d is the difference order, and q is
the number of MA sliding average terms. If the information of the sequence cannot be fully extracted
when the time series is stable, an SARIMA(p, d, q)(P, D, Q)S model [49] needs to be considered, where P
refers to the maximum lag order of the seasonal autoregression term, Q is the maximum lag order of the
moving average operator, D is the seasonal difference order, and S is the seasonal difference cycle step.
When we consider input variables such as LST, NDVI, we need to use an ARIMA model with input
variables, namely, an ARIMAX model. A SARIMAX model can also be considered to be an ARIMA
model with an interference sequence or dynamic regression model, which contains a regression section
with input variables and an ARIMA section. Its general model is shown as formula (1):

yt = µ+
k∑

i=1
βiBlixit + εt

εt =
θq(B)ΘQ(BS)

φp(B)ΦP(BS)(1−B)d(1−BS)
D at

(1)

Here, µ represents a constant, βi is regression coefficients of external variables, ΦP(B) refers to
the seasonal autoregressive coefficient polynomial with P-order, ΘQ(B) denotes the polynomial of
the seasonal moving average coefficient with Q-order, φp(B) stands for the autoregressive coefficient
polynomial with p-order, θq(B) is the polynomial of the seasonal moving average coefficient with

q-order, (1− B)d indicates differencing operator of order d, (1− BS)
D remarks seasonal differencing

operator of order D, S expresses the seasonal length, εt shows the residuals, at is white noise time

series, µ+
k∑

i=1
βiBlixit suggests the regression part, and εt indicates the disturbance part.

When setting up an ARIMAX model, the steps are as follows: (1) A stationarity test is carried
out for the response sequence and each input variable. If the input data is not stationary, it should be
stabilized by a differential method. No matter which difference [50] method is adopted, it cannot meet
the requirement of stationarity and the seasonal variation is obvious. Therefore, a seasonal difference
can be considered. Using a seasonal differential method, the sequence was determined to be in a
steady state. Since the surface temperature data and NDVI (Figure 2) are themselves in the stationary
condition, the next step can be taken directly. Similarly, HB data requires both first-order difference and
seasonal difference processing to be a stationary series. The method used to check whether the data is
stationary is the Augmented Dickey-Fuller (ADF) test [51], with a result of p < 0.05 being indicative of
stability. (2) White noise testing. A stationary time series is of no value if it is simply white noise. On the
condition that it is not white noise, further study is necessary, then further pattern recognition. All the
above three input variables are non-white-noise sequences. (3) ARIMA and prewhitening. The ARIMA
model is fitted to each input variable—LST, NDVI—to make the residual of the model a white noise
sequence. Then, the output variable brucellosis sequence is filtered by this model to calculate the
correlation coefficient between the input sequence and the output sequence. (4) The structure of the
SARIMAX model is determined by using the co-correlativity coefficient, and then the model is fitted.
(5) Checking the fitted model. If the requirements are not met, adjustment continues until the white
noise test and the significance of the parameters meet the required conditions.
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2.2.3. Model Test

The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean error rate
(MER) are used to evaluate the fit and predictive effect of the established model. These are calculated
according to Equations (2)–(4).

RMSE =

√√√
1
N

N∑
i=1

(Xi −
_
Xi)

2

(2)

MAPE =
1
N

n∑
i=1

∣∣∣∣∣Xi −
_
Xi

∣∣∣∣∣
Xi

(3)

MER =

1
N

N∑
i=1

∣∣∣∣∣Xi −
_
Xi

∣∣∣∣∣
Xi

(4)

In the formulas, Xi denotes actual values, Xi is the mean of the actual values,
_
Xi is the fitted or

predicted values, and N refers to the number of simulated or predicted values. The software used in
this study was SAS 9.4 (SAS Institute Inc., Cary, NC, USA), ARCGIS 10.4 and EXCEL 2016 (Software,
Redmond, CA, USA). The LST and NDVI data were read by ARCGIS 10.4, and the BDI data were
imported into EXCEL 2016. Data fitting, model establishment, inspection, and mapping were all
carried out in SAS 9.4.

3. Results

3.1. General Characteristics

A total of 71 observed values of brucellosis data were obtained from January 2011 to November 2016,
among which the first 65 were used as training data for the establishment of an ARIMAX model,
and the last six values were used for comparison to test the predictive effect of the model. Looking
at the data from previous years, the monthly data ranged from a minimum of 1123 cases per month
(January 2012) to a maximum of 8102 cases per month (July 2014). The total number of cases in more
than five years was 274,800, the monthly average was 4227 cases per month (HB/mo), and the standard
error was 1875 HB/mo. Between 2011 and 2015, HB cases increased from 43,827 to 60,782, an increase
of 138.68%. According to the data, the incidence of brucellosis has obvious seasonality and periodicity,
with a peak period of May to August, as shown in Figure 3.



Int. J. Environ. Res. Public Health 2019, 16, 4289 7 of 15Int. J. Environ. Res. Public Health 2019, 16, x 7 of 15 

 

 
Figure 3. Trends in monthly human brucellosis cases. 

3.2. HB Data Stationarity 

As a response sequence, HB data is required to be stationary for modelling purposes. It can be 
seen from the scatter diagram that it is non-stationary and has obvious seasonality. After the 
difference method is adopted, it is found that the data is first order twelve-step differential stability. 
The test results are shown in Table 1. 

Table 1. Augmented Dickey-Fuller Unit Root Tests. 

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F 
Zero Mean 0 −69.6921 <0.0001 −11.03 <0.0001   

 1 −110.947 0.0001 −7.51 <0.0001   
 2 −90.4384 <0.0001 −5.33 <0.0001   
 3 −76.5233 <0.0001 −3.75 0.0004   

Single Mean 0 −69.7764 0.0004 −10.96 0.0001 60.15 0.001 
 1 −111.796 0.0001 −7.46 0.0001 27.81 0.001 
 2 −90.5227 0.0004 −5.26 0.0001 13.91 0.001 
 3 −77.2761 0.0004 −3.71 0.0067 6.89 0.0042 

Trend 0 −70.1527 <0.0001 −10.87 <0.0001 59.35 0.001 
 1 −116.393 0.0001 −7.56 <0.0001 28.57 0.001 
 2 −107.518 0.0001 −5.74 0.0001 17.26 0.001 
 3 −112.044 0.0001 −4.11 0.0113 8.59 0.0126 

3.3. LST and NDVI Models 

A scatter diagram of surface temperature and NDVI data from January 2011 to May 2016 was 
made and it showed that the data were approximately stable. The ADF test result of p < 0.05 showed 
that the data were stable, so the difference method was not needed. Meanwhile, the white noise test 
showed a non-white noise sequence. According to the ACF diagram, PACF diagram, and AIC 

Figure 3. Trends in monthly human brucellosis cases.

3.2. HB Data Stationarity

As a response sequence, HB data is required to be stationary for modelling purposes. It can be
seen from the scatter diagram that it is non-stationary and has obvious seasonality. After the difference
method is adopted, it is found that the data is first order twelve-step differential stability. The test
results are shown in Table 1.

Table 1. Augmented Dickey-Fuller Unit Root Tests.

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 −69.6921 <0.0001 −11.03 <0.0001
1 −110.947 0.0001 −7.51 <0.0001
2 −90.4384 <0.0001 −5.33 <0.0001
3 −76.5233 <0.0001 −3.75 0.0004

Single Mean 0 −69.7764 0.0004 −10.96 0.0001 60.15 0.001
1 −111.796 0.0001 −7.46 0.0001 27.81 0.001
2 −90.5227 0.0004 −5.26 0.0001 13.91 0.001
3 −77.2761 0.0004 −3.71 0.0067 6.89 0.0042

Trend 0 −70.1527 <0.0001 −10.87 <0.0001 59.35 0.001
1 −116.393 0.0001 −7.56 <0.0001 28.57 0.001
2 −107.518 0.0001 −5.74 0.0001 17.26 0.001
3 −112.044 0.0001 −4.11 0.0113 8.59 0.0126

3.3. LST and NDVI Models

A scatter diagram of surface temperature and NDVI data from January 2011 to May 2016 was
made and it showed that the data were approximately stable. The ADF test result of p < 0.05 showed
that the data were stable, so the difference method was not needed. Meanwhile, the white noise
test showed a non-white noise sequence. According to the ACF diagram, PACF diagram, and AIC
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criterion, the optimal temperature model is ARMA (2, 1), whose corresponding AIC and SBC values
are 340.43 and 349.13, respectively. All parameters of this model are significant, and the residual error
is white noise. The NDVI ADF test shows that the NDVI model is stable and the residuals are white
noise. Also, with the aid of the ACF and PACF diagrams, the orders of models were determined.
Finally, the selected models are shown in Table 2; the optimization model is ARMA (2, 1). The results
for LST and NDVI are shown in Figure 2.

Table 2. LST and NDVI models.

Variable Model AIC Value SBC Value Optimization Model

LST ARMA (2, 1) 340.43 349.13 ARMA (2, 1)

NDVI
ARMA (2, 0) 237.51 230.99

ARMA (2,1)ARMA (2, 1) 253.63 244.94
ARMA (3, 2) 249.83 236.79

Note: AIC= Akaike Information Criterion.

3.4. SARIMAX Model

The optimal brucellosis model was filtered by the optimal models of LST and NDVI, then a
regression equation was determined, with the model fitted according to the correlation number.
If the parameters of the fitted model are not significant or the residuals do not pass the white noise
test, the parameters need to be adjusted constantly. Finally, the model with significant parameters
(Table 3) that passed the white noise test (Table 4) after multiple adjustments is shown as Formula (5),
and its corresponding AIC and SBC values are 807.58 and 819.28, respectively. This model is used for
prediction, with the predicted results shown in Table 5 and in Figure 4. After establishing the final
model, RMSE, MAPE and MER are adopted to evaluate the ARIMAX model established above.

(1 − B)(1 − B12
)
y = (−36.80113 + 25.29822B)x1 + (5000.2− 4680.1B)x2 + (1− 0.53724B)(1− 0.57166B12)ε0 (5)

Table 3. Parameter significance test for HB by conditional least squares estimation.

Parameter Estimate Standard Error t-Value
Approx Lag Variable Shift
Pr > |t|

MA1,1 0.53724 0.12945 4.15 0.0001 1 HB 0
MA2,1 0.57166 0.14307 4.00 0.0002 12 HB 0
NUM1 −36.80113 16.58224 −2.22 0.0314 0 LST 0

NUM1,1 −25.29822 12.04109 −2.10 0.0412 1 LST 0
NUM2 5000.2 1720.1 2.91 0.0056 0 NDVI 0

NUM1,1 4680.1 1571.9 2.98 0.0046 1 NDVI 0

Table 4. Autocorrelations with lags.

Lag χ 2 df Pr > χ 2 Autocorrelations

6 m 1.12 4 0.8908 0.052 −0.118 0.022 0.047 −0.009 −0.020
12 m 3.26 10 0.9746 −0.036 0.063 −0.099 −0.058 0.117 −0.007
18 m 7.37 16 0.9654 −0.081 −0.015 0.038 0.153 0.144 0.019
24 m 10.26 22 0.9837 −0.079 0.002 −0.051 −0.097 −0.092 0.066

Note: df = degree of freedom.
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Table 5. Brucellosis prediction results.

Time Forecast 95% Confidence Limits

June 2016 7270.13 6170.46 8372.49
July 2016 7512.87 6285.99 8820.31

August 2016 6194.6 4859.57 7645.41
September 2016 4070.9 2598.44 5576.09

October 2016 2621.38 1086.38 4242.86
November 2016 2712.06 1017.16 4374.35
December 2016 2948.77 1096.85 4673.4

January 2017 2285.18 382.38 4166.83
February 2017 1988.04 33.07 3989.59

March 2017 3884.78 1925.2 6020.5
April 2017 5013.8 2947.99 7172.93
May 2017 6347.48 4193 8560.69
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In the formula, y represents the incidence of HB, x1, x2 represent the input variables LST, NDVI,
respectively, B is a lag factor, and ε0 is the white noise residual sequence.

3.5. Assessing Model Performance

For the final evaluation result, RMSE, MAPE, MER [29], and other common evaluation
methods are adopted to evaluate the difference between fitted and predicted values. For the
fitted values, the RMSE = 506.896, MAPE = 0.104, and MER = 0.089. For the predicted values,
RMSE = 921.215, MAPE = 0.179, and MER = 0.188. The predicted results are shown in Table 5.
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4. Discussion

4.1. Trends and Seasonal Periodicity

As can be seen from Figure 1, the annual incidence of brucellosis has been increasing since 2011,
with the annual peaks increasing. One important cause is the increasing scale of livestock husbandry
caused by improvements in China’s economy and demands for livestock products in recent years [52].
At the same time, it may be related to the free-range breeding methods used by farmers, which have
much higher animal disease risks than conventional methods. In this case, susceptible animals can
come into contact with infected animals or brucellosis bacteria. Sheep are the main source of infection
in China, followed by cattle and pigs. The peak timing of brucellosis rates is also closely related to the
lamb production season. The LST, NDVI, and HB data have similar trends, which indicates that there
is a close relationship between them. See Figure 3 for more details.

Brucellosis shows obvious seasonal periodicity. The incidence of brucellosis is relatively high from
April to August every year, with the peak occurring from May to July. This may be related to many
factors [36], such as precipitation, lamb production, animal movement, wind speed, and sunshine
levels. A more plausible explanation is that as temperatures rise in the spring, snow and ice melt,
amounts of organic matter increase, and precipitation increases due to weather changes, all of which
are conducive to the activation and incubation of bacteria. Spring is also the breeding season for many
animals. With more animals moving around, the area affected by infected animals and their excretions
becomes larger and the risk of infection of sensitive animals is higher. The net result may be a growing
number of brucellosis cases that are distributed more widely across the country.

It can be seen from Figure 3 that from January 2011 to May 2016, parts of the fitted results are
almost identical to the actual values. Only in July 2014 do the fitted and actual values have certain
differences; the month where the abnormal values reached 8102, and which attained a maximum
from 2011 to 2016. This is because the results of the ARIMAX simulation are continuous and smooth,
so extreme values or outliers will make it relatively flat. From January 2011 to May 2016, the annual
maximum values showed an increasing trend, however, the ARIMAX model could accurately predict
from this increasing trend that the maximum monthly incidence decreased in 2016. It was less than in
2014 and 2015. This is consistent with actual observations, indicating that this model predicts trends
well. In addition, since 2015, the rate of brucellosis cases has shown a downward trend. One important
reason is that the measures taken by the Chinese Government to control brucellosis more strictly have
been effective.

4.2. The Interrelations of Variables and Their Significance

Since LST and NDVI are two environmental factors that have important influence on HB, we chose
these two factors mainly to explore their influence on HB. Although collinearity exists between LST
and NDVI, collinearity does not affect the prediction accuracy of ARIMAX model. So, we do not deal
with it. As shown in Figure 4, the fitted curve is basically consistent with that of NDVI. The coefficient
of NDVI is the largest, indicating that its change does indeed indicate the basic trend of brucellosis
onset and has the greatest influence. This is because vegetation coverage increases from January to July
each year. This provides live Brucella bacteria with favorable hydrothermal equilibrium conditions.
With increasing areas of favorable conditions, the number of Brucella hosts, such as sheep that feed
on infected vegetation, increases. The highest incidence of brucellosis occurs in Inner Mongolia [23]
in northern China, which is closely related to its widespread grasslands. This is the best example of
the influence of vegetation on Brucella. Because the time at which spring ewes lamb is appropriate
for Brucella, contact with amniotic fluid that carries Brucella bacteria can cause infection in humans.
However, with increases in temperature, water evaporation increases and large numbers of bacteria
multiply rapidly. The moisture content of the soil decreases because of water evaporation. At the same
time, brucella has very high nutritional demands, while a large number of bacteria are competing
for nutrients from brucellosis bacteria, so Brucella bacteria receive less nutrition. These conditions do
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not facilitate the growth of bacteria, causing brucellosis cases to decrease. Hence, there is a negative
correlation between LST and brucellosis cases. In summary, HB incidence is primarily determined by
NDVI, while LST influence the amplitude of its change. Previous studies have considered temperature,
moisture, and other environments in which bacteria infect hosts; however, it is better to also consider
the effect of vegetation on temperature and moisture.

High vegetation coverage is good for Brucella survival and spread, which is a kind of average
result. Some high vegetation coverage and wide distribution is very good for Brucella bacteria survival,
while some other coverages are not very good. The level of NDVI that causes the highest HB incidence
requires further study. The Inner Mongolia prairie [23] is very favorable for Brucella survival and
the highest HB incidence in China is found there. In some southern areas, the vegetation coverage is
higher but is not necessarily suitable for Brucella survival. From the local area to the national level,
no vegetation types were significantly adverse to brucellosis. Of course, some vegetation may play a
greater role in Brucella survival, while others may play a smaller role.

The results of this study improve on previous research results [29]. NDVI, LST were found to be of
certain significance in the prediction, prevention and control of brucellosis. The consistency of the NDVI
and brucellosis incidence trends show that NDVI is of important significance in formulating accurate
prevention and control strategies, as it can be used to predict the incidence of brucellosis in a country
or a region according to its specific vegetation. The lagged effects of LST show that we need to allocate
medical resources, personnel, and animal control and isolation measures according to changes in LST.
According to these conditions, brucellosis prevention and control measures can be planned in advance,
medical resources can be allocated appropriately, and public awareness can be carried out. The two
variables above may have greater significance for certain regional infections due to their relatively easy
availability, extensive coverage and close correlations with various surface-dwelling bacteria.

This model is established throughout the whole country and has certain applicability to high-risk
areas. For high-risk areas, the idea and method of building the model are the same, but the coefficients
of the model may be different. As long as we get LST and NDVI for these regions, we can build a
similar model. In areas with high vegetation coverage (such as grasslands) and dense flocks of sheep,
the incidence is high, such as in the grasslands of Inner Mongolia (as can be seen from Equation (5)),
which is a typical high-risk area. A higher NDVI coefficient may be obtained from the model if these
regions are selected, because the temperature in the north is lower and the influence of LST is greater.
That is, the absolute value of the coefficient is smaller (because it is negative) and lower temperatures
are more conducive to the survival of brucellosis. However, in some areas in the south, the number of
sheep is relatively small and the area of vegetation cover (such as grassland) is smaller, so the incidence
in these areas is relatively low. The NDVI coefficient of the model presented here is relatively small.
Meanwhile, due to the high temperature in the south, LST will increase while its influence on the
equation will decrease. In other words, its coefficient will decrease (the absolute value will increase).

4.3. Other Factors

In the analysis above, only significant factors were selected for research. Choosing the main
influencing factors can help to grasp the essence of the problem and highlight its regularity so as to
solve it. In addition to the above factors, there may be other factors that affect brucellosis incidence,
such as relevant policies and animal numbers. In general, strict control policies may decrease the
incidence of brucellosis while lax ones may increase it. From the 1970s, the incidence of brucellosis
declined steadily; however, after the 1990s, the number of brucellosis cases increased continuously.
After 2015, brucellosis began to decline again. These changes were related to the policies of the
Chinese Government. Before the 1990s, China’s brucellosis control was strict and brucellosis incidence
steadily declined. After the 1990s, due to the relaxation of awareness, vigilance and policies related to
brucellosis, the number of brucellosis cases increased, and the Government attached greater importance
to it. After 2013, the Government gradually formulated and adopted stronger policies that had an
effect, as suggested by the decline in brucellosis since 2015.
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From the perspective of animal numbers, after the 1990s, the number of livestock increased
significantly. This was coupled with a restructuring of the livestock industry; the proportion of
pork production decreased, while that of beef and mutton increased. According to official annual
data released by the National Bureau of Statistics, the numbers of sheep raised from 2011 to 2015
were 28,664.15 (×10,000 head), 28,512.74, 28,935.22, 30,391.28, 31,174.27, and 29,930.54, respectively;
an overall increasing trend. In the same period, the numbers of cattle were 9384.00 (×10,000 head),
9137.25, 8985.76, 9007.28, 9055.79, and 8834.49, respectively; an overall decrease, and contrary to
the trend in brucellosis incidence. The incidence of brucellosis in sheep greatly increased along
with the large increase in sheep numbers, while the incidence of brucellosis in humans remained
unchanged. At the same time, the incidence of brucellosis in sheep greatly increased due to its wide
distribution range and strong pathogenicity, so the chance of contracting brucellosis in humans would
also have been greatly increased. This indicates that sheep and brucellosis are closely related. In 2016,
the number of sheep decreased and brucellosis incidence declined. At the same time, the timing of
human brucellosis incidence coincided with the timing of sheep reproduction. From 2011 to 2016,
cattle numbers showed a downward trend, which was opposite to the increase in human brucellosis,
indicating that brucellosis in cattle did not affect trends in human brucellosis on the whole, indicating
that the influence of cattle brucellosis on human brucellosis is relatively weak. The reason may be
that cattle Brucella are less pathogenic and only occur locally. This suggests that the effect of sheep
brucellosis on human brucellosis is much greater than that of cattle brucellosis.

On the one hand, Brucella is dependent on the spread of environmental factors, etc. High vegetation
cover provides a suitable living environment for Brucella. People and animals are easily infected with
Brucella after coming into contact with these infected substances, thus greatly increasing the risk of
human infection. On the other hand, exposure is also an important factor. Farmers who keep sheep on
their farms may also be at increased risk of contracting brucellosis due to frequent contact with sheep.
Similarly, butchers who often come into contact with live animals such as sheep during slaughter
are also susceptible to infection. Therefore, the incidence of the disease is higher in the northern
areas where sheep are raised intensively. Because farm households are more exposed to animals
such as sheep during lambing season, this leads to a higher incidence of brucellosis, which shows a
distinct seasonality.

4.4. Limitations

There are some shortcomings to the present study. First, the effect of precipitation on brucellosis
was not considered. We know that precipitation and temperature are two important factors affecting
brucellosis disease. However, since we mainly studied the problem based on remote sensing data, we
did not consider precipitation, which should be done in future. In addition, since the LST and NDVI
data were only available from January 2011 to May 2016, further data accumulation may be able to
further improve the models.

5. Conclusions

In recent years, brucellosis rates have stayed at high levels, and the disease is involved in almost
all provinces of China. It is seriously dangerous to human health and causes huge economic losses
to the country; therefore, its control is of great significance. This study established relationships
between HB incidence and several influencing factors. Using remote sensing data, we established
the specific relationships between HB and LST and NDVI using an ARIMAX model. NDVI has a
positive correlation with HB and follows its basic trends, while LST are negatively correlated with HB
and only affect its magnitude. Although brucellosis has been on the decline since 2015 because of the
prevention and control efforts of the Chinese Government, the disease is still considered serious due to
its continued high incidence. Accordingly, we propose the following suggestions: (1) In the process of
risk control and prevention, vegetation coverage should be regarded as an important reference index,
especially in grasslands with high vegetation coverage. (2) Due to the higher human incidence in the
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lambing season, management of livestock practices should be strengthened at this time to prohibit
the discharge of amniotic fluid and associated pollutants. (3) Since the low temperature of LST is
conducive to the survival of brucellosis, during low spring temperatures, pathogens are spread in
water due to snow and ice melts, resulting in greatly increased pathogen spreading and risk. Therefore,
attention should be paid to strengthening the prevention and control of brucellosis at this time. (4) Since
brucellosis has appeared repeatedly in China, prevention and treatment measures should be constantly
reviewed to prevent decreases in the awareness of the problem. Our study has established a specific
relationship between HB and several of its influences, which is of certain significance for the prevention
and control of brucellosis in China. It also provides a reference for similar research in other countries.
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