
International  Journal  of

Environmental Research

and Public Health

Article

A Risk-Averse Shelter Location and Evacuation Routing
Assignment Problem in an Uncertain Environment

Bian Liang 1 , Dapeng Yang 1,* , Xinghong Qin 2 and Teresa Tinta 3

1 School of Economics & Management, Tongji University, Shanghai 200092, China; 1730316@tongji.edu.cn
2 School of Business Planning, Chongqing Technology and Business University, Chongqing 400067, China;

qinxh@ctbu.edu.cn
3 Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA;

ttinta@terpmail.umd.edu
* Correspondence: 1510341@tongji.edu.cn

Received: 5 September 2019; Accepted: 16 October 2019; Published: 19 October 2019
����������
�������

Abstract: Disasters such as hurricanes, earthquakes and floods continue to have devastating
socioeconomic impacts and endanger millions of lives. Shelters are safe zones that protect victims from
possible damage, and evacuation routes are the paths from disaster zones toward shelter areas. To enable
the timely evacuation of disaster zones, decisions regarding shelter location and routing assignment (i.e.,
traffic assignment) should be considered simultaneously. In this work, we propose a risk-averse stochastic
programming model with a chance constraint that takes into account the uncertainty in the demand of
disaster sites while minimizing the total evacuation time. The total evacuation time reflects the efficacy of
emergency management from a system optimal (SO) perspective. A conditional value-at-risk (CVaR)
is incorporated into the objective function to account for risk measures in the presence of uncertain
post-disaster demand. We resolve the non-linear travel time function of traffic flow by employing a
second-order cone programming (SOCP) approach and linearizing the non-linear chance constraints
into a new mixed-integer linear programming (MILP) reformulation so that the problem can be directly
solved by state-of-the-art optimization solvers. We illustrate the application of our model using two case
studies. The first case study is used to demonstrate the difference between a risk-neutral model and
our proposed model. An extensive computational study provides practical insight into the proposed
modeling approach using another case study concerning the Black Saturday bushfire in Australia.

Keywords: shelter location; traffic assignment; disaster management; stochastic programming;
risk aversion; uncertainty

1. Introduction

Whether they are natural or man-made, disasters such as hurricanes, earthquakes and terrorist
attacks inflict serious risk on humankind. In 2010, the Haitian government reported that that an estimated
316,000 people had died, 300,000 had been injured and 1,000,000 were homeless as a result of the Haiti
earthquake. This caused a massive level of devastation and imposed enormous operational challenges on
the humanitarian agencies and government. Scientific and reasonable shelter assignment and evacuation
routing planning are two important safeguards to minimize the loss from disasters.
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Different types of disasters require different types of shelter assignments and evacuation planning.
For example, earthquakes require emergency evacuation while typhoons allow early evacuation. By means
of modern information technology, the relevant government department can analyze and forecast the path
and intensity of a typhoon, which can give people sufficient time to evacuate. However, scientists cannot
yet calculate when there will be a major earthquake. When an earthquake comes, many people need to
evacuate immediately. To promote the efficiency of disasters rescue and reduce life and economic losses,
shelter location is significant to the reasonable planning at the pre-disaster phase and evacuation plans are
carried out relying upon the information gained (e.g., earthquake magnitude, volcanic eruptive intensity,
fire dangerous grade, etc.) when disasters happen. Topics regarding shelter or evacuation, important
aspects of disaster relief, have been frequently considered by researchers, and have appeared in emergency
supply planning [1,2], shelter location problems [3–5], emergency evacuation planning problems [4–26]
and shelter location and evacuation routing assignment problems [4,5,8–12,16,27,28].

Shelter location and evacuation routing operations rely on the boundary between disaster
preparedness and disaster response. In line with the framework proposed by [4], we assume that shelter
location and evacuation routing assignments are disaster response operations.

A shelter is a safe facility that protects people from possible damaging effects of a disaster. It can
provide people with necessary living conditions (e.g., food, water, medicine, etc.). People usually start
leaving their own houses to seek shelters with a sense of panic when they either face or are experiencing
dangerous circumstances. Under those circumstances, people may choose the same path to the shelters.
This will reduce the traffic capacity of those roads and delay the time taken to reach the shelter. In addition,
space within shelters is limited. Overcrowded shelters cause people who may arrive later to seek a new
one. This will further aggravate the condition of people who were wounded by the disaster.

The existing evacuation planning and management models are mostly based on traffic assignment
models [29], such as the user equilibrium (UE), the system optimal (SO) and the nearest allocation (NA)
approaches. Recently, the Constrained System Optimal (CSO) model [4,5] was developed to provide a
compromise between the SO and UE/NA approaches. The UE approach assumes that the evacuees act
selfishly and have full information about the traffic conditions on every possible route in the evacuation
network. Based on these assumptions, in the UE model, every evacuee can find the optimal route to their
destination using an objective function of minimizing their travel time. Clearly, the perfect information
assumption in the UE approach is strong and may not be valid in the case of a natural disaster, as the
real traffic demand is unusual, and it is difficult for evacuees to guess the congestion level on a path.
In the NA model, each evacuee uses the shortest path to reach the nearest open shelter sites, whereas this
short-sighted assignment will lead to a poor system performance.

The main goal of evacuation agencies and the governments, however, is to avoid congestion and
enable the evacuation of the disaster area in a timely manner. This can be achieved through effective
planning strategies, the SO model, which distributes traffic over the road network, and shelter assignment.
In the SO model, evacuees are assigned to designated safety and evacuation routes as soon as possible to
minimize the total evacuation time. The SO solution may not favor the preferences of some evacuees to
the benefit of the other evacuees. For example, some evacuees may be allocated to shelters much further
away than they would like to go or to routes much longer than they would normally take.
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In this article, we focus on emergency evacuation planning operations for a disaster response, which
consists of shelter location decisions and evacuation routing assignments in an SO fashion. In this work,
evacuation demand is an uncertain parameter, as shelter location decisions should be made before disasters
happen. Contrary to the general expectation-based (i.e., risk-neutral) stochastic model, a risk-averse version
that incorporates a risk measure called Conditional Value-at-Risk (CVaR) is established to capture the
random parameters to minimize the total evacuation time and associated risk. Considering the utilization
balance among shelters in uncertain contexts, on the other hand, chance constraints are introduced to
ensure that the utilization level of shelters is not less than a threshold within a given level of reliability.

To summarize, the contribution of the present work is four-fold:

(i) A two-stage stochastic programming shelter location and evacuation routing assignment (SLERA)
model with a chance constraint is developed, in which the demand for evacuees is regarded as
random. In the first stage, location decisions are made following some possible demand scenarios.
The second-stage decision considers specific evacuation routing assignments concerning available
shelters as the actual realization of demand.

(ii) Considering the uncertainty of the demand, a risk measure (CVaR) is introduced into the stochastic
model to balance the expectations related to the total evacuation time and inherent risk.

(iii) To handle the non-linearity objective function of the traffic flow, a second-order cone programming
(SOCP) approach is used.

(iv) Extensive numerical experiments are carried out to provide practical insight into the proposed
modeling approach.

The remainder of this work is organized as follows: Section 2 reviews some related work on emergency
management, especially related to the disaster response, such as shelter locations and evacuation routing.
Expectation-based and risk-averse mathematical models for the SLERA problem are given in Section 3.
The solution approach is detailed in Section 4. We present the computational results of the case study in
Section 5. Finally, Section 6 concludes this work and indicates some future research directions.

2. Literature Review

In this section, we provide a brief introduction to the existing literature, including evacuation planning,
shelter location, and an integrated approach of both. Table 1 gives an overview of these works.

2.1. Emergency Evacuation Planning Problem

In contrast to conventional emergency evacuation plans that often assign evacuees to fixed routes
or shelters, Han et al. [6] proposed a static model that decides on the shelter and route assignment
simultaneously by not constraining evacuees to pre-specified shelter sites to ensure the quality of plans
while roads are disturbed. In [18], optimal evacuation destination, traffic assignment, and evacuation
departure schedule decisions were integrated into a unified optimal traffic flow optimization model.

To represent the time-varying characteristics of the evacuation traffic conditions, dynamic network
flow models were employed in the evacuation planning problem [17,20,30]. Specifically, Lim et al. [20]
presented a capacity-constrained network flow optimization approach for finding evacuation paths, flows
and schedules to maximize the total number of evacuees for short notice evacuation planning against
hurricanes. In [17], a conflict-based path-generation approach was proposed for the evacuation planning
problem by decomposing the problem into a master and a sub-problem. The sub-problem generates
new evacuation paths for each evacuate area, while the master problem optimizes the flow of evacuees
and produces an evacuation plan. In [15], the demand management strategies of aggregate-level staging
and routing were studied in an attempt to manage large regional evacuations against disaster events by
reducing or eliminating congestion in the evacuation network. In [22], the dynamic resource allocation
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problem was addressed for transportation evacuation planning on large scale networks. In a system
optimal dynamic traffic assignment problem, Tuydes-Yaman and Ziliaskopoulos [23] focused on modeling
demand management strategies regarding to the optimal departure time, optimal destination choice and
optimal evacuation zone scheduling (also known as staggered evacuation) under a given fixed evacuation
time assumption.

Most existing evacuation planning problems (i.e., traffic assignment problems) assume that the input
parameters, such as evacuation demand and capacity, are deterministic. Notably, some works have
accounted for uncertainties in parameters under stochastic settings such as stochastic programming [7],
robust optimization [19,24] and chance constraint programming [30,31].

2.2. Shelter Site Location Problem

Recently, Mostajabdaveh et al. [14] studied a stochastic scenario-based problem involving the
determination of a set of shelter locations in the preparedness stage for natural disasters, which takes
into consideration the equity quantified by Gini’s Mean Absolute Difference (called Gini index) under
uncertainty. For large-scale problems, a genetic algorithm to solve the sub-problem by mixed-integer
programming was proposed.

Motivated by the realization that shelters are shared facilities between the source (relief supply) and
demand sides, designing a strategic preparedness network consisting of the evacuation source, shelters
and distribution centers [1] naturally integrates the evacuation and relief distribution problem at the
strategic and tactical levels simultaneously. Their formulation can make strategic and tactical decisions at
the same time before a foreseen disaster, such as a hurricane reaches the area. A benders decomposition
approach is used because of the complexity of the integrated model.

2.3. Shelter Location and Evacuation Routing Assignment Problem

Within the emergency management context, the shelter location and evacuation routing problems
have been studied by numerous optimization researchers, either in a separate or integrated fashion.
Bi-level programming, in which shelter location decisions and route assignments are given at the upper
and low levels respectively, is one of the most common approaches to address the above two problems
separately in the early period [9,10,16,27,28].

Specifically, Kongsomsaksakul et al. [27] studied an optimal shelter location problem for flood
evacuation planning with the assumption that the planning authority can control the traffic in certain
parts of the evacuation network comprising the evacuation routes of evacuees. Bi-level programming
was deployed to model this problem, where the upper lever minimized the total evacuation time and the
evacuees’ decisions (e.g., shelter assignment) at the lower level were formulated by a combined distribution
and assignment model in line with the shelter location information of the upper level. Similarly, Ng and
Waller [16] developed a hybrid bi-level model solved using a simulated annealing algorithm to balance the
optimal system and individual components, where the shelter assignment is made first in a system optimal
manner and then evacuees are free to choose the optimal route to reach their assigned shelter. Furthermore,
bi-level programming was extended to a stochastic context by [10,28] in which a scenario-based shelter
location model was proposed to identify a set of robust shelter locations during hurricane events. In [10],
user equilibrium-based traffic dynamics were incorporated into the optimization of shelter locations under
uncertainty to identify a set of robust shelter locations. The objective of the upper level was to minimize
the weighted sum of the expected unmet shelter demand and the expected total travel time of network
users. By confining the uncertain demand to an uncertainty set, Kulshrestha et al. [9] presented a robust
optimization approach for both shelter location and capacity decisions under demand uncertainty and
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their proposed model was formulated as a mathematical program with complementarity constraints and
was solved using a cutting-plane algorithm.

In order to balance different performance criteria or take into account diverse interest stakeholders,
multi-objective models are always formulated [8,11,12,32,33]. A multi-objective shelter location and
evacuation routing for an urban evacuation planning problem was proposed by [32], in which primary and
secondary routes for evacuees are identified simultaneously. These optimization approaches are embedded
into a Geographic Information System-based decision support system so planners can access them via
the Internet. In [8], a three-stage multi-objective programming model was used to design a centralized
emergency supply network for emergency logistics operations. A shelter network for evacuation was
designed in the first-stage phase with a minimized total travel distance.

In contrast to the separate optimization method, the integrated shelter location and evacuation
routing problems have received recent attention [4,5,11,12,33,34]. In the realm of emergency evacuation
planning under urban area circumstances, multi-criteria optimization models were developed in [11,33].
In particular, Coutinho-Rodrigues et al. [33] introduced a multi-objective location-routing model based on
the work proposed by [32] to identify the locations of shelters and evacuation paths for urban evacuation
planning. The factors considered in this model are six-fold and include the total travel distance, evacuee
risk, total evacuation time, and so on. This model was tested for a simulated fire situation and solved by
an off-the-shelf optimization solver. In [11], a comprehensive optimization model based on the multiple
commodities flow problem using public and private transport was presented to address the location and
routing problems simultaneously. A genetic algorithm based on nondominated sorting genetic algorithm-II
(NSGA-II) was designed to solve the multi-objective mixed-integer program, in which the authors modeled
the dynamic aspects of an evacuation process and took into account the total evacuation time, risk of
the evacuees, and number of shelters to be opened simultaneously. In [4,5], a non-linear mixed-integer
model was presented for vehicle-evacuation toward shelter destinations, in which a constrained system
optimization (CSO) methodology was introduced to guarantee a level of tolerance so that evacuees are
willing to accept the travel routes, even though the assigned routes to shelters are not the shortest ones.
The objective of the problem was to minimize the total evacuation time of the entire system, which was
modeled through a non-linear function of traffic flow. To handle the non-convex effects of the non-linear
objective function, a second-order cone programming (SOCP) method was deployed by transferring the
non-linear part of the objective function to a constraint.

Furthermore, Bayram and Yaman [4] extended the CSO shelter location and routing assignment
problem based on [5] to a scenario-based stochastic case where the evacuation demand and the
potential alterations to the network infrastructure are uncertain before a disaster occurred. The benders
decomposition algorithm with diverse cut strategies and the cutting plane algorithm was developed to
deal with large-scale problems. In [34], the Turkish Red Crescent (TRC) approach, which is used to address
the temporary shelter location and self-evacuation problem, was improved by developing a mathematical
model to select the best shelter area locations from a set of criteria. The aim of this model is to determine
the best shelter location sites and match evacuation zones to shelter sites while taking into account the
utilization of shelters. Focusing on a specific category of support evacuation of late evacuees, in [12],
a bi-objective integer programming model was developed to support shelter location and routing decisions
during short-notice evacuations. For this model, the support of public authorities is required, and the
model is solved by an ε-constrained algorithm with two conflicting objectives: maximizing the number of
evacuees and minimizing the utilization of resources.
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Table 1. Overview of the literature review.

Author Traf. Assign. Shel. Utili. Uncertainty Risk-Averse Route Assign. Shel. loc. Solution Method

[6] SO × × ×
√

× Simulation-based
[18] SO × × ×

√
× Commercial solver

[20] SO × × ×
√

× Dijkstra’s algo, greedy algo
[17] SO × × ×

√
× Column generation

[15] SO × × ×
√

× Exact, heuristic
[21] SO × × ×

√
× Exact

[22] SO × × ×
√

× Benders decomposition
[23] SO × × ×

√
× Tabu search

[19] SO ×
√

×
√

× Ant colony algo
[16] SO ×

√
×

√
× Commercial solver

[25] SO ×
√

×
√

× Sample average approximation
[3] ×

√ √
× ×

√
Commercial solver

[27] SO; UE × × ×
√ √

Genetic algo
[8] × × × ×

√ √
Commercial solver

[5] CSO × × ×
√ √

SOCP, commercial solver
[9] UE ×

√
× ×

√
Cutting plane algo

[10] SO; UE ×
√

×
√ √

Lagrangian relax
[11] SO × × ×

√ √
NSGA-II

[12] × × × ×
√ √

ε-constrained algo
[4] CSO ×

√
×

√ √
SOCP, Benders decomposition

[14] × ×
√

× ×
√

Genetic algo
This work SO

√ √ √ √ √
SOCP, approximation

3. Problem Description and Model Formulation

The aim of our emergency evacuation planning problem is to decide the location of S shelters among
the potential sites at the tactical level and the routing assignment of evacuees from stricken regions to safe
destinations operationally so that the disaster areas are evacuated as quickly as possible. In this work,
we focus on evacuation with private vehicles (i.e., car-based evacuation). Figure 1 illustrates the evacuation
network. The objective of our problem is to minimize the total evacuation time on all road segments.

Figure 1. Illustration of the evacuation network.

Before introducing the mathematical model of the SLERA problem, we first detail how to model
the travel time. It is generally known that there is a positive and monotonically increasing relationship
between travel time and traffic flow, as a large traffic volume will lead to congestion and increase the
travel time on roads. Getting a reasonable estimate of the entire evacuation time is the main reason for
modeling traffic time on road segments in accordance with corresponding traffic flows. In the literature,
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there are different functional forms that model the relationship between travel time and traffic flow on a
road segment. In particular, the U.S. Bureau of Public Roads (BPR) function has been extensively adopted
in evacuation models to estimate the traffic times, for example, in [4,5]. Thus, the BPR function is applied
in this work as well. In BPR function, the travel time t is not constant, as the level of congestion has an
impact on the travel speed of vehicles, especially during disaster evacuation. According to [5], travel time
t(x) is a monotonically increasing function of the traffic flow x. The relationship between travel time and
traffic flow is formulated as

t(x) = t0
(

1 + γ
( x

c

)β
)

(1)

where t(x) is the travel time when the traffic volume on the road is x, c denotes the maximum flow
capacity, t0 is the free-flow travel time at zero volume. The parameters γ ≥ 0 and β ≥ 0 are the tuning
coefficients, which determine the shape of the function. The exact values of the coefficients are defined
in accordance with the road characteristics, and they are generally taken as 0.15 and 1–5, respectively.
When higher flows occur on the link, the coefficient β determines the threshold at which the BPR function
rises significantly [35]. Considering that the evacuated tool is the same type of vehicle, a reasonable smaller
value of β is preferred. So, we use β = 2 in this work.

3.1. Notation

The notation used throughout the paper is summarized as follows.
Sets:

I: The set of demand nodes where the population at risk is to be evacuated, indexed by i.
J: The set of destination nodes (potential shelter sites) where evacuees reach safety, indexed by j.
R: The set of all evacuation routes.
Rij: The set of alternative routes from demand point i ∈ I to shelter j ∈ J, indexed by r.
L: The set of all road segments in the evacuation network, indexed by l.
Rl : The set of routes passing through road l, indexed by r.
Ω: The set of possible scenarios in a disaster event, indexed by ω.

Parameters:

di(ω): The population of evacuees at demand node i ∈ I in scenario ω ∈ Ω.
p(ω): The probability of scenario ω ∈ Ω.
cl : The capacity of road segment l ∈ L.
bj: The capacity of shelter j ∈ J.
S: The number of possible shelters.
t0
l : The free-flow travel time of road l ∈ L in zero traffic.

θ: The utilization rate of shelters, where θ ∈ [0, 1].
ε: A small value greater than 0.

Variables:

yj: = 1, if a shelter is located/opened at alternative shelter site j ∈ J; = 0, otherwise.
xr

ij(ω): the number of individuals that evacuate from demand node i ∈ I to shelter j ∈ J via route
r ∈ R in scenario ω ∈ Ω.
fl(ω): the traffic flow on road l ∈ L in scenario ω ∈ Ω.
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3.2. Expectation-Based Model

Based on the above definition and travel time estimation Equation (1), firstly, the mathematical
formulation of the expectation-based problem is written as follows:

(M1) min ∑
ω∈Ω

p(ω) ∑
l∈L

t0
l

(
1 + γ

(
fl(ω)

cl

)β
)

fl(ω) (2)

s.t.

∑
j∈J

yj = S (3)

xr
ij(ω) ≤ di(ω)yj, ∀i ∈ I, j ∈ J, r ∈ Rij, ω ∈ Ω (4)

∑
i∈I

∑
r∈Rij

xr
ij(ω) ≤ bjyj, ∀j ∈ J, ω ∈ Ω (5)

P

∑
i∈I

∑
r∈Rij

xr
ij(ω) ≥ θbjyj

 ≥ 1− ε, ∀j ∈ J, ω ∈ Ω (6)

∑
j∈J

∑
r∈Rij

xr
ij(ω) = di(ω), ∀i ∈ I, ω ∈ Ω (7)

∑
i∈I

∑
j∈J

∑
r∈Rij∩Rl

xr
ij(ω) = fl(ω), ∀l ∈ L, ω ∈ Ω (8)

yj ∈ {0, 1}, ∀j ∈ J (9)

xr
ij(ω) ∈ Z+ ∀i ∈ I, j ∈ J, r ∈ R, ω ∈ Ω (10)

0 ≤ fl(ω), ∀l ∈ L, ω ∈ Ω. (11)

The objective Function (2) minimizes the expected total evacuation time spent by the evacuees in the
network. Constraint (3) limits the number of open shelters to a pre-specified number S. Constraint (4)
ensures that evacuees are not assigned to a non-open shelter. Constraint (5) guarantees that the capacity of
each opened shelter is not exceeded. The minimum utilization rate of each opened shelter j is constrained
by chance Constraint (6), which ensures that the utilization rate is not less than a threshold value θ with
a specified high probability of 1− ε. Constraint (7) ensures that every evacuee from every origin i is
assigned to a shelter and a route leading to that shelter. The set of Constraint (8) computes the traffic flow
on every road segment l ∈ L. Finally, the domains of the variables are restricted by Constraints (9)–(11).

In M1, the objective criterion is expectation-based (i.e., risk-neutral), and the objective function value
entirely depends on the scenario set Ω, which captures the randomness under a finite sample distribution
space assumption. The expectation-motivated objective function is reasonable and reliable only if the
number of realizations of random demand is large enough. In practice, however, it is difficult to take a
large number of scenarios into consideration, due to the restriction of solution techniques. Unavoidably,
a case exists where the solutions obtained according to the expectation-based model do not perform
well in some extreme demand cases, which does not occur in scenario set Ω. To determine the risk of
solutions performing badly in exceptional cases, the introduction of a risk measure method to assess the
expectation-based objective value is preferred.
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3.3. Risk Measure by CVaR

In this subsection, we briefly introduce the concept of CVaR and present a linear programming
formulation of CVaR under the assumption that the distribution space of random variables is finite.
We recommend readers to refer to [36–38] for more details.

As a modeling method, it should be noted that the expectation-based objective Function (2) only
accounts for random scenarios in a finite set Ω. The performance of solutions obtained from given
scenarios will not be guaranteed under certain realizations of random parameters. To ensure an efficient
emergency response operation in which optimal decisions present relatively good stability even in
worst-scenarios, especially in the context of disaster management, authors have applied indicators such
as the Mean-Variance [39] and CVaR [38] as risk measures. In particular, CVaR has gradually been
adopted in pre-disaster relief network design problems [40], emergency logistics planning problems
during disasters [2] and disaster location and allocation problems [41]. In these works, risk measure was
adopted to avoid a case where the solutions provided by the risk-neutral model might perform poorly in
extreme scenarios (e.g., a very high level of unsatisfied demand under certain realizations of random data).

We firstly introduce the concept of the mean-risk model in relation to general two-stage stochastic
programming model considering risk aversion. Then, we present the risk measure definition and the
risk-averse model, and finally, we conclude this subsection with a linear representation of the risk measure.

(Ω,F , P) denotes an abstract probability space, in which Ω is the sample space, F is a σ-algebra
on Ω, and P is a probability measure on Ω. In the general risk-neutral two-stage stochastic model, (i.e.,
expectation-based), the sample space Ω is taken as a finite probability distribution where Ω = {ω1, ..., ωN}.
Then, the common expression form of the expectation-based stochastic linear programming problem is
written as

min
x∈X

E( f (x, ω)) = min
x∈X

cTx +E(Q(x, ξ(ω))) (12)

where f (x, ω) = cTx + Q(x, ξ(ω)) is the total cost function of the first-stage problem and Q (x, ξ(ω)) is the
optimal value of the second-stage problem (also known as the recourse function), which is formulated as

Q (x, ξ(ω)) = min
y(ξ)
{q(ξ)Ty(ξ) : T(ξ)x + W(ξ)y(ξ) = h(ξ), y(ξ) ≥ 0}. (13)

In the above-mentioned problem, “x” is the first-stage decision variable vector (also referred to as a
here-and-now decision), such as the location decision variables in this work, which is made before the
realization of the actual random parameter ξ(ω) for the elementary event ω ∈ Ω; “y” is the second-stage
variable vector, like the routing assignment variables, that occurs after a realization of ξ(ω) has been
identified. Indeed, this risk-neutral approach that optimizes the cost cTx of the first-stage decision plus
the expected cost of the recourse function does not take the risk element into account. The mean-risk
model is one of the classical approaches to incorporate the risk measure into a general two-stage stochastic
programming model while simultaneously minimizing the risk function. The risk-neutral two-stage
framework can be extended to the risk-averse mean-risk version formulated below:

min
x∈X

(1− λ)E[ f (x, ω)] + λCVaRα( f (x, ω)) (14)

where λ is a non-negative trade-off coefficient representing the exchange rate between the mean value
and risk, called the risk coefficient or risk level. Specially, the objective Function (14) is risk-neutral when
λ = 0. For the random variable f (x, ω), CVaRα denotes the conditional value-at-risk of f (x, ω) at a given
confidence level α. The mean-risk model minimizes both the expected cost E(·) and risk measure function
CVaRα(·). The relevant definitions of the risk measure CVaR are presented as follows:
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Definition 1. Let FZ(·) represent the cumulative distribution function of a random variable Z. According to [36],
the value-at-risk (VaR) at a given confidence level α, denoted by VaRα(Z), is defined as

VaRα(Z) = inf
η∈R
{FZ(η) ≥ α } (15)

where α ∈ (0, 1].

The conditional value-at-risk at a given confidence level α is related to the expectation of Z under the
condition that it exceeds the α-quantile threshold. Its definition is formulated as

CVaRα(Z) = E(Z|Z ≥ VaRα(Z)). (16)

CVaR can capture a wide range of risk preferences by altering another risk coefficient α, in particular,
the risk-neutral case (α = 0) and the pessimistic worst-case for a sufficiently large value of α→ 1. Z is a
random variable that obeys a discretion distribution with finite realizations {z1, ..., zN} and corresponding
probabilities {p1, ..., pN}. An alternative definition of CVaRα(Z) , which gives a linearization description
of CVaR, is restated below [36].

Definition 2. The conditional value-at-risk of random variable Z at the confidence level α is given as

CVaRα(Z) = inf
η∈R

{
η +

1
1− α

E([Z− η]+)

}
(17)

where [Z− η]+ := max{0, Z− η} and α ∈ (0, 1]. By means of linearizing the term ([Z− η]+) in Equation (17),
the conditional value-at-risk of random variable Z at the confidence level α can be rewritten as

CVaRα(Z) = inf
η∈R

{
η +

1
1− α

E(v)
}

(18)

= min

{
η +

1
1− α

N

∑
n=1

pnvn

}
(19)

subject to

zn − η ≤ vn, ∀n = 1, 2, ..., N

0 ≤ v, ∀n = 1, 2, ..., N

η ∈ R.

(20)

3.4. Risk-Averse Model

Given the definition of risk measure, a mathematical formulation of the stochastic version considering
risk measures can be represented as follows. This is based on model M1 and Equations (14) and (18)–(20):

(M2) min(1− λ) ∑
ω∈Ω

p(ω) ∑
l∈L

t0
l

(
1 + γ

(
fl(ω)

cl

)β
)

fl(ω) + λ

(
η +

1
1− α ∑

ω∈Ω
p(ω)v(ω)

)
(21)

subject to
constraints (3)–(11)
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∑
l∈L

t0
l

(
1 + γ

(
fl(ω)

cl

)β
)

fl(ω)− η ≤ v(ω), ∀ω ∈ Ω (22)

0 ≤ v(ω), ∀ω ∈ Ω (23)

η ∈ R. (24)

In this risk-averse model, smaller values of the risk measure part are preferred, as this indicates the
corresponding risk value of the solution’s performance loss in exceptional demand cases. λ and α are two
important coefficients that are used to tune the risk preferences for decision makers or the uncertainty
level of the decision environment. However, we cannot directly solve this risk-averse stochastic model,
because the objection function contains a cubic item f β+1

l (ω), which is a nonlinear objective function.
Heuristic techniques or the piecewise linear approximation method are frequently used to handle related
nonlinear objective functions occurring in mixed-integer programming (MIP) models. Recently, motivated
by the advances in second-order cone programming (SOCP), the nonlinear MIP models were reformulated
as corresponding second-order conic mixed-integer programs and then directly solved by off-the-shelf
solvers (e.g., CPLEX, Gurobi). In the following section, we describe the SOCP solution approach to
problems with the nonlinear objective function.

4. Solution Approach

In this section, we first give a brief review of second-order cone programming and provide the
mixed-integer SOCP formulation of our model. Then, a sample average approximation of the uncertain
problem as well as the sample based mixed-integer linear programming (MILP) reformulation of the
non-convex chance constraint are presented.

4.1. Second-Order Cone Programming Approach

Conic optimization refers to the optimization of a linear function over conic inequalities. With the
large number of practical applications and efficient algorithms (e.g., interior algorithms), SOCP has
become a state-of-the-art technique used in commercial solvers such as CPLEX. With the availability of
commercial solvers, conic integer models have recently started to be used in airline scheduling problem
applications [42] and emergency response planning for disasters [4,5].

By employing SOCP, the nonlinearity in the objective function is transferred to the constraint set in
the form of second-order quadratic constraints. One of the common uses of conic quadratic inequalities is
to represent a hyperbolic inequality, as in the form of Equation (25) (please refer to [43] for more details):

u2 ≤ v1v2, u, v1, v2 ≥ 0. (25)

Then, each hyperbolic inequality can easily be transformed into a second-order cone inequality,
as follows:

‖2u, v1 − v2‖ ≤ v1 + v2. (26)

Here, || · || denotes the Euclidean norm.
In our work, we define an auxiliary variable πl for each l ∈ L, and the expectation part of the objective

function becomes

(1− λ) ∑
ω∈Ω

∑
l∈L

p(ω)

(
t0
l fl(ω) +

t0
l γ

cβ
l

πl(ω)

)
. (27)
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The road characteristic coefficient β is generally adopted in a range [1, 5], which is explained in
Equation (1). In this work, β = 2 is adopted to represent f 3

l (ω) ≤ πl(ω) with hyperbolic inequalities of
the form

f 2
l (ω) ≤ ml(ω)hl(ω), ∀l ∈ L, ω ∈ Ω (28)

m2
l (ω) ≤ πl(ω) fl(ω), ∀l ∈ L, ω ∈ Ω (29)

hl = 1, ml(ω), πl(ω), fl(ω) ≥ 0, ∀l ∈ L, ω ∈ Ω (30)

where ml , πl , µl are auxiliary variables that are used to define hyperbolic inequalities. These hyperbolic
inequalities are represented by their respective quadratic cone constraints:

‖2 fl(ω), ml(ω)− hl(ω)‖ ≤ ml(ω) + hl(ω), ∀l ∈ L, ω ∈ Ω (31)

‖2ml(ω), πl(ω)− fl(ω)‖ ≤ πl(ω) + fl(ω), ∀l ∈ L, ω ∈ Ω (32)

hl(ω) = 1, ml(ω), πl(ω), fl(ω) ≥ 0, ∀l ∈ L, ω ∈ Ω. (33)

Despite the problem still being a nonlinear programming problem in which the nonlinearity element
is transferred to the constraint set, it can be solved efficiently when represented as a SOCP. Note that
SOCP problems are solved with the barrier algorithm in CPLEX. The resulting conic problem with SOCP
constraints is given below:

(M3) min (1− λ) ∑
ω∈Ω

∑
l∈L

p(ω)

(
t0
l fl(ω) +

t0
l γ

cβ
l

πl(ω)

)
+ λ

(
η +

1
1− α ∑

ω∈Ω
p(ω)v(ω)

)
(34)

s.t.
constraints (3)–(11)

f
′2
l (ω) + ρ2

l (ω) ≤ φ2
l (ω), ∀l ∈ L, ω ∈ Ω (35)

m
′2
l (ω) + τ2

l (ω) ≤ ϕ2
l (ω), ∀l ∈ L, ω ∈ Ω (36)

2 fl(ω)− f
′
l (ω) = 0, ∀l ∈ L, ω ∈ Ω (37)

ml(ω)− ρl(ω) = 1, ∀l ∈ L, ω ∈ Ω (38)

ml(ω)− φl(ω) = −1, ∀l ∈ L, ω ∈ Ω (39)

2ml(ω)−m
′
l(ω) = 0, ∀l ∈ L, ω ∈ Ω (40)

πl(ω)− fl(ω)− τl(ω) = 0, ∀l ∈ L, ω ∈ Ω (41)

πl(ω) + fl(ω)− ϕl(ω) = 0, ∀l ∈ L, ω ∈ Ω (42)

∑
l∈L

(
t0
l fl(ω) +

t0
l γ

cβ
l

πl(ω)

)
− η ≤ v(ω), ∀ω ∈ Ω (43)

0 ≤ ml(ω), πl(ω), f
′
l (ω), m

′
l(ω), φl(ω), ϕl(ω), ∀l ∈ L, ω ∈ Ω (44)

ρl(ω), τl(ω) ∈ R, ∀l ∈ L (45)

0 ≤ v(ω), ∀ω ∈ Ω (46)

η ∈ R. (47)
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4.2. Sample Average Approximate Algorithm and MILP Reformulation of Chance Constraint

The sample average approximate (SAA) algorithm is one of the predominantly used solution methods
to tackle random characteristics in stochastic programming. The basic idea of this approach is to replace
the original distribution of a random parameter d with a sample Ω of size |Ω| = N, that is, d(ω), ω ∈
{1, 2, ..., N}, where N is much smaller than the real number of scenarios of d. In SAA, Monte Carlo
simulation is used to generate scenarios to represent the demand for evacuees. It is assumed that the
demand in a disaster zone is a multivariate uniform distribution U(µ, ∑), where µ and ∑ are the mean
and covariance matrix of the random parameter, respectively. |Ω| scenarios are generated after the Monte
Carlo simulation has been run, and each scenario has the same probability 1

|Ω| .
After the |Ω| scenarios are generated, the expected objective Function (34) is estimated by the sample

average Function (48)

min (1− λ) ∑
ω∈Ω

∑
l∈L

1
|Ω|

(
t0
l fl(ω) +

t0
l γ

cβ
l

πl(ω)

)
+ λ

(
η +

1
1− α ∑

ω∈Ω

1
|Ω|v(ω)

)
. (48)

On the other hand, in line with [44], the chance Constraint (6) can be estimated by an indicator function
1
|Ω| ∑

|Ω|
n=1 I(0,∞)

(
∑i∈I ∑r∈Rij

xr
ij(ω)− θbjyj

)
≤ ε, which requires a certain percentage of the samples to

satisfy the chance constraint, where I(0,∞)(·) is an indicator function denoted as

I(0,∞)(x) =

{
0, i f x ∈ (0, ∞);
1, i f x /∈ (0, ∞).

The corresponding problem based on the sample average approximate algorithm (refer to as the
SAAP) is formulated as follows:

(SAAP) min (1− λ) ∑
ω∈Ω

∑
l∈L

1
|Ω|

(
t0
l fl(ω) +

t0
l γ

cβ
l

πl(ω)

)
+ λ

(
η +

1
1− α ∑

ω∈Ω

1
|Ω|v(ω)

)
(49)

s.t.
constraints (3)–(11), (35)–(47).

1
|Ω|

|Ω|

∑
n=1

I(0,∞)

∑
i∈I

∑
r∈Rij

xr
ij(ω)− θbjyj

 ≤ ε, ∀j ∈ J, ω ∈ Ω. (50)

Although the chance constraint is converted to a form involving the indicator Function (50) in
the SAAP, it is still difficult to be solved directly, as it is not convex. To solve the sample-based
chance constraint directly, an equivalent mixed-integer linear programming formulation is deployed to
substitute Equation (50) into the SAAP. For a given sample of size |Ω|, auxiliary binary decision variables
z(ω), ω ∈ Ω are introduced. For each scenario ω, z(ω) = 0 if the chance constraint is feasible or z(ω) = 1,
otherwise. Additionally, a big constant number “M” is used to model the case when the chance constraint is
violated. Therefore, the function of the chance constraint is realized by limiting the sum of binary variable
z(ω), ω ∈ Ω. Finally, the equivalent expression of the chance Constraint (50) is

θbjyj −∑
i∈I

∑
r∈Rij

xr
ij(ω) ≤ Mz(ω), ∀j ∈ J, ω ∈ Ω (51)
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|Ω|

∑
ω=1

z(ω) ≤ |Ω|ε, ∀ω ∈ Ω (52)

z(ω) ∈ {0, 1}, ∀ω ∈ Ω. (53)

Then, the ultimate formulation of the SAA problem can be written as follows:

min SAAP

s.t.
constraints (3)–(11), (35)–(47), (51)–(53).

5. Computational Results

In this section, we describe computational experiments that were carried out for two case studies.
In the first part of the computational study, we investigate the comparison results with the risk-neutral
model to provide insight into our proposed model considering the risk measure. In the second part,
we show the effectiveness of the modeling approach and conduct a sensitivity analysis of the risk
parameters. In this work, we considered the evacuation pattern as recommended for the movement
of victims toward a safe place with the support of vehicles, which should be planned systematically. We
coded the proposed model using MATLAB 2018b and solved it using CPLEX solver 12.8 on a DELL PC
with a CPU capacity of 4.00 GHz and 32G RAM.

5.1. Instance Data

We solved the risk-averse model with different test networks. The test problems we used were
from two sources. The first instance, called Sioux Falls, was inherited from [5], which comes from an
online library called the Transportation Network Test Problems. Sioux Falls were downloaded from [45],
and this instance was used to provide results comparisons and contrasts with the risk-neutral model
in the literature [4]. We focused on the second case that was originally developed by [12] to determine
the location and evacuation of a bushfire in Australia. In this case study, the region was represented
by a network consisting of 11 nodes and 90 links. The detailed information related to instance cases
are presented in Appendix A, and the associated codes can be downloaded from the following link:
https://pan.baidu.com/s/1QrG2auqDfCbKepnh8EIWOQ.

5.2. Comparison of the Results between Risk-Averse and Risk-Neutral Models

Sioux Falls comprises 24 nodes and 76 arches. The details of the network are presented in Appendix A,
Table A1. In line with [5], we set nine potential shelter sites (i.e., destination nodes) at nodes 2, 6–8,
and 16–20, and the other nodes were sites affected by disaster (i.e., origin/demand nodes). So, there were
135 |O-D| pairs in total. For each |O-D| pair, there were many possible evacuation routes. It was difficult
to solve this problem as all available routes were taken into account. Therefore, we chose K shortest paths
for each |O-D| pair by the Deletion Algorithm [46], which is based on the classical Dijkstra Algorithm.
We determined the demand for each origin node randomly between 200 and 600, and we assumed that
the maximum traffic flow rate (capacity) of the road segment was 60 vehicles per hour with a free flow
speed of 80 km/h in an uninterrupted traffic flow. We considered three types of facility capacity (1000,
2000, and 3000), and the detailed capacity of potential shelter sites was [3000 2000 1000 1000 3000 3000
2000 2000 1000].

In the risk aversion setting, the solution performance under some worst demand scenarios is
emphasized so that the obtained solutions are more conservative than those obtained with the risk-neutral

https://pan.baidu.com/s/1QrG2auqDfCbKepnh8EIWOQ
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setting in the literature [4]. To illustrate this difference, we compared the proposed risk-averse model
with the risk-neutral (i.e., expectation based) approach presented in [4]. The experiment setting was
S ∈ {3, 4, 5, 6} and three types of risk coefficients were used to reflect different risk preference levels
λ ∈ {0, 0.1, 0.5, 0.9}. Note that the risk-averse model is transferred into the risk-neutral one when λ = 0.
Firstly, we took |Ω| = 10 as the scenario’s sample size to generate the shelter location decisions for both
the risk-averse and risk-neutral models. The corresponding results of the shelter usage rate is reported
in Tables 2–4. Then, to measure the performance of the obtained solutions in a bigger sample space,
we applied the Monte Carlo simulation to generate a bigger sample to test the performance of solutions over
a wide range of situations. These simulation results are presented in Table 5. Intuitively, a sound solution
not only performs better in a small sample space, but is also guaranteed under general circumstances.

Table 2. Utilization rate of open shelters under risk-neutral and risk aversion settings (S ∈ {3, 4}).

S = 3 S = 4

#Shelter Risk-Neutral Risk Aversion #Shelter Risk-Neutral Risk Aversion

λ = 0.1 λ = 0.5 λ = 0.9 λ = 0.1 λ = 0.5 λ = 0.9

2 - - 62.1% 61.8% 2 - - 59.7% 59.7%
6 99.3% 98.8% - - 6 98.2% 97.6% - -

16 79.8% 78.8% 80.8% 80.8% 16 61.8% 61.5% 64.8% 64.5%
19 75.4% 77.2% 80.0% 80.3% 19 53.3% 54.4% 58.0% 59.0%
- - - - - 20 100.0% 100.0% 98.9% 98.1%

Table 3. Utilization rate of open shelters under risk-neutral and risk aversion settings (S ∈ {5, 6}).

S = 5 S = 6

#Shelter Risk-Neutral Risk Aversion #Shelter Risk-Neutral Risk Aversion

λ = 0.1 λ = 0.5 λ = 0.9 λ = 0.1 λ = 0.5 λ = 0.9

2 - 50.1% 49.1% 48.4% 2 - 49.2% 49.3% 49.1%
6 79.6% - - - 6 77.3% - - -
- - - - - 7 46.1% 46.6% 45.3% 45.2%
8 86.6% 88.4% 86.4% 83.1% 8 58.2% 66.9% 62.3% 62.1%

16 - - 50.9% 51.0% 16 - - 49.2% 49.3%
17 50.0% 50.9% - - 17 49.2% 49.3% - -
19 49.2% 51.7% 53.2% 56.2% 19 48.8% 48.8% 51.1% 51.6%
20 94.3% 93.7% 95.8% 94.8% 20 84.5% 82.2% 83.4% 83.5%

The utilization rate of opened shelters is summarized in Tables 2 and 3. The column “#shelter” lists
the particular opened shelters, and the symbol “-” indicates that the corresponding utilization rate is 0 or
the alternative shelter site is not chosen as opened shelter. As shown in Tables 2 and 3, we can observe
that the shelter site with a bigger capacity is preferred when the risk coefficient λ increases such that it
exceeds a threshold value. For example, in S = 5, as the risk parameter λ increases to 0.1, compared with
the location decision of the risk-neutral model, shelter #2, which has a capacity of 3000, is more preferred
over shelter #6, which has a capacity of 2000. Moreover, in the risk-neutral model, when λ takes a value of
0.5, shelter site #16, which has a capacity of 3000, is chosen as an open shelter to substitute shelter #17 and
λ = 0.1. Turning to the objective values presented in Table 4, the total evacuation time of the risk-averse
model is greater than that of the risk-neutral one, and it increases without decreasing as the risk coefficient
λ increases. In addition, the time spent on evacuation decreases as the number of open shelters increases.
However, based on the effect of S on the total evacuation time, what can be estimated is that establishing
one more shelter adds little to the evacuation of the entire system when the available number of safety



Int. J. Environ. Res. Public Health 2019, 16, 4007 16 of 28

facilities is greater than 6. On the other hand, as shown in the right part of Table 4, the CVaR of total
evacuation time decreases as λ increases. This means that the risk that the obtained solutions will perform
poorly under other unexpected scenarios is relatively reduced.

Table 4. Total evacuation time and corresponding Conditional Value-at-Risk (CVaR).

S

Expected Total Evacuation Time (TET) CVaR of TET

Risk-Neutral Risk Aversion Risk-Neutral Risk Aversion

λ = 0.1 λ = 0.5 λ = 0.9 λ = 0.1 λ = 0.5 λ = 0.9

3 6,630,398 6,677,721 7,188,617 7,449,398 - 8,822,657 7,852,525 7,744,518
4 5,963,488 6,010,120 6,491,566 6,720,137 - 7,374,074 6,504,996 6,414,576
5 5,720,957 5,753,614 6,025,619 6,314,789 - 6,927,350 6,228,670 6,197,845
6 5,677,441 5,752,044 5,960,513 6,238,642 - 6,641,029 5,967,101 5,901,922

In light of the location decisions of λ = 0.5 and λ = 0.9 being identical, we carried out a simulation
of cases of “risk-neutral” and “risk-averse” where λ ∈ {0.1, 0.5}. Table 5 presents the simulation results
for the total evacuation time under sample sizes of |Ω| ∈ {50, 100, 200}. From Table 5, we can observe
that the risk-averse model performed slightly better than the risk-neutral one, as the total evacuation time
generated by the simulation of the risk-averse approach was less than that of the risk-neutral approach.
This rightly correlates with the results of CVaR for the total evacuation time (TET) shown in Table 4,
whereby the solution quality is guaranteed in more general scenarios.

Table 5. Monte Carlo simulation of the evacuation time.

S

|Ω| = 50 |Ω| = 100 |Ω| = 200

Risk-Neutral Risk Aversion Risk-Neutral Risk Aversion Risk-Neutral Risk Aversion

λ = 0.1 λ = 0.5 λ = 0.1 λ = 0.5 λ = 0.1 λ = 0.5

3 6,844,813 6,844,813 6,750,086 6,823,550 6,823,550 6,664,941 6,868,368 6,868,368 6,757,147
4 6,185,932 6,185,932 5,812,245 6,249,512 6,249,512 6,051,388 6,100,323 6,100,323 6,074,580
5 5,758,636 5,626,734 5,605,648 5,932,800 5,835,622 5,783,792 5,870,288 5,828,749 5,717,690
6 5,798,878 5,669,183 5,489,375 5,834,511 5,833,913 5,800,919 5,814,711 5,725,453 5,777,178

5.3. Effectiveness and Sensitivity Analysis

In this section, we reference the instance of a bushfire event in Australia that was presented in [12]
using their network structure. The Shire of Murrindindi, which experienced a series of bushfires on
7 February 2009, Black Saturday, is located approximately 100 km northeast of Melbourne in Victoria,
Australia. It covers an area of 3889 km2 and includes the towns of Alexandra, Buxton, Eildon, Flowerdale,
Kinglake, Marysville, Molesworth, Strath Creek, Taggerty, Yarck, and Yea. The study area consists
of six main townships which suffer from fire risk: Narbethong i1, Marysville i2, Taggerty i3, Buxton
i4, Cambarville i5, and Rubicon i6. In [12], the demand of evacuees was regarded as deterministic,
as given in Table 6. Conversely, we assumed that the actual demands in terms of disaster zones were
random and independent. We used the deterministic demand reported in Table 6 as the expectation d of
uncertain demand.



Int. J. Environ. Res. Public Health 2019, 16, 4007 17 of 28

Table 6. The case study demand and capacity data.

Index i Evacuation Nodes Demand (di) Index j Shelters Capacity (bj)

1 Narbethong 240 1 Yea 1500
2 Marysville 260 2 Alexandra 500
3 Taggerty 170 3 Thornton 500
4 Buxton 130 4 Eildon 1000
5 Cambarville 110 5 Yarra Glen 1000
6 Rubicon 190

Five shelters in adjacent townships (destinations) were nominated by Country Fire Authority (CFA):
Goughs Bay Fire Station in Alexandra j1, a recreation reserve oval in Thornton j2, a basketball court in
Eildon j3, a skate park in Yea j4, and a racecourse track in Yarra Glen j5. Figure A2 in Appendix A gives
the location distribution of these disaster regions and safe destinations. Each shelter has a maximum
capacity for evacuees; these capacity values are reported in Table 6. The details of the road segments and
road network information are provided in Appendix A, Tables A1 and A2. We set the capacity for each
road segment randomly with a maximum traffic flow rate of 30 vehicles per minute and a free flow speed
of 100 km/h. To balance the utilization rates among opened shelters, we set θ = 0.2, and the reliability
level was ε = 0.1. Note that despite a much smaller value of ε than 0.1 being desirable, we chose ε = 0.1
as a result of the limited solution ability in this work. Specifically, the reliable level ε depends on the
sample size of |Ω| in the sample-based chance Constraint (50), so the larger |Ω| is, the smaller ε can be,
for example, ε = 0.05 was feasible since the sample size was |Ω| > 20.

5.3.1. Effectiveness Analysis

To illustrate the validity of our proposed model, it is necessary to compare the output of computation
results with real evacuation outcome. However, it is difficult to obtain the real evacuation schemes used
in the bushfire disaster event, as the features of evacuation activity were real-time and spontaneous.
In general emergency evacuation events, the nearest allocation (NA) fashion is mostly used to assign
shelters and corresponding paths to evacuees, as the information on path lengths or free-flow travel time
is more accessible to evacuees compared with actual travel times in a disaster [4]. On the other hand, in an
emergency or chaotic environment, it is easy for evacuation personnel to self-select the shortest route
based on the distance/travel time to reach a safe destination as quick as possible. Therefore, we used the
calculation results generated by the NA approach to approximate what happened in real evacuation case
and compared the computational results between our model and the NA method to test the validity of
our model.

We assumed that demand distribution of origin nodes was uniform with the means given in Table 6,
and the distribution interval was [(1− e)d, (1 + e)d] where 0 < e < 1. Taking e ∈ {0.1, 0.3, 0.5} to capture
different demand fluctuations, we randomly generated 4 scenarios for each distribution pattern with
different numbers of opened shelters S ∈ {2, 3, 4, 5}. The set of total evacuation times is summarized in
Table 7. We can make several observations from the table:

(1) Our proposed model outperforms the NA approach for real evacuation case, as the total evacuation
time in our model is far less than that of the NA. Specifically, the maximum and minimum values of
the total evacuation time generated by our model are 233,274 and 63,634, respectively. In contrast,
the associated values of the NA method are, respectively, 309,844 and 2,612,969.

(2) In terms of the number of opened shelters, the total evacuation time of evacuees decreases as
the number of available open shelters increases. Moreover, the contribution of adding one more
opened shelter to the reduction in evacuation time shows a marginal diminishing trend in our model.
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Furthermore, the total evacuation time under the NA case conversely increases as the S exceeds 4,
which means the open shelters exceed redundancy and a reasonable S exists.

(3) In regard to the influence of demand fluctuation, we can see that except for scenario #2, the larger e is,
the shorter the evacuation time required is.

In order to gain insight into the performance difference, Figures 2 and 3 presents the traffic flow
distribution in the evacuation process. Compared with Figures 2 and 3, we can see that the traffic flow in
the evacuation paths generated by our model is evenly distributed, and the upper bound of flow in each
road segment is less than 250. However, in the traffic flow distribution of NA, road segments 2, 6, 10, 12,
and 17 are the main converging roads to safe destinations and road segments 27–42 are idle. Certainly,
compared with Figure 2, the probability and severity of traffic congestion in the real evacuation case on
road segments 2, 6, 10, 12, and 17 is large, as the traffic flow exceeds the road capacity. The unbalanced
distribution of traffic flow directly results in poor system efficiency during emergency evacuations.

Table 7. Computation results of the model and real evacuation case.

e S Scenario #1 Scenario #2 Scenario #3 Scenario #4

Model NA Model NA Model NA Model NA

0.1 2 197,562 1,675,112 214,904 1,890,489 181,986 1,451,272 207,581 1,711,341
3 150,207 713,215 162,734 769,519 138,477 653,297 157,078 754,420
4 132,548 877,519 142,299 984,507 122,061 789,196 137,270 922,060
5 129,972 952,549 139,549 1,076,953 119,591 854,861 134,562 1,002,812

0.3 2 171,134 1,517,710 222,062 2,207,604 130,294 942,740 196,157 1,604,709
3 133,512 618,941 170,368 806,720 102,109 459,105 150,727 721,702
4 119,562 719,198 148,606 1,053,067 90,991 501,065 131,155 829,372
5 117,286 776,878 145,842 1,162,791 88,993 538,252 128,529 903,243

0.5 2 149,986 1,392,877 233,274 2,612,968 89,529 565,754 186,844 1,508,880
3 120,224 552,166 181,197 891,254 72,416 308,340 145,627 700,811
4 109,426 593,075 157,991 1,172,871 65,200 292,294 126,431 746,900
5 107,425 634,276 155,209 1,301,356 63,634 309,844 123,790 813,580

Figure 2. Traffic flow of the road segments using the proposed model.
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Figure 3. Traffic flow of the road segments using the NA approach.

5.3.2. The Impact of Risk Coefficients on CVaR and the Total Evacuation Time

In the risk-averse shelter location and routing assignment problem, the parameter λ and the confidence
level α are two key coefficients related to shelter location decisions and emergency evacuation planning.
For example, a higher λ indicates that more emphasis is placed on the risk part and the corresponding
decisions tend to be more conservative to avoid cases of extreme demand. In this part of the computational
study, we analyzed the results based on the bushfire evacuation problem with |Ω| = 10 and the risk
parameters λ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, α = {0.6, 0.7, 0.8, 0.9, 0.95, 0.99} under different
numbers of available shelters S = {1, 2, 3, 4, 5}. We assumed that the uncertain demand of evacuees is a
uniform distribution of [(1− e)d, (1 + e)d], where e = 0.3.

Tables 8 and 9 report the impacts of risk parameters on the expected total evacuation time and CVaR.
Figures 4 and 5 give graphic illustrations of the impacts of λ on the trade-off between the expected total
evacuation time (TET) and the associated CVaR under different available shelter cases. Figures 6 and 7
show the impacts of the confidence level α on the risk and objective function value. Figure 8 represents an
efficient frontier of risk and expectation.

In the risk-averse model, higher values of λ and α indicate a more conservative decision preference
and suggest that more attention should be paid to some extreme realizations of uncertain demand to
avoid loss of performance in the solutions. Thus, increasing risk parameter λ brings about more weight to
the risk measure value (i.e., CVaR) of the total evacuation time at the expense of increasing the expected
TET. As shown in Figures 4 and 5 (as well as Tables 8 and 9), the CVaR of TET decreases and gradually
converges to a fixed value as λ increases, while the expectation of TET increases. These increments, shown
in Figure 5 and Table 8, become more pronounced when the number of opened shelters S is small, such as
S ≤ 3. In addition, we can also observe that the graphs of the expected TET and corresponding CVaR
of larger S values are always below those of the smaller S values, which implies that improvements in
CVaR, and thus the level of compromise from the expectation, increase with S. Besides, it is obvious that
increasing the number of opened shelters will not promote a significant decrease in the total evacuation
time once S is greater than 3. In contrast, it is resource-wasteful.
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Turning to Figure 6, we can observe that a higher α value leads to a greater CVaR, which illustrates
that CVaR is a non-decreasing function of α. Similarly, the same relationship is valid for the objective
function value graphs in Figure 7. This consequence can be explained by the definition of CVaR in which a
smaller confidence level α indicates a worse realization. According to both figures, we can say that the
influence of the risk coefficient λ becomes more significant as larger α values are given. Figure 6 and
Figure 7 further confirm that the contribution to improving the emergency evacuation effect of simply
increasing the number of shelters is small when S exceeds 4.

Furthermore, to facilitate the decision makers who are seeking to reach the right balance between
expectation of TET and accompanying risk, Figure 8 lists solutions to the expected TET and corresponding
risk with different S values when α = 0.95. As shown in Figure 8, along with the left tails of curves (starting
from smaller λ values), the CVaR of TET decreases significantly at the cost of increasing the expected TET.
On the other hand, it is obvious that the right tails of these curves tend to be flat. This means that higher
compromises from the expected TET are required, especially in the case where the risk coefficient λ is
close to 1, to further decrease the risk.

Table 8. Expected total evacuation time.

S α
λ

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

2 0.60 222,277 226,809 213,374 216,567 219,922 223,513 225,850 225,705 231,960
0.70 203,786 208,836 213,434 216,737 219,640 222,360 225,387 228,950 232,450
0.80 203,799 208,495 213,124 216,875 219,852 222,283 224,977 228,695 232,920
0.90 203,784 208,443 213,121 216,877 219,824 222,245 224,890 228,565 233,150
0.95 203,802 208,499 213,124 216,875 219,826 222,248 224,890 228,565 233,140
0.99 203,788 208,486 213,124 216,877 219,824 222,245 224,893 228,565 233,140

3 0.60 155,109 156,859 159,541 162,675 165,168 166,470 168,940 170,150 172,230
0.70 154,796 156,328 160,073 161,607 164,670 167,555 168,590 170,635 173,040
0.80 154,848 157,061 159,374 162,102 164,814 167,263 168,843 170,385 173,300
0.90 154,297 156,110 158,689 162,370 163,952 167,258 168,847 170,565 172,310
0.95 153,946 157,124 159,649 162,375 164,168 166,360 169,127 170,835 173,360
0.99 155,089 156,598 160,019 162,375 164,766 166,393 169,127 170,525 173,050

4 0.60 142,463 144,243 145,770 147,507 151,934 152,878 156,070 159,135 160,860
0.70 142,189 144,325 146,656 148,263 149,748 153,478 155,467 157,170 160,150
0.80 142,893 144,391 146,811 147,492 150,618 153,790 154,840 158,525 161,000
0.90 142,987 143,008 144,779 148,577 151,074 150,250 154,453 158,800 159,810
0.95 141,773 144,334 147,500 148,263 151,216 152,960 155,437 157,250 160,580
0.99 141,553 144,849 145,374 147,252 149,890 152,505 154,627 157,250 160,580

5 0.60 136,120 141,029 142,881 146,360 147,220 149,663 153,127 155,405 158,300
0.70 139,809 143,095 143,404 146,298 146,858 151,343 152,813 155,005 159,730
0.80 136,463 142,401 143,231 146,298 149,464 149,748 153,590 157,050 159,730
0.90 136,906 143,096 142,211 147,120 148,138 150,555 154,250 156,410 159,730
0.95 139,217 141,880 143,717 146,298 147,346 150,240 153,587 157,050 159,730
0.99 137,277 143,096 142,923 145,507 148,676 150,248 153,767 157,050 159,730
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Table 9. Conditional value-at-risk (CVaR) of the total evacuation time.

S α
λ

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

2 0.60 409,540 382,085 313,290 307,288 303,164 300,223 298,931 297,724 301,001
0.70 360,180 330,580 316,367 310,113 306,534 304,287 302,666 301,455 300,832
0.80 360,190 332,660 318,560 311,450 307,742 305,738 304,297 303,039 302,288
0.90 360,140 332,575 318,567 311,448 307,784 305,787 304,370 303,129 302,318
0.95 360,190 332,725 318,560 311,450 307,782 305,785 304,370 303,133 302,274
0.99 360,140 332,685 318,560 311,448 307,784 305,787 304,367 303,119 302,308

3 0.60 241,560 225,195 218,010 213,398 210,322 208,533 207,479 207,081 206,684
0.70 241,970 234,500 219,293 214,740 211,562 209,538 208,470 208,073 207,678
0.80 241,980 226,930 219,940 215,423 212,414 210,402 209,187 208,725 208,304
0.90 250,160 238,245 232,963 215,423 212,414 210,402 209,189 208,725 208,306
0.95 241,980 227,235 219,940 215,423 212,414 210,402 209,187 208,726 208,304
0.99 241,980 226,930 219,807 215,423 212,414 210,402 209,187 208,725 208,304

4 0.60 238,290 209,915 202,370 198,495 195,640 193,680 192,359 191,561 191,169
0.70 243,200 210,025 202,883 198,845 196,108 194,068 192,716 191,864 191,451
0.80 241,510 208,740 202,760 198,845 196,108 194,068 192,707 191,746 191,211
0.90 224,350 209,990 202,763 198,843 196,108 194,138 192,716 191,866 191,451
0.95 223,900 209,990 202,763 198,845 195,994 194,070 192,707 191,865 191,450
0.99 240,950 208,740 202,760 198,843 195,994 194,068 192,716 191,865 191,450

5 0.60 225,070 207,265 201,503 197,433 194,748 192,742 191,329 190,388 189,821
0.70 223,040 207,820 202,070 198,110 195,100 193,158 191,811 190,860 190,300
0.80 242,500 207,765 201,853 198,110 195,102 193,190 191,863 190,926 190,343
0.90 225,390 207,815 201,853 197,985 195,100 193,238 191,859 190,919 190,343
0.95 225,380 209,165 201,853 198,110 195,186 193,243 191,864 190,926 190,343
0.99 223,020 207,815 201,853 198,110 195,186 193,238 191,859 190,926 190,343

Figure 4. CVaR under different risk coefficients λ (α = 0.95).
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Figure 5. Total evacuation time under different risk coefficients λ (α = 0.95).

Figure 6. CVaR value of the total evacuation time with different risk coefficients λ (S = 1).
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Figure 7. Objective value with different risk coefficients λ (S = 1).

(a) S = 2 (b) S = 3

Figure 8. Expected total evacuation time vs. CVaR value with λ ∈ {0.1, 0.2, ..., 0.9} and α = 0.95.

6. Conclusions

In this work, we studied a shelter location and routing assignment problem under random demand
circumstances and introduced a risk-averse stochastic programming optimization model. Our aim was
to minimize the total evacuation time using a system optimal style. To handle the non-linearity in the
objective value arising from using a traffic assignment model, second-order cone programming was
deployed to transfer the non-linearity from the objective function to constraints. In addition, we performed
a series of numerical analyses to validate our proposed model and the impacts of key features were
discussed for decision making purposes. This emergency management strategy involving risk measure is
valuable as it could support plan making on both tactical and operational levels.

There are some further research improvements that could be made. For example, we adopted a system
optimal method, in which we assumed that evacuees would comply with the guidelines released by the
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central authority. In practice, however, the system optimal routing assignment results may be unfavorable
to some evacuees, and people’s behaviors in unusual circumstances are ignored. Thus, the incorporation of
human behaviors into the optimization model deserves investigation. On the other hand, more scenarios
used to describe randomness for which the use of efficient solution algorithms (both exact and heuristic)
to handle large-scale scenarios should be captured.
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Appendix A

Figure A1. Case study 1—Sioux Falls network.
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Table A1. Road segment data from case study 2.

Code Road Name Travel Time Code Road Name Travel Time
(min) (min)

L1 Eildon-Warburton, Eildon Jamieson Rd 132 L23 Stony Creek 75
L2 Goulburn Valley Hwy (B340) 11 L24 Maroondah Hwy (B360) 23
L3 Back Eildon Rd 11 L25 Healesville-Yarra Glen Rd (C726) 13
L4 Rubicon Rd 12 L26 Healesville-Kinglake Rd (C724) 17
L5 Blue Range Rd 16 L27 Melba Hwy (B300) 14
L6 Taggerty-Thornton Rd (C515) 4 L28 Healesville-Kinglake Rd (C724) 7
L7 Bulls Ln 10 L29 Melba Hwy (B300) 13
L8 Blue Range Rd 52 L30 Murrindindi Rd 66
L9 Lake Mountain-Royston River Rd 68 L31 Black Range Rd 70
L10 Marysville-Woods Point Rd (C512) 19 L32 Cameron Rd 55
L11 Mount Margaret Rd 49 L33 Simmonds Track 20
L12 Taggerty-Thornton Rd (C515) 6 L34 Myles Rd 15
L13 Goulburn Valley Hwy (B340) 11 L35 Murrindindi Rd 7
L14 Breakaway Rd-Hoban Rd 12 L36 Melba Hwy (B300) 14
L15 Maroondah Hwy (B360) 8 L37 Limestone-Ginter Rd 53
L16 Maroondah Hwy (B360) 6 L38 Scrubby-Black Range Rd 45
L17 Maroondah Hwy (B360) 8 L39 Whanregarwen Rd 12
L18 Buxton-Marysville Rd (C508) 3 L40 Whanregarwen Rd 11
L19 Buxton-Marysville Rd (C508) 9 L41 Goulburn Valley Hwy (B340) 13
L20 Maroondah Hwy (B360) 12 L42 Goulburn Valley Hwy (B340) 10
L21 Marysville Rd (C512) 10 L43 Rubicon Rd 3
L22 Plantation Rd 25

Figure A2. Case study 2—Murrindindi Shire, Victoria, Australia
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Table A2. Network information for case study 2.

From To
Route 1 Route 2 Route 3

Road Segments Travel Time Distance Road Segments Travel Time Distance Road Segments Travel Time Distance
(min) (km) (min) (km) (min) (km)

Narbethong Yea L24-L26-L28-L29-L36 74 85 L22-L30-L35-L36 112 63 L20-L17-L14-L41-L42 63 69.4
Alexandra L20-L17-L16-L15 34 47 L21-L19-L18-L17-L16-L14 48 52 L20-L17-L12-L6-L13 41 50.7
Thornton L20-L17-L12-L6 30 38 L21-L19-L18-L17-L12-L6 40 45 L21-L19-L11-L8-L7-L6 134 65.1
Eildon L20-L17-L12-L6-L2 41 52 L21-L19-L18-L17-L12-L6-L2 51 58 L21-L10-L1 161 90.5
Yarra L24-L25 36 35 L24-L26-L28-L27 61 62 L23-L7-L27 99 42.9

Marysville Yea L19-L18-L17-L16-L14-L39-L40-L42 71 71 L19-L18-L17-L16-L15-L41-L42 57 73 L19-L18-L32-L33-L37 140 69.2
Alexandra L19-L18-L17-L16-L15 34 42 L19-L18-L17-L12-L6-L13 41 45 L19-L11-L8-L7-L6-L13 135 65.5
Thornton L19-L18-L17-L12-L6 30 33 L19-L11-L8-L7-L6 124 53 L19-L18-L17-L16-L14-L13 49 52.8
Eildon L19-L18L17-L12-L6-L2 41 46 L10-L1 19 17 L19-L11-L8-L7-L6-L2 135 66.5
Yarra L21-L24-L25 46 47 L21-L24-L26-L28-L27 71 74 L21-L23-L28-L27 106 58.8

Buxton Yea L17-L16-L14-L39-L40-L42 59 59 L16-L15-L41-L42 37 49 L32-L33-L37 75 34.4
Alexandra L17-L16-L15 22 30 L17-L12-L6-L13 29 33 L32-L38-L39 112 52.3
Thornton L17-L12-L6 18 21 L17-L16-L15-L13 33 42 L18-L11-L8-L10-L6 127 62.3
Eildon L17-L12-L6-L2 29 34 L17-L16-L14-L13-L2 48 54.4 - - -
Yarra L20-L24-L25 48 53 L19-L21-L24-L25 67 66 L20-L23-L28-L27 108 64.1

Taggerty Yea L16-L15-L41-L42 37 49 L16-L14-L39-L40-L42 51 48 L17-L32-L33-L37 136 69
Alexandra L16-L15 14 18 L16-L14 18 17 L12-L6-L13 21 21.8
Thornton L12-L6 10 9.4 L16-L15-L13 25 31 L16-L14-L13 29 29.4
Eildon L12-L6-L3 21 21 L12-L6-L2 21 23 L16-L15-L13-L2 36 43.9
Yarra L17-L20-L24-L25 56 64 L17-L20-L24-L28-L27 78 67.2 L16-L15-L42-L41-L36-L29-L27 78 107

Cambarville Yea L10-L19-L18-L17-L16-L15-L41-L42 76 89 L9-L8-L7-L12-L16-L15-L41-L42 163 101 L10-L19-L18-L23-L33-L37 179 81.6
Alexandra L10-L19-L18-L17-L16-L15 53 58 L9-L8-L7-L6-L13 145 64 L1-L2-L13 154 87.5
Thornton L10-L19-L18-L17-L12-L6 49 50 L9-L8-L7-L6 134 52 L1-L2 143 75.1
Eildon L10-L19-L18-L17-L12-L6-L2 60 63 L1 132 62 L9-L8-L3-L6-L3 146 71.6
Yarra L10-L21-L24-L25 65 64 L10-L21-L26-L28-L27 67 70 L10-L21-L23-L28-L27 125 75.6

Rubicon Yea L43-L4-L13-L42 47 40.6 L43-L4-L13-L39-L40-L42 59 58 L43-L4-L6-L12-L16-L15-L39-L40-L42 72 73
Alexandra L43-L4-L13 26 27 L43-L4-L6-L12-L16-L15 39 42 - - -
Thornton L43-L4 15 15 - - - - - -
Eildon L43-L4 147 76 L43-L4-L2 26 28 - - -
Yarra L43-L4-L6-L12-L17-L20-L24-L25 81 88 L43-L5-L8-L11-L19-L21-24-L25 176 107 L43-L4-L13-L41-L42-L36-L29-L27 90 116
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