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Abstract: With sea level predicted to rise and the frequency and intensity of coastal flooding 
expected to increase due to climate change, high-resolution gridded population datasets have been 
extensively used to estimate the size of vulnerable populations in low-elevation coastal zones 
(LECZ). China is the most populous country, and populations in its LECZ grew rapidly due to 
urbanization and remarkable economic growth in coastal areas. In assessing the potential impacts 
of coastal hazards, the spatial distribution of population exposure in China’s LECZ should be 
examined. In this study, we propose a combination of multisource remote sensing images, point-of-
interest data, and machine learning methods to improve the performance of population 
disaggregation in coastal China. The resulting population grid map of coastal China for the 
reference year 2010, with a spatial resolution of 100 × 100 m, is presented and validated. Then, we 
analyze the distribution of population in LECZ by overlaying the new gridded population data and 
LECZ footprints. Results showed that the total population exposed in China’s LECZ in 2010 was 
158.2 million (random forest prediction) and 160.6 million (Cubist prediction), which account for 
12.17% and 12.36% of the national population, respectively. This study also showed the considerable 
potential in combining geospatial big data for high-resolution population estimation. 
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1. Introduction 

Coastal areas are associated with large and growing concentrations of human population and 
socioeconomic activities, including many large cities of the world [1]. Although a coastal location 
provides many benefits, it also exposes people and assets to a variety of natural and climate change-
related hazards, such as typhoon, storm surge, and sea level rise [2], especially in low-elevation 
coastal zones (LECZ). The LECZ is defined as a contiguous area along the coast that is <10 m above 
sea level [3]. According to estimates from the Global Rural Urban Mapping Project (GRUMP) gridded 
population dataset for 2000, this zone covers 2% (2.7 million km2) of the world’s land area but contains 
10% (634 million) of the world’s total population [3]. Following studies have quantified the size of 
populations residing in LECZ by utilizing two commonly used global population datasets, that is, 
LandScan and GRUMP [4,5]. According to the LandScan population dataset 
(https://landscan.ornl.gov/), 690 million people in 2006 [4] and 726 million in 2008 lived in the global 
LECZ [5]. These studies showed that inherent uncertainties of the input datasets and methods will 
likely affect conclusions, and variations in results were highly dependent on the input datasets [4,5]. 
All previous studies were heavily reliant on the accuracy of the gridded population dataset and the 
digital elevation model (DEM) data. Most studies used gridded population datasets with a spatial 
resolution of 1 × 1 km, which captures more area than finer resolution, thereby overestimating the 
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LECZ land area and population relative to finer grid [6]. Therefore, high-resolution population 
datasets are needed to understand the populations at risk in LECZ. 

With 18,000 km of coastlines and 14,000 km of island shorelines, China has a huge LECZ. China 
also has the largest population in LECZ, with over 126 million people in 2000 [3]. Since 1978, the 
Chinese government has launched the reform and openness policy, with a shift of economic 
development focus from inland to coastal areas. As a result, coastal areas have experienced rapid 
economic growth and urbanization. The most populous and economically developed cities, such as 
Shanghai, Guangzhou, Shenzhen, and Tianjin, are all located in the LECZ of China and attract 
numerous migrants from inland China [7]. According to the LandScan population dataset, Mondal 
and Tatem [5] suggested the LECZ population of over 173 million in 2008, whereas Liu, Wen [8] 
reported a lower population than the data above of 165 million in 2011. The results of these two 
studies seem to be counterintuitive because China is rapidly urbanizing, particularly along the coastal 
zones. The urban populations in China’s LECZ grow particularly rapidly [3]. Therefore, the real size 
of human populations in the LECZ of China and how they are distributed should be assessed. 
Previous attempts to determine the actual populations have been undertaken by using population 
datasets with coarse resolutions [3,5,8]. With the increase in the availability of geospatial big data that 
are highly correlated with human activities, detailed estimations of coastal population exposure are 
possible. For example, previous studies showed the considerable potential of point-of-interest (POI) 
[9,10] and Sina Weibo check-in data [11] in high-resolution population mapping.  

In this study, we aim to quantify the magnitude and spatial distribution of population in China’s 
LECZ. Two machine learning methods that utilize multiple satellite images and POI data were 
adopted to disaggregate census population data in coastal provinces and municipalities of China to 
100 × 100 m grids. Compared with WorldPop data, our methods can generate high-resolution 
population grid maps with higher accuracy. Then, the spatial distribution of LECZ in China and its 
population exposure were estimated by combining the resulting coastal population dataset and 
digital elevation model. 

2. Data and Methods 

Table 1 lists the datasets in this research, including population census data, nighttime light, 
vegetation index, POIs, and other ancillary data. Figure 1 outlines the general process used for data 
preparation, modeling, and validation, as follows: 

 
Figure 1. Flowchart of the production of population maps in coastal China. (PCA: Principal 
Component Analysis, NTL: Nighttime Light, GUF: Global Urban Footprint, NDVI: Normalized 
Difference Vegetation Index, RF: Random Forest). 
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Table 1. Datasets used in this study. 

Dataset Format Source 

POIs (2010) 
Point 

features Baidu Map Services (http://map.baidu.com) 

Nighttime light 
(2010) 

Grid 
The National Oceanic and Atmospheric Administration’s 

National Geophysical Data Center (NGDC), USA 
(https://ngdc.noaa.gov/eog/dmsp/download_radcal.html) 

NDVI (2010) Grid 
Vlaamse Instelling Voor Technologish 

Onderzoek, Belgium 
(http://www.vgt.vito.be/) 

GDEM Grid 
The Earth Remote Sensing Data Analysis Center 

(ERSDAC), Japan 
(http://www.gdem.aster.ersdac.or.jp/search.jsp) 

Census population 
data (2010) 

Table National Bureau of Statistics of China 

Global Urban 
Footprint (GUF) 

(2011–2012) 
Grid 

German Aerospace Center (DLR), 
(https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-

9628/16557_read-40454/) 

Boundary maps Polygon 
features 

Administration of Surveying Mapping and 
Geoinformation, China 

WorldPop 
Mainland China 

dataset (2010) 
Grid 

WorldPop China Mainland dataset: people per pixel 
(‘ppp’) (http://esa.un.org/wpp/) 

2.1. Population Census Data and Administrative Boundaries 

Population census counts for 2010 in coastal provinces/municipalities of China were obtained 
from the Sixth National Population Census of Mainland China (excluding Hong Kong, Macao, and 
Taiwan) and matched to administrative boundaries at the county level (administrative level 3; 978 
units) and Jiedao/Xiangzhen level (administrative level 4; 13,065 units), respectively. The county-level 
census data were used in the actual model implementation, whereas the Jiedao/Xiangzhen-level data 
were held in reserve for model accuracy assessment.  

2.2. Remote Sensing Data and Preprocessing 

The global radiance-calibrated nighttime lights (NTL) product for 2010 was downloaded from 
the National Oceanic and Atmospheric Administration National Geophysical Data Center 
(F16_20100111-20101209_rad_v4, https://ngdc.noaa.gov/eog/dmsp/download_radcal.html). This 
product, with a spatial resolution of 30 arc second (~1 km), solves the saturation problem that occurs 
in the widely used stable light image composites of the Defense Meteorological Satellite Program's 
Operational Linescan System (DMSP-OLS) product [12].  

The normalized difference vegetation index (NDVI) data in 2010 were derived from the 
vegetation sensor on board the Satellite Pour l’Observation de la Terre (SPOT) program and 
downloaded from the Vlaamse Instelling Voor Technologisch Onderzoek (VITO, 
http://www.vgt.vito.be/). The SPOT S10 NDVI (Vlaamse Instelling Voor Technologish Onderzoek, 
Belgium) data exhibited a spatial resolution of 1 km2 and a temporal frequency of 10 days. A 
maximum value composite method was used to generate annual maximum NDVI images to separate 
human settlements from bare soils and remove the effect of cloud contamination in such a large study 
area.  

NDVImax = MAX (NDVI1, NDVI2,…, NDVI36) (1) 

where NDVI1, NDVI2, …, NDVI36 are the 36 × 10 day SPOT NDVI images in 2010.  
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The NTL imagery and the NDVImax image with geographic (Lat/Lon) projection were resampled 
to 100 m and then reprojected to an Albers Conical Equal Area projection by using the nearest 
neighbor algorithm. 

The original DEM data used in the present study comprised the ASTER GDEM Version 2 (NASA 
Jet Propulsion Lab, the United States, and Japan’s Ministry of Economy, Trade, and Industry, Japan), 
with a 30 m resolution, downloaded from the website of the Earth Remote Sensing Data Analysis 
Center of Japan (http://www.gdem.aster.ersdac.or.jp/search.jsp). The 30 m DEM data were 
resampled by using bilinear interpolation to generate a new dataset with a pixel size of 100 m. We 
included elevation and its derived slope. 

The Global Urban Footprint (GUF) data is an open-access dataset that provides global spatial 
information about human existence on Earth [13]. This dataset not only shows details of the presence 
of population and infrastructures in large cities, but also contains the information of small settlements. 
The original ~84 m GUF data were resampled to generate a new dataset with a pixel size of 100 m.  

The WorldPop China Mainland dataset was produced by using a random forest (RF) method. 
This method integrates satellite remote sensing data, such as land use and road networks, and 
provides the most detailed population distribution forecast map in mainland China, with a spatial 
resolution of 100 m. We compared the produced population maps of this study with the WorldPop 
dataset to evaluate their accuracy. This dataset product is available in the WorldPop project website 
(https://www.worldpop.org/). 

2.3. POIs and Processing 

POIs were provided by Baidu Map Services (http://map.baidu.com), which is the most widely 
used and the largest web map service provider in China. With the help of the application 
programming interfaces that were provided by Baidu, we fetched 2,577,524 POIs records in mainland 
China [9]. In Baidu Map Service, the definition of POI is given in the form of a semantic Chinese 
phrase, which does not need word segmentation or reclassification in advance [14]. In the Baidu POI 
dataset, 20 labels belong to the top-level category, including educational facilities (e.g., kindergartens, 
primary schools, middle schools, colleges, and universities), clinical facilities (e.g., general hospital, 
special hospital, and children’s hospital), retail stores, catering and entertainment services, and public 
service facilities (e.g., public toilet, telecom, and nursing services; Table 2). The planar kernel density 
estimation tool in ArcGIS was used to produce a smooth and continuous density surface of POIs for 
each category. We tested the different bandwidths from 500 m to 8000 m at the intervals of 100 m 
before determining the value of 2000 m [9]. To reduce the number of variable inputs in the model and 
the computational burden of the model, we used principal component analysis (PCA) to combine 20 
POI density layers. The PCA method reforms a set of linearly related indicators into a new set of 
linearly independent variables by linearly transforming the coordinates of the original data space, 
thereby reducing dimensionality. According to the PCA results, the first principal component had 
the largest variance and contained nearly 90% of the information. Therefore, we only selected the first 
principal component and output it in the form of raster as a composite density surface (POIs-den) 
with a resolution of 100 × 100 m. 

Table 2. POI categories. 

Category Counts Category Counts 
Governmental agency 192,196 Commercial Building 20,465 

Airport 311 Retail 591,372 
Railway station 666 Hotel 71,622 

Motorcycle station 3,729 Restaurant and entertainment 380,637 
Bus station 145,049 Hospital and clinic 78,867 
Gas station 39,583 Educational facility 134,506 

Factory 81,018 Company 492,264 
Service zone of highway 10,873 Parking lot 75,415 

Toll station 6461 Residential community 91,065 
Bank 154,266 Park and square 7,159 
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2.4. Cubist and Random Forest Regression 

In this study, two classic and popular rule-based machine learning methods, including Cubist 
regression tree and RF, were chosen to model the relationships between population density and 
geographic variables. Both regression methods can use discrete and continuous variables as input 
variables [15]. Cubist is a commercial rule-based multivariate regression model [16,17] that produces 
multiple linear regression models in the terminal nodes of trees on the basis of M5 theory. The 
analytical results of the Cubist models consist of a set of rules, each of which rule has a related 
multivariate linear model [18]. Cubist creates an explicit model and gives relative importance on 
input predictors [19], thereby allowing an easy model interpretation. Cubist also has a much shorter 
run time than classification and regression tree methods [20].  

The RF algorithm, as a nonparametric, nonlinear, and ensemble machine learning method, is 
characterized by a flexible and robust framework that allows disparate data types to interact with 
each other in the modeling process [21]. Compared with other ensemble methods, RF algorithm is 
robust to outliers, noise, and overfitting, and requires little in parameter specifications [21,22]. The 
RF model has an internal cross-validation component that estimates the prediction error of the model, 
thereby removing the need for a set-aside test set. During the modeling process of the RF, at each 
node of each tree, one-third of the data is held in reserve from the iterative bagging process and used 
to generate an out-of-bag (OOB) error, which provides an unbiased estimate of prediction error [23]. 
The prediction error of the entire RF model can be calculated by averaging the OOB error of all trees. 
The OOB error can be also used to evaluate the importance of each covariate by calculating the 
average percent increase in the mean squared error (MSE). Additional details on RF are found in the 
references [21,22]. 

2.5. Model Fitting and Dasymetric Population Mapping 

The six raster layers of NTL, NDVI, elevation, slope, GUF, and POI density were aggregated by 
county level as independent variables, and the natural logarithm of the census population density 
was considered a dependent variable. Then, the relationships between geographic indicators and 
target population density were established using RF and Cubist models, respectively. The same raster 
layers were input to the fitted RF and Cubist models, and then the prediction layer was calculated. 
According to the dasymetric mapping method [9,24,25], the prediction layers of the two machine 
learning methods were considered as the distribution weight at pixel level, and census county-level 
population data were disaggregated into a 100 m spatial resolution grid, as follows: 𝑃𝑂𝑃 = 𝑃𝑂𝑃 ×𝑊𝑊  (2) 

where Wgrid is the population distribution weight for a 100 × 100 m gridded area, Wcounty indicates the 
summed population distribution weight of a county, POPcounty represents the county’s census 
population, and POPgrid is the distributed population for the gridded area. 

2.6. Extracting Extent of China’s LECZ 

According to the definition of LECZ, that is, a coastal continuous zone with an elevation of <10 
m and <100 km from the coastline [3], the extent of China’s LECZ was extracted using ArcGIS 10.2 
software. The process is as follows: (1) a buffer area of 100 km from the coastline of China was output 
using a buffer tool, (2) all areas with an elevation of <10 m were extracted based on DEM raster, and 
(3) the two layers produced by steps 1 and 2 were overlaid to obtain the LECZ in China (Figure 2). 
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Figure 2. Distribution of China’s low-elevation coastal zones (LECZ). Numbers 1~11 represent 
Liaoning, Tianjin, Hebei, Shandong, Jiangsu, Shanghai, Zhejiang, Fujian, Guangdong, Guangxi, 
Hainan, respectively. 

3. Results and Discussion 

3.1. Accuracy Assessment of Population Mapping 

To evaluate the accuracy of the prediction population maps from RF and Cubist models and 
compare the performance of two models, we collected the census population data at the 
Jiedao/Xiangzhen level (administrative level 4) from the study area. As a published, accurate gridded 
population dataset for China, the WorldPop dataset was also summed at the Jiedao/Xiangzhen level 
to compare the accuracy of the three population datasets. We selected the measures of mean relative 
error (MRE), mean absolute deviation (MAE), and root MSE (RMSE) to compare and analyze the 
errors of the above population dataset. Table 3 shows the results of the accuracy assessment for the 
population datasets predicted by RF, Cubist, and WorldPop. The MRE, MAE, and RMSE for 
population maps predicted by RF and Cubist were smaller than those of WorldPop. Therefore, the 
overall accuracy of the population maps obtained by the RF and Cubist models are higher than that 
of WorldPop at the Jiedao/Xiangzhen level. Specifically, the estimated population dataset from RF 
had better accuracy than that from Cubist, as demonstrated by the small MAE and RMSE values. 

Figure 3 shows the relationship between the predicted population density and census 
population density. Each data point in the plots corresponded to a township, with 13,009 samples in 
total. The distribution census counts suggested an extremely good fit at medium population densities 
for the three datasets, with increasing errors at extremely low and high population densities (Figure 
3). At extremely high population density (top 20%, red points), the underestimation in population 
estimation was significant, whereas overestimation was observed at extremely low population 
density (20%, blue points). This type of error showed that the dasymetric modeling process did not 
concentrate people heavily enough in high-population-density areas; instead, it spread estimations 
out to low-population-density areas. This problem was inherent to the population redistribution 
process in dasymmetric mapping literature [25,26]. However, by incorporating POI data, the 
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predicted population data from RF (R2 = 0.91) and Cubist (R2 = 0.92) had higher overall accuracy and 
were closer to the one-to-one line than those from WorldPop (R2 = 0.86). The overestimations in 
townships with small populations and the underestimations in those with large populations in the 
WorldPop (R2 = 0.57 or R2 = 0.18) dataset were considerably alleviated in the predictions by 
integrating POI data in RF (R2 = 0.70 or R2 = 0.26) and Cubist (R2 = 0.69 or R2 = 0.31) models. The 
accuracy of our population datasets in medially populated townships also showed better 
performance than that of WorldPop (Figure 3).  

Table 3. Overall accuracy evaluation for RF and Cubist models results and WorldPop datasets using 
census data from 13,065 Jiedao/Xiangzhen. 

 RF Cubist WorldPop 
Mean 42833.51 42830.36 44363.85 

MRE (%) 41.73 39.87 56.01 
MAE 11809.11 11898.52 15996.73 

RMSE 19999.14 20270.09 28190.86 
%RMSE 46.54 47.16 65.60 

 

  

Figure 3. Scatterplots of census and predicted population densities by (a) RF, (b) Cubist, and (c) 
WorldPop at the township level. A log10–log10 transformation was conducted for population density. 
Red points represent townships with the top 20% of population densities among all samples, blue 
points indicate the townships with the smallest 20% population densities, and green points represent 
the remaining townships. pph: population per ha. 

3.2. Comparison between RF and Cubist Models 

According to statistical results (Section 3.1), the performance of the RF model was slightly better 
than that of the Cubist model. However, machine learning method is known as the “black box” [27], 
that is, the same input values produce the same output, and the model itself does not explain the 
actual world. The performance should be further examined by analyzing the spatial distribution of 
the predictions from the RF and cubist models. Two predictions showed similar spatial patterns, and 
high-density population was concentrated in urban areas, especially in the Yangtze River Delta and 
the Pearl River Delta (Figure 4).  

We further compared the difference between the two predictions of the RF and Cubist models 
in the urban area of Shanghai (Figure 5). The spatial distribution of the prediction from the RF model 
was sprawl, whereas that from the Cubist model exhibited aggregation in urban centers. This result 
can be related to the characteristics of the two machine learning methods. The predicted value of the 
RF model was limited to the range of the dependent variable used for modeling, whereas that of the 
Cubist model can be extrapolated appropriately. We used the natural logarithm of population density 
at the county level as the dependent variable, with the values ranging from 1.33 to 8.25. As a result, 
the pixel values of weight layers predicted by the RF and Cubist models ranged from 1.54 to 8.06 and 
0.07 to 8.79, respectively. This phenomenon also explained why the population distribution predicted 
by RF was even, and that by Cubist was concentrated. This result indicated that the RF model reflects 
the actual population distribution in the coastal provinces of China. 
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Figure 4. Predicted population density map by (a) RF and (b) Cubist models for 2010 in coastal China. 

  
  

Figure 5. Comparison of population distribution predicted by (a) RF and (b) Cubist models in 
downtown Shanghai. Gray lines denote the boundary at county level, and black lines denote the 
boundary at Jiedao/Xiangzhen level. 
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3.3. Variable Importance in Population Mapping 

Given the six covariates used for population estimation, we expect to determine which of these 
drivers and covariates are the most important in terms of their ability to represent the distribution of 
population. Figure 6 shows the importance of the covariates in the RF and Cubist models. We chose 
%IncMSE as the measure of variable importance in the RF model. The %IncMSE indicates the increase 
in the MSE of prediction (i.e., population in this study) as a result of one variable being permuted. 
The higher the value of %IncMSE is, the more important the variable is for the regression of the RF 
model. For the Cubist model, each predictor had a value of the VarImp (%), which is a linear 
combination of the usage of each variable in the rule conditions and model. We used this value to 
measure the importance of each predictor in the Cubist model.  

According to Figure 6, POI density was the most important predictor in the RF model and the 
second most important predictor in the Cubist model. Human activities generally take place in 
different types of POIs. The higher the POI density is, the more developed infrastructures will be and 
the more service industries there will be. POIs that are highly related to human daily life can better 
represent an area with high population density and exclude industrial regions than NTL [28]. In 
contrast, our previous population mapping in China using the RF model showed that slope is the 
most important predictor [9]. This result indicated that the main geographic variables driving 
population distribution vary among regions. Variables for machine learning methods should be 
carefully selected according to the characteristics of the study area and research scale. 

Although DMSP/OLS NTL data are widely used to estimate populations across the world, 
several limitations, such as the blooming effect and saturation, limit the utility of NTL data for 
accurately estimating population distribution [29,30]. A main problem is that the lit area on 
DMSP/OLS is much larger than actual urban area due to blooming effect [31–33]. Therefore, errors 
and limitations exist when DMSP/OLS NTL data are used to map urban extents and population 
distribution. The NTL was much less important than POI density in the RF model, whereas the NTL 
was the most important indicator in the Cubist model. This phenomenon may explain the higher 
accuracy of the RF model than the Cubist model.  

Elevation and slope are also important indicators in the RF model. This finding should not be a 
surprise and agreed with expectations that more than 85% of the Chinese population lives in low-
relief-degree areas, and the correlation between relief degree and population density over China is 
strong [34]. Most human settlements are located at low elevation [35,36]. The high-resolution human 
settlement data also provided detailed information about the presence of population. Vegetation 
cover is closely and negatively correlated with impervious surfaces [37]. Combining information 
from NDVI can considerably enhance urban features and improve the mapping population 
distribution [38]. Therefore, GUF and NDVI also contribute to population prediction.  

  

Figure 6. Variable importance for (a) RF and (b) Cubist regression models.  
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3.4. Contribution of POI Data  

Despite numerous efforts to improve and standardize population census procedures, obtaining 
reliable small-area population estimates faces important challenges in many parts of the world, 
especially in developing countries. For example, the WorldPop project developed a machine 
learning-based dasymetric redistribution approach for mapping population at fine spatial resolution 
that has been shown to improve the accuracies of previous approaches [39]. Nevertheless, the 
underestimation in high-population-density areas and the overestimation in low-population-density 
areas, which are frequently recurring problems due to spatial nonstationarity in studies on 
dasymetric mapping [26,40,41], remain in the WorldPop dataset.  

Built area-related covariates are the most important factors in predicting population density [42]. 
The satellite-derived maps of land cover, NTL, and human settlements are widely used as auxiliary 
information in the population disaggregation process. Although remote sensing data perform well 
in discovering physical characteristics, such as land surface reflectivity, texture of urban land, and lit 
areas that are correlated with population densities, they do not perform well in identifying and 
understanding social structure and functions of urbanized areas [43,44] and are not directly indicative 
of the presence of population. Many studies rely on ancillary information obtained from remotely 
sensed data, but the resolution of the imagery used is often very low to obtain accurate disaggregation 
results, especially in heterogeneous urban environments. Therefore, a number of experiments 
demonstrated that land use and NTL data cannot be used to conduct accurate estimation of 
population at a fine scale [45].  

POIs capture human activities better and are more sensitive to socioeconomic environments than 
remotely sensed data. Baidu’s POI taxonomy consists of 20 top-level category types. As an analogy 
to spectral signatures in remote sensing, semantic signatures can differentiate types of places [46]. 
POI is better in representing urban areas, building footprints of residential areas, and rural settlement 
relative to NTL and land cover data. The inclusion of detailed information on the location and type 
of residential units can remarkably benefit dasymetric mapping [26,47–49]. Thanks to their thematic 
richness, POIs allow residential and nonresidential uses of urban land to be partly discerned, which 
is beneficial in disaggregating population. Information extracted from POI and the remote sensing 
imagery can validate each other to yield precise results in population estimation, especially in urban 
areas.  

To evaluate the contribution of POIs data in estimating population distribution, we removed the 
POI density and used only the remaining five variables, namely, elevation, slope, NDVI, NTL, and 
GUF, as the independent variables to fit RF and Cubist models and predict population maps. 
Similarly, we used the census data at the Jiedao/Xiangzhen level to assess the accuracy. The 
prediction of RF and Cubist models without POI data yielded R2 values of 0.89 and 0.89, respectively. 
Compared with the prediction with POI data, the estimation of the population without POI data had 
large MAE, MRE (%), and RMSE values. The MAE values were 13,742.17 and 15,473.67, the MRE (%) 
values were 46.66% and 49.06%, and the RMSE values were 23,277.41 and 25,420.24 for RF and Cubist 
predictions, respectively. Figure 7 shows the differences between predictions in Shanghai and the 
Pearl River Delta with or without POI data. In addition to producing an accurate model, the 
predictions incorporating POIs showed that the population was distributed in highly urbanized 
areas, and population in the suburbs was decreased. The resulting population dataset represented a 
remarkable improvement in accuracy relative to the WorldPop dataset, which uses remotely sensed 
and infrastructure-related variables to map population data. The results of this study demonstrated 
that compared with the mainland China population density map from WorldPop, the inclusion of 
POI data overcame the problems of underallocation in urban areas and overallocation in rural areas 
(Figure 7). As a result, the RF and Cubist models incorporating POI data performed much better than 
the WorldPop model and can successfully predict high population densities in highly urbanized 
areas in coastal China, such as Shanghai and Guangzhou. 
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(a) 

  

(b) 

  
Figure 7. Differences between predictions with and without using POI data in (a) Yangtze River Delta 
and (b) Pearl River Delta by subtracting prediction dataset without using POIs from POI-combined 
dataset. 

3.5. Population Distribution in LECZ  

The total numbers of the exposed population in China’s LECZ in 2010 were 158.2 million (RF 
prediction) and 160.6 million (Cubist prediction) by overlaying the predicted population maps and 
the extent of LECZ layer. These figures account for 12.17% and 12.36% of the total national 
population, respectively. Compared with the global average value of 10% [3], an increasing number 
of residents in China are exposed to coastal lowlands. Liu, Wen [8] analyzed the population 
distribution in China’s LECZ in 2010 with the GPWv3 population data. The results showed that in 
2010, ~163.9 million people lived in China’s LECZ, accounting for 12.3% of China’s total population. 
This result indicated the credibility of our results. Figure 8 shows that areas with high population 
density in LECZ were located along the southeast coast, especially in urban areas. 

Table 4 shows the exposed population of each province and its proportion to the total population 
of the province. Compared with our results, the total number of exposed population and the 
proportion of exposed population in each province on the basis of WorldPop dataset were 
underestimated. The total exposed population in China’s LECZ according to WorldPop data was 
126.2 million, accounting for 9.71% of the country’s total population. According to the RF and Cubist 
predictions, the differences in the population distribution in LECZ between provinces were 
significant. Hainan Province had the lowest exposed population of only ~1.6 million, whereas Jiangsu 
Province and Guangdong Province had the highest population of >34 million people. Shanghai had 
the largest proportion of ~85.5% of exposed population to the total population, whereas that of 
Guangxi was the smallest at only ~2.7%. Areas with densely exposed populations were concentrated 
in Tianjin, Guangdong, and the Yangtze River Delta Economic Zone (including Shanghai, Jiangsu, 
and Zhejiang), accounting for 78% of the total exposed population. These provinces also had the most 
developed economies and the highest urbanization levels in the coastal areas of China.  
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Figure 8. Spatial distribution of population in China’s LECZ on the basis of population data predicted 
by (a) RF and (b) Cubist models. 

Table 4. Population statistics in China’s LECZ at province level. 

Administrative 
Region 

RF Cubist WorldPop 

Population 
in LECZ 

Percentage 
of 

Population 
(%) 

Population 
in LECZ  

Percentage 
of 

Population 
(%) 

Population 
in LECZ 

Percentage 
of 

Population 
(%) 

Liaoning 5,744,143 13.52 5,865,836 13.80 4,348,797 10.23 
Hebei 7,544,156 10.77 7,532,371 10.75 5,959,338 8.51 
Tianjin 8,626,425 78.62 8,676,403 79.07 8,050,853 73.37 

Shandong 10,543,409 11.34 10,473,863 11.27 8,301,668 8.93 
Jiangsu 34,691,242 47.11 34,544,677 46.91 29,578,425 40.17 

Zhejiang 26,552,658 49.25 27,594,627 51.18 19,506,037 36.18 
Shanghai 19,383,507 85.11 19,586,423 85.99 15,432,892 67.76 

Fujian 7,794,071 21.57 8,404,211 23.26 5,624,798 15.57 
Guangdong 34,549,207 33.51 34,973,304 33.92 26,907,720 26.10 

Guangxi 1,190,414 2.62 1,262,995 2.78 1,070,519 2.36 
Hainan 1,589,500 20.42 1,724,000 22.14 1,428,907 18.35 

4. Limitations 

Although the results presented here make a strong case for the integration of POI densities in 
improving population mapping accuracies, a number of limitations and drawbacks should be 
addressed. First, most POIs concentrate in urban areas in coastal China, and small cities or rural areas 
may not have rich data. Therefore, the improvements presented in this study may possibly be limited 
to developed urban regions. In rural areas and urban fringe areas, where human activity density is 
relatively low, POI data are an ineffective measure of population density. Second, although POIs can 
provide the location of socioeconomic activities, POIs cannot provide the extent of these activities. 
The lack of information on the volume of buildings may generate population underestimation or 
overestimation [40]. If the extent of a POI can be obtained, then the performance of our method will 
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be further improved. Further research is required to deal with the data availability of building 
volume or height in large-scale application. Finally, the limited accuracy and resolution of the open-
access DEM data lead to uncertainty in population estimation in China’s LECZ, especially in the risk 
assessment of coastal inundation and erosion [50,51]. In the future, very high resolution DEM data 
can improve the accuracy of population exposure estimation in China’s LECZ. 

5. Conclusions 

In this study, we used multisource remote sensing images and POI data to disaggregate the 
census population data in China’s coastal provinces and municipalities by using two machine 
learning methods, namely, RF and Cubist. The predicted population distribution maps with a spatial 
resolution of 100 × 100 m were produced in China’s coastal areas in 2010. Our predictions were more 
accurate and can better capture the characteristics of actual population distribution than the 
WorldPop dataset. The inclusion of the POI data overcame the problem of population 
underallocation in urban areas and overallocation in rural areas in coastal cities. This study shows 
the potential of POIs data to assist in estimating other socioeconomic factors in the future.  

Our results showed that <12% of the Chinese population were located in LECZ in 2010. The 
exposed population were underestimated based on the WorldPop dataset. These estimates are basic 
but critical information in developing sustainable adaptation strategies to reduce coastal 
vulnerability to climate change [52]. Against the background of growing risks and rapid urbanization 
in China’s LECZ, effective, immediate, and long-term adaptation strategies are needed in reducing 
risks in the coastal systems and low-lying areas. 
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