
International  Journal  of

Environmental Research

and Public Health

Article

Discrepancies in Karst Soil Organic Carbon in
Southwest China for Different Land Use Patterns:
A Case Study of Guizhou Province

Zhenming Zhang 1,2,† , Xianfei Huang 1,2,3,† , Yunchao Zhou 1,2,*, Jiachun Zhang 4 and
Xubo Zhang 5

1 Institute for Forest Resources & Environment of Guizhou, Key Laboratory of forest cultivation in plateau
mountain area, College of Forestry, Guizhou University, Guiyang 550025, China;
zhangzhenming1986@163.com (Z.Z.); hxfswjs@gznu.edu.cn (X.H.)

2 Institute of biological research of Guizhou, Guizhou Academy of Sciences, Guiyang 550025, China
3 Guizhou Provincial Key Laboratory for Environment, Guizhou Normal University, Guiyang 550001, China
4 Guizhou Botanical Garden, Guizhou Academy of Sciences, Guiyang, Guizhou 550000, China;

zhangjiachun1988@163.com
5 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences,

Beijing 100101, China; zhangxb@igsnrr.ac.cn
* Correspondence: yczhou@gzu.edu.cn; Tel.: +86-131-8529-3301
† These authors contributed equally to this work.

Received: 6 August 2019; Accepted: 27 October 2019; Published: 30 October 2019
����������
�������

Abstract: The assessment of soil organic carbon (SOC) in mountainous karst areas is very challenging,
due to the high spatial heterogeneity in SOC content and soil type. To study and assess the SOC
storage in mountainous karst areas, a total of 22,786 soil samples were collected from 2,854 soil profiles
in Guizhou Province in Southwest China. The SOC content in the soil samples was determined
by the oxidation of potassium dichromate (K2Cr2O7), followed by titration with iron (II) sulfate
(FeSO4). The SOC storage was assessed based on different land uses. The results suggested that the
average SOC density in the top 1.00 m of soil associated with different land uses decreased in the
following order: Croplands (9.58 kg m−2) > garden lands (9.07 kg m−2) > grasslands (8.07 kg m−2)
> forestlands (7.35 kg m−2) > uncultivated lands (6.94 kg m−2). The SOC storage values in the
0.00–0.10 m, 0.00–0.20 m, 0.00–0.30 m and 0.00–1.00 m soil layers of Guizhou Province were 0.50, 0.87,
1.11 and 1.58 Pg, respectively. The SOC in the top 0.30 m of soil accounted for 70.25% of the total
within the 0.00–1.00 m layer in Guizhou Province. It was concluded that assessing SOC storage in
mountainous karst areas was more accurate when using land use rather than soil type. This result
can supply a scientific reference for the accurate assessment of the SOC storage in the karst areas of
southwestern China, the islands of Java, northern and central Vietnam, Indonesia, Kampot Province
in Cambodia and in the general area of what used to be Yugoslavia, along with other karst areas with
similar ecological backgrounds.
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1. Introduction

Soil organic carbon (SOC) is a vital part of the terrestrial carbon pool and plays an important
role in the global carbon cycle [1,2]. Previous studies have suggested that the global SOC stock is
approximately 1550 Pg (petagrams of carbon or billion tons of carbon), which is far greater than the
carbon stock stored in vegetation as plant components and in the atmosphere as carbon dioxide [3].
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Therefore, a tiny variation in the carbon reserves of the SOC pool would cause a significant decrease or
increase in the CO2 concentration of the atmosphere [4–6].

For more than two decades, SOC has attracted the attention of scientists globally, inspiring studies
of the spatial distribution and storage of SOC at different scales. Therefore, it is of great importance
to investigate and study the SOC storage capacity, profile distribution characteristics and the factors
that impact SOC for the evaluation and management of carbon. This topic is especially important
for developing and developed countries, because they are facing a trade-off between the need for
economic development and the need to decrease carbon dioxide emissions.

Many studies concerning SOC stocks at different spatial scales have been conducted over the
past several decades. Scharlemann et al. [7] found that the published values of the global SOC stock
varied from 504 to 3000 Pg, with a mean value of 1460.5 Pg. In China, studies of the SOC stock at the
national scale have been mainly based on data from the first and second national soil resource surveys.
Based on the first national soil resource survey, Wang and Zhou [8,9] assessed that SOC storage in
China was approximately 100.18 Pg. Pan [10] also calculated the SOC storage in China based on “Soil
Species of China” and presented information from 2500 soil profiles, producing a result of 50 Pg of SOC
storage. In another study, Wang et al. recalculated the SOC stock in China on the basis of the second
national soil resource survey (2473 soil profiles) and found a value of 92.40 Pg of SOC storage [11].
However, when Wang et al. [12] adopted the soil taxonomy method and used two SOC densities to
recalculate the SOC stock in China yet again (2473 soil profiles), the result was 61.5–121.1 Pg of storage.
In a different study by Xie et al. [13], the SOC stock in China was estimated based on data from the
second national soil resource survey, and different statistical methods were used. Their results showed
that the SOC storage in China was approximately 50.6–154.0 Pg, with the mean storage found to be
102.30 ± 51.70 Pg. There have been many other studies concerning the SOC stock in China, and almost
all of them are based on the first or second national soil resource survey, with the results ranging from
50 Pg to 154.0 Pg [14–16] of SOC storage.

There is a very large variance among the resulting SOC storage values. It is believed that there are
many factors contributing to these differences, including the sampling methods (mainly referring to the
richness of the original data sets) and statistical data analysis techniques. Increasingly, scientists have
recognized that additional studies concerning the SOC at different spatial scales (national or regional)
should be conducted to improve and perfect the global SOC database, and a great number of studies
about the SOC stocks at the regional scale have been conducted over the past several years [17,18].
At present, many studies have been performed with the goal of estimating soil organic carbon storage
at different spatial scales [19]. Large differences exist among the results at the same scales, even among
the results that were gathered with the same method and in the same study region [20]. The main
reasons for the differences in the estimation results are the differences in data sources, sample sizes,
sampling depths and estimation methods. Insufficient numbers of samples and improper sample
scales created inaccurate representations, resulting in inaccurate estimation results [21]. Few studies
have focused on the SOC stock in Guizhou Province, Southwest China. Using the soil inventory
database from the national soil resource survey and the historical collections from the Institute of Soil
Sciences, Chinese Academy of Sciences, Li et al. [22] suggested that the total SOC in Guizhou Province
was approximately 1.97 Pg in the 0.00–1.00 m soil layer. To our knowledge, this is the only study that
refers specifically to the SOC stock in Guizhou Province. However, we think this value is controversial,
since rock exposure, which is a key factor in the calculation of SOC in mountainous karst areas, was
not taken into consideration in their calculation formulas.

It is well-recognized that mountainous karst areas exhibit high spatial heterogeneity in soil
thickness, vegetation and soil nutrients, which presents an enormous challenge for the calculation of
SOC stock in these regions [23]. Approximately 22.0 million km2 of the earth’s surface is composed of
karst landforms [24]. However, published literature rarely examines the effects of rock exposure, which
is an important factor that cannot be ignored in assessments of soil organic carbon. Some researchers
mention the importance of rock exposure in assessments of SOC in karst regions, but they do not present
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a feasible strategy for addressing this problem [25]. In addition, the emissions from land use and land
cover change (LULCC) are believed to be the second largest source of human-induced greenhouse gas
emissions into the atmosphere (1.5 Pg/a) after fossil fuel combustion (5.3 Pg/a) (Intergovernmental
Panel of Climate Change) [26,27].

In mountainous karst areas, the conflict between humans and the environment is a critical issue.
Local people usually utilize soil resources based on landforms and intuitive soil characteristics, such as
soil depth, soil fertility and rock exposure. Land use is an important factor controlling organic matter
storage in soils, since it affects the amount and quality of litter input, litter decomposition rates and the
processes of organic matter stabilization in soils [28]. Six et al. [29,30] suggested that organic matter is a
major agent in stabilizing soil aggregates, and that soil organic matter (SOM) dynamics are related to the
formation and destruction of slaking-resistant macro-aggregates. Therefore, it is advisable to calculate
the SOC stock in mountainous karst areas based on land use [31]. The objective of this study was to
calculate SOC storage in Guizhou Province based on different land uses, and to establish a feasible
method for calculating SOC stock in mountainous karst areas. In this study, high-density sampling is
used to accurately study the spatial distribution characteristics of soil organic carbon density, and an
estimation method based on “land use type” organic carbon density is proposed, in order to provide
scientific and technological support for the accurate estimation of soil organic carbon reserves in in
Guizhou Province, and to be applicable to other mountainous karst regions globally.

2. Materials and Methods

2.1. Study Region

Guizhou Province is located on the eastern end of the Yunnan-Guizhou Plateau, which is one of the
three main karst distribution regions of the earth. It covers an area of 176,155 km2 and has a population
of 34.75 million people. Guizhou Province is a typical mountainous karst area, and there have been
severe environmental impacts from human interference over the last eighty to ninety years of the past
century [32]. Approximately 130,000 km2 land in Guizhou Province is composed of karst landforms,
which is 73.7% of the total area (Table 1). This region is experiencing severe environmental problems,
such as karst rocky desertification and persistent water shortages. The region has a subtropical humid
monsoon climate. The mean annual temperature (MAT) and mean annual precipitation (MAP) range
between 18 and 26 ◦C and between 1100 and 1300 mm of rain, respectively. The main ecosystem types
include evergreen broad-leaved forest, coniferous and broad-leaved mixed forests, and montane elfin
forest. Of the total land area in Guizhou Province, croplands account for 22.30%, garden lands for
0.58%, grasslands for 7.96%, forest lands for 39.06%, uncultivated lands for 24.00% (uncultivated land
means land with no trees or shrubs, just several distributed wild grass species), and construction lands
for 6.10% (here, construction land includes expressways, highways, tractor routes, railways, housing
and the soil organic carbon (SOC) concentrations of these areas were not considered in the present
study). Detailed information about land use for different districts in Guizhou Province is presented in
Figure 1.

2.2. Field Sampling

From March 2017 to September 2017, a total of 22,786 soil samples from 2854 soil profiles (from
0.00–1.00 m depths) were sampled in Guizhou Province in Southwest China (Figure 2a). A total of 1678
soil profiles were sampled from croplands, 66 soil profiles from garden lands, 142 soil profiles from
grasslands, 563 soil profiles from forestlands, and 405 soil profiles from uncultivated lands (Figure 2b).
Each profile was divided into 12 soil layers (0.00–0.05 m, 0.05–0.10 m, 0.10–0.15 m, 0.15–0.20 m, 0.20–0.30
m, 0.30–0.40 m, 0.40–0.50 m, 0.50–0.60 m, 0.60–0.70 m, 0.70–0.80 m, 0.80–0.90 m and 0.90–1.00 m) if
the soil thickness was equal to or larger than 0.95 m [33]. Otherwise, the same sub-sampling scheme
was utilized to the maximum depth of the sample. At the same time, the percent cover of the rock
(rock exposure) around the sampling site was assessed with a tape measure. The soil bulk density
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(SBD) of each layer from all soil profiles was determined on the spot using the cylindrical core method.
The slope and slope position of each sampling site were recorded simultaneously. The soil samples
were stored in self-sealing plastic bags and returned to the laboratory where the soils were air dried,
weighed and sieved to remove the gravel fraction (>2 mm grain size). The processed samples were
saved in zip-lock bags for analysis of their SOC content. The total SOC content was determined by
K2Cr2O7 oxidation at 170–180 ◦C followed by titration with 0.10 mol L−1 FeSO4 [34].

Table 1. Distribution of rocky desertification within the study area

Districts Unit NRSD LRSD RDLD RDMD RDSD RDESD Non-Karst Region

Guiyang area (km2) 2761.11 2192.05 1307.25 487.54 80.01 2.29 1203.64
Percentage (%) 34.37 27.29 16.27 6.07 1.00 0.03 14.98

Qiannan area (km2) 662.08 7015.02 4576.18 2098.91 847.92 194.48 4838.81
Percentage (%) 3.27 34.67 22.62 10.37 4.19 0.96 23.91

Anshun
area (km2) 2475.85 1182.27 1243.53 954.51 601.06 170.61 2639.57

Percentage (%) 26.72 12.76 13.42 10.30 6.49 1.84 28.48

Qianxinan area (km2) 2985.97 2114.12 2111.54 1757.17 870.56 290.15 6674.49
Percentage (%) 17.77 12.58 12.57 10.46 5.18 1.73 39.72

Liupanshui area (km2) 1468.00 1529.49 1574.20 921.71 635.18 134.51 3650.71
Percentage (%) 14.81 15.43 15.88 9.30 6.41 1.36 36.82

Bijie area (km2) 6086.72 6597.99 4577.18 2066.50 312.94 51.76 7160.01
Percentage (%) 22.67 24.57 17.05 7.70 1.17 0.19 26.66

Zunyi area (km2) 8452.08 7109.84 3222.53 1275.83 173.81 1.59 10526.05
Percentage (%) 27.48 23.11 10.48 4.15 0.57 0.01 34.22

Qiandongnan area (km2) 2906.35 2345.66 1253.23 493.43 36.94 0.00 23301.39
Percentage (%) 9.58 7.73 4.13 1.63 0.12 0.00 76.81

Tongren area (km2) 3701.88 3940.14 2290.12 813.35 156.99 11.85 7088.67
Percentage (%) 20.56 21.89 12.72 4.52 0.87 0.07 39.37

Note: NRSD = area with no risk of rocky desertification; LRSD = area with latent risk of rocky desertification; RDLD
= area with a minor degree of rocky desertification; RDMD = area with a moderate degree of rocky desertification;
RDSD = area with a severe degree of rocky desertification; RDESD = area with an extremely severe degree of
rocky desertification.
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regions of Guizhou Province; (b) Distribution of sample points under different soil thickness.

2.3. Calculation Methods and Statistical Analysis

By using field records and laboratory analysis data, we calculated the SOC density (SOCD) of
each sampling site first, and the formula [22], which was improved with consideration of the rock
outcrops, was utilized; this formula is as follows:

SOCD =
n+1∑
m=1

Cm × SBDm × Tm × (1− θm) × (1−Ar) (1)
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where SOCD is the SOC density (kg m−2) and n is the number of soil samples collected from the site.
Because there was always a residual soil layer (<0.05 m) that could not be sampled as an

independent layer, our calculation continued to the n + 1 layer, which was calculated by using the
data of its upper layer and excluding the soil thickness. Cm, SBDm, Tm, and θm represent the SOC
concentration (g kg−1), soil bulk density (kg m−3), soil thickness (m) and gravel fraction (% of sample
with grains larger than 2 mm) of layer m, respectively. Ar is the percentage of rock cover (rock exposure)
from the area surrounding the sampling site.

The storage of SOC (SSOC) in different land use types and the total SOC (0.00–1.00 m) in the study
region were calculated via the following equations:

SSOCi = Ai × (
k∑

l=1

SOCDl) (2)

TSOCT =
5∑

i=1

SSOCi (3)

where SSOCi is the storage of SOC (g) in land use i, Ai is the coverage area (m2) of land use i in Guizhou
Province, k is the number of total profiles sampled from land use i, and TSOCT is the total SOC storage
(g) in the 0.00–1.00 m soil layer from the whole study region.

The calculations of SOC density and SOC storage were carried out in Microsoft Excel 2003 (Office
2003, Redmond, WA, USA). Analysis of Variance (ANOVA) analyses were performed using SPSS
13.0 (SPSS Inc., IBM Corporation, Chicago, IL, USA) and Origin 6.1 (Gamma Design Software, Origin
6.1, LLC Plainwell, MI, USA). Figures and maps were created with ArcMap 10.3 (ESRI, ArcMap 10.3,
Redlands, CA, USA), (Figures and maps).

3. Results

3.1. Profile Characteristics of the SOC Concentrations for Different Land Uses

The mean SOC concentrations of the soil profiles (0.00–1.00 m) for each land use type shared a
similar distribution pattern (Table 2). From 0.00 to 0.50 m, the mean SOC concentration decreased
sharply and then fluctuated within a certain range (or decreased gradually) in the 0.50 to 1.00 m soil
layer. The mean SOC concentrations (in the 0.00–1.00 m soil layer) ranged from 5.17 to 23.92 g kg−1 in
the croplands; from 5.78 to 23.69 g kg−1 in the garden lands; from 6.37 to 29.87 g kg−1 in the grasslands;
from 5.60 to 41.22 g kg−1 in the forestlands; and from 5.42 to 38.88 g kg−1 in the uncultivated lands.
According to variance values, the SOC concentrations of all studied land uses were highly variable, but
were especially variable for forestlands, uncultivated lands and grasslands. The SOC concentration
profile (from 0.00–1.00 m deep) distribution models from croplands and garden lands were fitted to the
quadratic equations Y = 0.0035X2

− 0.5229X + 24.789 (R2 = 0.4655) and Y = 0.0034X2
− 0.4881X + 23.617

(R2 = 0.3281), respectively. The SOC concentration profile distribution models from the forestlands,
grasslands and uncultivated lands were fitted to the exponential equations Y = 38. 247e−0.0281x (R2 = 0.
5328), Y = 24. 077e−0.0199x (R2 = 0. 3776) and Y = 32. 245e−0.0229x (R2 = 0. 3832), respectively. It was
obvious that the studied land uses had mean SOC concentrations in the 0.00–0.30 m soil layer that
decreased in the following order: Forestland > uncultivated land > grassland > cropland > garden
land. Significant differences were detected between all land uses, with the exception of the difference
between cropland and garden land. However, there was no significant difference between the SOC
concentrations of the different land uses in the 0.60–1.00 m soil layer.
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Table 2. Profile characteristics of the soil organic carbon (SOC) concentrations for different land uses (g kg−1).

Soil Layers Cropland Garden Land Grassland Forest Land Uncultivated Land

0.00–0.05 m 23.92 ± 0.22Ja
N = 1678

23.69 ± 1.32Ea
N = 66

29.91 ± 1.28Gb
N = 142

41.22 ± 0.86Hd
N = 563

38.88 ± 1.00Hc
N = 405

0.05–0.10 m 21.47 ± 0.20Ia
N = 1678

20.49 ± 1.25Da
N = 66

24.93 ± 1.08Fb
N = 142

34.89 ± 0.75Gd
N = 563

32.44 ± 0.89Gc
N = 405

0.10–0.15 m 19.01 ± 0.20Ha
N = 1674

17.47 ± 1.31Ca
N = 64

21.47 ± 1.03Eb
N = 142

30.07 ± 0.75Fd
N = 556

27.35 ± 0.78Fc
N = 395

0.15–0.20 m 16.01 ± 0.20Ga
N = 1662

15.23 ± 1.24Ca
N = 63

18.79 ± 1.00Db
N = 118

25.57 ± 0.73Ed
N = 526

23.76 ± 0.73Ec
N = 343

0.20–0.30 m 12.51 ± 0.19Fa
N = 1592

12.18 ± 1.10Ba
N = 61

16.04 ± 0.99Cb
N = 91

19.69 ± 0.62Dc
N = 488

19.64 ± 0.74Dc
N = 287

0.30–0.40 m 9.69 ± 0.16Ea
N = 1552

9.55 ± 0.82Aba
N = 52

12.76 ± 0.88Bb
N = 64

14.30 ± 0.58Cbc
N = 400

15.57 ± 0.75Cc
N = 231

0.40–0.50 m 8.25 ± 0.15Da
N = 1381

8.08 ± 0.64Aa
N = 31

9.76± 0.65aABb
N = 34

10.99 ± 0.61Bb
N = 336

12.36 ± 0.74Bc
N = 184

0.50–0.60 m 7.22 ± 0.15Ca
N = 1209

7.77 ± 0.65Aab
N = 27

8.45 ± 0.67Aab
N = 19

9.21 ± 0.64Abb
N = 267

9.01 ± 0.54Abb
N = 156

0.60–0.70 m 6.68 ± 0.15Ca
N = 1081

6.96 ± 0.73Aab
N = 16

8.09 ± 0.70Aab
N = 14

7.20 ± 0.58Aab
N = 206

7.56 ± 0.51Ab
N = 143

0.70–0.80 m 6.03 ± 0.15Ba
N = 983

8.03 ± 1.58Aab
N = 13

6.67 ± 0.70Aab
N = 14

6.60 ± 0.53Aab
N = 192

7.09 ± 0.53Ab
N = 132

0.80–0.90 m 5.54 ± 0.15Aba
N = 871

6.00 ± 0.58Aa
N = 12

6.76 ± 0.79Aa
N = 13

6.34 ± 0.53Aa
N = 185

5.96 ± 0.51Aa
N = 120

0.90–1.00 m 5.17 ± 0.15Aa
N = 603

5.78 ± 0.61Aa
N = 11

6.37 ± 0.78Aa
N = 12

5.60 ± 0.46Aa
N = 180

5.42 ± 0.42Aa
N = 115

Means and standard errors. Within rows, the values followed by the same lowercase letter (a–d) are not significantly
different (p < 0.05) for the same soil layer among different land uses; within the columns, the values followed by the
same capital letter (A–J) are not significantly different (p < 0.05) among the soil layers of the same land use type; the
significance was determined by Analysis of Variance (ANOVA).

3.2. Effects of Land Use on Soil Bulk Density

Across all kinds of land uses studied here (Table 3), the mean SBD values showed similar trends
with increasing soil depth. They increased in the top several soil layers, fluctuated in the several
middle soil layers and finally decreased in the deeper soil layers. The mean SBD values of croplands
increased from 1.20 × 103 to 1.43 × 103 kg m-3 in the top 0.30 m of soil, showed very little change in the
0.30 to 0.70 m layer and finally decreased from 1.39 to 1.34 × 103 kg m-3 in the 0.70 to 1.00 m layer.
The mean SBD values of the garden lands, grasslands and forestlands increased from 1.20 × 103 to
1.39 × 103 kg m−3, 1.19 × 103 to 1.38 × 103 kg m-3 and 1.10 × 103 to 1.33 × 103 kg m−3, respectively, in
the top 0.00 to 0.60 m of soil. The SBD of these land uses decreased gradually at greater depths. The
mean SBD values of the uncultivated lands increased from 1.14 × 103 to 1.45 × 103 kg m-3 in the 0.00 to
0.70 m soil layer, and then decreased slightly in the layer between 0.90 and 1.00 m. It is worth noting
that the mean SBD value from the forestlands was the lowest among those for all land uses for the
same soil layer. It is believed that the soil bulk density is closely associated with land use [35].

3.3. Profile Characteristics of the SOC Densities for Different Land Uses

The average SOC density of Guizhou Province was 8.96 kg m−2, which is slightly lower than
the national SOC density of China (10.83 kg m−2 and 10.53 kg m−2) reported by Wang et al. [15,16].
As listed in Table 4, the average SOC density of the 0.00–0.10 m soil layer for the various land use areas
decreased in the following order: Forestlands > uncultivated lands > croplands > grasslands > garden
lands. However, the average SOC density of the whole profile (0.00–1.00 m) had a different order, as
follows: Croplands > garden lands > grasslands > forest lands > uncultivated lands. The average soil
thicknesses associated with the different land use areas decreased in the following order: Garden lands
(0.75 m) > croplands (0.72 m) > grasslands (0.58 m) > uncultivated lands (0.42 m) > forestlands (0.42 m).
The average rock exposure of the different land use areas increased in the following order: Croplands
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(8.94%) < garden lands (10.32%) < grasslands (22.04%) < forestlands (27.57%) < uncultivated lands
(30.84%). It is obvious that soil thickness and rock exposure are both important factors affecting SOC
density in mountainous karst regions. In addition, the results also indicate that soil thickness and rock
exposure are crucial factors for local governments and farmers when making decisions about land
use arrangements.

Table 3. Profile characteristics of soil bulk density from different land uses (×103 kg m−3)

Soil Layers Cropland Garden Land Grassland Forestland Uncultivated Land

0.00–0.05 m 1.20 ± 0.01Ac 1.20 ± 0.02Ac 1.19 ± 0.02Ac 1.10 ± 0.01Aa 1.14 ± 0.01Ab
0.05–0.10 m 1.25 ± 0.01Bc 1.26 ± 0.02Ac 1.24 ± 0.01Bbc 1.14 ± 0.01Ba 1.21 ± 0.01Bb
0.10–0.15 m 1.33 ± 0.01Cc 1.33 ± 0.03Bc 1.33 ± 0.02Cc 1.17 ± 0.01Ca 1.25 ± 0.01Cb
0.15–0.20 m 1.40 ± 0.01Ec 1.36 ± 0.02BCc 1.33± 0.02Cbc 1.20 ± 0.01Da 1.29 ± 0.01Db
0.20–0.30 m 1.43 ± 0.01Fc 1.35 ± 0.03BCb 1.35 ± 0.02Cb 1.24± 0.01DEa 1.33 ± 0.01Db
0.30–0.40 m 1.41± 0.01EFb 1.35 ± 0.03BCb 1.38 ± 0.02Cb 1.29 ± 0.01Ea 1.38 ± 0.02Eb
0.40–0.50 m 1.41± 0.01EFb 1.36 ± 0.03BCab 1.35± 0.02Cab 1.31 ± 0.01Ea 1.38 ± 0.02EFb
0.50–0.60 m 1.42 ± 0.02Fb 1.39 ± 0.03BCab 1.38± 0.02Cab 1.33 ± 0.02Ea 1.42 ± 0.02Fab
0.60–0.70 m 1.39± 0.01DEb 1.38 ± 0.03BCab 1.35± 0.03Cab 1.32 ± 0.02Ea 1.45 ± 0.02Fc
0.70–0.80 m 1.37 ± 0.01Db 1.42 ± 0.04Cbc 1.36± 0.03Cab 1.30 ± 0.02Ea 1.45 ± 0.03Fc
0.80–0.90 m 1.36 ± 0.01Db 1.46 ± 0.05Cc 1.31± 0.05BCab 1.30 ± 0.02Ea 1.46 ± 0.04Fc
0.90–1.00 m 1.34± 0.01CDb 1.38 ± 0.03 BCb 1.32± 0.03BCab 1.28 ± 0.02Ea 1.38 ± 0.03DEb

Means and standard errors. Within a row, the values followed by the same lowercase letter (a–d) are not significantly
different (p < 0.05) between different land uses in the same soil layer; within columns, the values followed by the
same capital letter (A–F) are not significantly different (p < 0.05) between soil layers of the same land use.

Table 4. The average SOC densities of different land use areas in Guizhou Province (kg m−2)

Depth Cropland Garden land Grassland Forest Land Uncultivated Land

0.00–0.10 m 2.32 ± 0.02AB 2.06 ± 0.09A 2.17 ± 0.09A 2.67 ± 0.06C 2.41 ± 0.07B
0.00–0.20 m 4.27 ± 0.04B 3.71 ± 0.18A 3.85 ± 0.17A 4.52 ± 0.11C 4.17 ± 0.12AB
0.00–0.30 m 5.63 ± 0.06B 4.87 ± 0.24A 5.08 ± 0.23A 5.62 ± 0.14B 5.25 ± 0.17A
0.00–0.40 m 6.61 ± 0.07B 5.81 ± 0.30A 5.95 ± 0.26A 6.23 ± 0.16A 5.94 ± 0.20A
0.00–0.50 m 7.37 ± 0.09B 6.59 ± 0.35A 6.54 ± 0.30A 6.61 ± 0.17AB 6.34 ± 0.22A
0.00–0.60 m 7.99 ± 0.10B 7.32 ± 0.42AB 6.98 ± 0.33A 6.85 ± 0.18A 6.58 ± 0.23A
0.00–0.70 m 8.51 ± 0.10B 7.91 ± 0.48B 7.34 ± 0.36AB 7.01 ± 0.19AB 6.73 ± 0.24A
0.00–0.80 m 8.94 ± 0.11B 8.45 ± 0.57B 7.63 ± 0.38AB 7.14 ± 0.19A 6.83 ± 0.24A
0.00–0.90 m 9.29 ± 0.12C 8.79 ± 0.61B 7.86 ± 0.40B 7.25 ± 0.20AB 6.89 ± 0.24A
0.00–1.00 m 9.58 ± 0.13C 9.07 ± 0.64BC 8.07 ± 0.42B 7.35 ± 0.20AB 6.94 ± 0.24A

Means and standard errors. Within rows, the values followed by the same capital letter (A–C) are not significantly
different (p < 0.05) between the same soil layer for different land uses.

3.4. Storage of SOC in Guizhou Province

This study indicated that the top 1.00 m of soil in Guizhou Province stored approximately 1.58 Pg
of SOC, and the 0.10 m, 0.20 m and 0.30 m deep soil layers of Guizhou Province stored 0.50 Pg,
0.87 Pg and 1.11 Pg of SOC, respectively. The total SOC storage in the top 1.00 m of soil of each
district is presented in Figure 3. The SOC storage in the top 0.30 m of soil accounts for 70.25% of
the total SOC storage within the top 1.00 m of soil in Guizhou Province. It is worth noting that the
majority of the stored SOC was mainly distributed in the west, northwest, east and southeast parts of
Guizhou Province. The different districts of Guizhou Province contained decreasing amounts of SOC
storage (considering the soil from 0.00–1.00 m depth) in the following order: Bijie, Zunyi, Qiandongna,
Qiannan, Tongren, Qianxinan, Liupanshui, Anshun and Guiyang; which held 0.43, 0.24, 0.23, 0.20,
0.14, 0.13, 0.08, 0.07 and 0.06 Pg of SOC, respectively. The total areas of Zunyi, Qiandongna, Bijie,
Qiannan, Tongren, Qianxinan, Liupanshui, Anshun, and Guiyang were 30,780.73 km2, 30,278.06 km2,
26,847.52 km2, 26,191.78 km2, 18,006.41 km2, 16,785.93 km2, 9965.37 km2, 9253.06 km2 and 8046.67 km2,
respectively. It is obvious that the land use types and geographic characteristics are critical factors
affecting the SOC storage in this mountainous karst region.
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In the top 1.00 m of soil, the SOC storage in croplands, garden lands, grasslands, forestlands
and uncultivated lands was 0.43 (0.4326) Pg, 0.01 (0.010) Pg, 0.13 (0.1301) Pg, 0.58 (0.5813) Pg and
0.42 (0.4228) Pg, respectively, and accounted for 27.42%, 0.68%, 8.25%, 36.85% and 26.93% of the total
SOC storage, respectively. The SOC proportions of the different land uses in the different districts of
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4. Discussion

4.1. Factors Affecting the SOC Concentration

The soil bulk density is an important indicator of soil quality, since it reflects the soil’s ability to
function as structural support, its water and solute movement and its aeration. Soil with high bulk
density has worse soil porosity and soil compaction, leading to the restriction of root growth and poor
movement of air and water through the soil. Compaction can result in shallow plant rooting and poor
plant growth, influencing crop yield and reducing vegetative cover, both of which protect the soil
from erosion [36]. Based on Tables 2 and 4, it was found that negative relationships existed between
the average SOC concentrations and the SBD values between different land uses in the top 40 cm
soil layer. We believe that the basic reasons behind this phenomenon are the differences in land uses.
The different land uses determine the inputs of particular types of plant biomass, such as litter and fine
roots, resulting in significantly different aggregate contents and fractions of organic carbon. Liu et
al. [28] found that land use strongly affected the amount of biomass input into the soil; the occurrence
of aggregates, aggregate SOC and easily oxidizable organic carbon (EOC) from aggregates under
grasslands and forestlands were normally higher than those under croplands. The present study found
that the SOC contents in the 0.00–0.50 m soil layer in croplands and garden lands were much lower
than those for grasslands, forestlands and uncultivated lands. Based on site investigation, the crop
roots were mainly distributed in the 0.00 to 0.30 m layer, which may have been the main reason why
the SOC contents were very low in the cropland and garden land soils in the 0.00–0.50 m layer in
comparison with those of the other studied land uses.

Crop roots absorb nutrients from soils efficiently, including some organic substances such as
amino acids, proteins, starch and their degradation products. In addition, the distribution of the crop
roots affects physical and chemical processes by changing the micro-circumstances within the soil.

Furthermore, crop roots provide a better setting for burrowing animals and microorganisms
which benefits the biogeochemical degradation process of the organic matter in the soil. For the
grasslands, the roots were distributed mainly in the 0.00–0.20 m soil layer. The grass roots were more
abundant than the crop roots, but the SOC contents in the 0.00–0.30 m soil layer in the grasslands were
higher than those of the croplands and garden lands. It is believed that three factors may contribute
to this phenomenon. First, most crop biomass (above ground) will be removed by farmers after
harvesting, and most grass biomass will remain and be incorporated into the soil after its death. Second,
the grasslands had higher soil bulk densities, leading to worse soil porosity and soil compaction,
consequently limiting the movement of air and water through the soil and restricting the bloom of soil
animals and microorganisms. Therefore, the physical, chemical and biochemical degradation processes
taking place underground were decreased in grasslands. Third, the root activities of most crops were
higher than those of most grasses. Thus, organic matter in the soil would be more easily absorbed by
root systems in the farmlands than in grasslands.

4.2. Factors Affecting SOC Density and Storage in Guizhou Province

Guizhou Province is a typical mountainous karst area, and karst landforms account for more than
70% of the total area. Therefore, soil depth and rock exposure are both crucial factors affecting the
storage of SOC in this region. First, they are both factors in the formulas used to calculate SOC storage,
and they directly influence the calculation results. Second, they are potential influential factors in
decisions regarding land use. We believe that they directly and indirectly influence SOC sequestration
in Guizhou Province.

The previous study resulted in a SOC stock in Guizhou Province of 1.97 Pg r [37]. That value
is approximately 0.39 Pg larger than the result of our calculation. Their original data were based on
an inventory database from the national soil resource survey and historical collections (only 2,456
soil profiles with 8714 representative diagnostic soil layers across China, which included Guizhou
Province), while our data were based on field experiments and laboratory analyses (2,854 soil profiles
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comprised of 22,786 soil samples from Guizhou Province). In addition, they did not take rock exposure
into consideration in their calculations, as we did in this study. Without the consideration of rock
exposure, the SOC storage in the top 1.00 m of soil in Guizhou Province would be approximately
2.00 Pg based on our data, which is closer to the value reported by Li et al. As presented in Table 2, the
average SOC concentrations of forestlands, uncultivated lands and grasslands were much higher than
those of garden lands and croplands at the same depths. However, after considering soil thickness and
rock exposure, the advantages for the average SOC density of the forest lands, uncultivated lands and
grasslands were gradually eliminated as the soil depth increased.

The slope was also an important factor affecting SOC sequestration. As shown in Figure 5,
rock exposure increased with increasing slope. However, the soil thickness decreased with increasing
slope. On the basis of the 1,438 studied sites (with different slopes ranging from 1◦ to 84◦), we found
that the slope had a direct effect on the rock exposure, soil depth and SOC density, with Pearson
coefficients of 0.238 (p < 0.01), −0.306 (p < 0.01) and −0.102 (p < 0.01), respectively. The present study
also found that the slope position had no significant correlation with the SOC concentrations in the
study region. However, soil thicknesses, rock outcrops and slopes were all important factors in the
arrangement of land uses. Additionally, the SOC concentrations and SOC densities were closely
associated with land use. Therefore, the assessment of SOC storage in the karst areas was more accurate
considering land use than soil type.
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The Guizhou Province had never before experienced as severe environmental impacts from human
interference as those seen over the last eighty to ninety years of the past century [38]. To create more
area for agricultural production, substantial amounts of forestlands and grasslands were reclaimed for
croplands. However, along with the development of industry and society, the rural economic structure
has improved dramatically in China [39]. A great number of young village labourers leave villages
and are employed by various factories or companies in developed coastal cities, such as Hangzhou,
Wenzhou, Ningbo, Shanghai, Xiamen and Guangzhou. The consequence is that only elderly people
(many who are older than 50) remain for farming activities. As a result, many croplands are abandoned
and become idle for several years. This phenomenon is very severe in the Bijie district in Guizhou
Province. Since 2010, the provincial local governments have been trying to improve the ecological
environment and to develop the tourism industry. One of the key actions has been to restore the
forest system, and a great number of croplands have been reclaimed for forestation. In the present
study, we instead used the SOC concentrations of the uncultivated lands with the mean values of the
forestlands to assess the effects of this action on the SOC storage in Guizhou Province. The results
indicated that approximately 2.22 × 1011 g carbon would be sequestrated in Guizhou Province as
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soil organic carbon in the future if this action is carried out effectively. Certainly, this value is just
a conservative assessment, since a large amount of carbon will be sequestrated by the plants in the
restored forest.

Karst landforms in Guizhou Province cover approximately 0.13 million km2, and the calculation
error of SOC storage caused by the rock exposure was approximately 0.42 Pg. There are approximately
1.20 million km2 and 22.00 million km2 of karst landforms in China and in the world, respectively [40].
Based on our study, the calculation error caused by the rock exposure would reach 3.88 Pg and 71.08 Pg
for China and the world, respectively, if the rock exposure factor was not taken into consideration in
the calculation methods.

5. Conclusions

Based on the statistical analysis of the data from 2854 soil profiles, the SOC storage in Guizhou
Province is estimated at 1.58 Pg in the top 1.00 m soil layer and at 1.11 Pg in the 0.00–0.30 m soil
layer. The SOC storage in the 0.00–0.30 m soil layer accounted for 70.25% of the SOC storage in
the top 1.00 m of soil in Guizhou Province. Land use, rock exposure, soil thickness and slope were
key factors influencing the carbon sequestration in the soil in Guizhou Province. The present study
strongly recommends that rock exposure be taken into consideration when assessing SOC storage in
mountainous karst areas, since it directly influences the assessment results.

The present study suggests that the SOC calculation errors caused by rock exposure in China
and around the world are approximately 3.88 Pg and 71.08 Pg, respectively. However, further
studies are needed to correct these values, since many other factors also affect the SOC concentration
(density/storage), such as climatic conditions, latitude, longitude and the intensity of human disturbance.
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