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Abstract: Chemical reaction of main polymer and additive with oxidative cleaning agents plays an
important role in aging of polymeric membrane for water and wastewater treatment. As a green
and powerful oxidant, hydrogen peroxide (H2O2) can achieve good cleaning efficacy under alkaline
condition, but its influence on membrane aging was poorly understood. In this study, degradation
of polyethersulfone (PES) membrane due to H2O2 exposure under alkaline condition (pH 9 and
11) was holistically investigated by humic acid (HA) filtration experiments and multiple membrane
characterization techniques, with sodium hypochlorite (NaClO) aging examined as a comparison.
Membrane permeability and HA retention rate was hardly changed by H2O2 aging at an exposure
dose of 500 g·h/L, whereas NaClO aging led to substantial increase of membrane permeability and
significant decrease of retention ability. Meanwhile, H2O2 aging slightly increased fouling propensity
with HA filtration, while NaClO aging resulted in more serious fouling. ATR-FTIR and XPS analysis
revealed much less degradation of PES and hydrophilic additive by H2O2 than that by NaClO,
and membrane morphology and surface properties were characterized to explain the variation of
filtration performance. Overall, compared with cleaning with NaClO, membrane degradation can be
minimized by cleaning with H2O2.

Keywords: chemical cleaning; membrane aging; polyethersulfone (PES) ultrafiltration (UF)
membrane; hydrogen peroxide (H2O2); sodium hypochlorite (NaClO)

1. Introduction

Ultrafiltration (UF) is an established technology for water and wastewater treatment due to its
excellent rejection towards particulates and pathogens, small footprint, and acceptable capital and
operation costs [1,2]. However, its wide application is restricted by membrane fouling, which is
an inherent drawback of membrane technology [3]. Although membrane fouling can be alleviated
by several strategies, such as development of anti-fouling membrane, pretreatment of feed water,
and optimization of operation parameters, physically irreversible fouling is still inevitable during
long-term operation [4]. Therefore, chemical cleaning is indispensable for the sustainable running of
UF system [5]. Acids, bases, oxidants, surfactants, complexing agents, etc. can be used as membrane
cleaning agents [6]. Among these cleaning agents, oxidative agents are widely used for membrane
cleaning in the water industry because of their high cleaning efficacy for organic and biological fouling,
which are major types of fouling in UF for water and wastewater treatment [5,7].
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Sodium hypochlorite (NaClO) is one of the most commonly used oxidative cleaning agents
because of its high efficiency, low cost, and being easy to use [8]. It can disinfect microorganisms
adhering to membrane surface, and detach organic and biological foulants from membrane surface
by altering their properties [5,9]. However, the reaction of NaClO with organics would generate
toxic halogenated by-products, which is an important threat to environmental and public health [10].
More importantly, degradation of membrane materials due to NaClO exposure can alter properties
and performance of membrane, and subsequently influence membrane system operation and its
lifespan [6,11]. It was found that polyvinylpyrrolidone (PVP), a widely used hydrophilic additive for
polyethersulfone (PES) membrane, exhibits high reactivity with NaClO. Surface charge, hydrophilicity,
and pore structure might be changed due to oxidation and dislodgement of PVP by NaClO [6,12].
As for the main polymer (i.e., PES) with much higher chemical stability, several studies have reported
PES chain scission and/or hydroxylation of PES aromatic rings [13–15]. Besides, it was reported that
degradation of PES membrane by NaClO was more serious under neutral to weak alkaline conditions,
which has been attributed to the formation of hydroxyl radical [14,16,17].

Hydrogen peroxide (H2O2) is a strong oxidant with a standard reduction potential of 1.78 V, but its
reactivity is restricted by a relatively high activation energy barrier [18,19]. Although its application as
an oxidative cleaning agent is not as wide as that of NaClO, its effectiveness for permeability recovery
has been demonstrated in several studies [20,21]. It was found that H2O2 cleaning under strong
alkaline condition can achieve comparable cleaning efficacy with NaClO for cleaning of UF membrane
fouled by humic substances [18]. Moreover, compared with NaClO cleaning, H2O2 cleaning can avoid
the formation of toxic halogenated by-products. Therefore, H2O2 is regarded as a potential alternative
cleaning agent of the widely used NaClO [6]. However, only a few papers have investigated aging
of polymeric membrane by H2O2. Ling et al. [22] and Yu et al. [23] focused on the degradation of
polyamide-based reverse osmosis and nanofiltration by H2O2. With respect to UF membrane, the
effects of H2O2 enhanced backwashing on the mechanical properties and surface functional groups of
polyvinylidene fluoride membrane has been examined [24]. In general, aging of UF membrane due to
H2O2 cleaning is poorly understood.

The main purpose of this study was to comprehensively investigate degradation of PES membrane
caused by H2O2 aging, with NaClO aging examined as comparison. PES membrane was soaked in
H2O2 and NaClO solutions with a concentration of 5000 mg/L to accelerate membrane aging, and an
exposure dose of 500 g·h/L was selected based on chemical cleaning parameters and frequency generally
applied in water and wastewater treatment [6,25]. Membrane permeability, fouling propensity, and
retention ability of membranes were examined to evaluate membrane degradation in macroscopic scale.
Meanwhile, chemical composition and physicochemical properties of pristine and aged membranes
were characterized holistically to elucidate degradation mechanisms and explain the variation in
filtration performance.

2. Materials and Methods

2.1. Chemical Agents

All chemicals and reagents used in this study were analytical grade. Commercial available
H2O2 (~30% wt) and NaClO (~10% wt) were purchased from Tianli Chemical Reagent Co. (Tianjin,
China) and Kermel Chemical Reagent Co. (Tianjin, China), respectively. Concentrations of H2O2 and
NaClO solution were determined by permanganate titration method [26] and iodometric titration
method [27], respectively, and therefore the reported concentrations were sum of all active species in
the solutions. HCl and NaOH were both obtained from Chemical Reagent Co. (Tianjin, China). Humic
acid (HA) obtained from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA) was used to evaluate the
retention ability and fouling propensity of pristine and aged membranes. Ultrapure water prepared by
PURELAB Option-R system (ELGA LabWater, High Wycombe, UK) was used to prepare solutions.
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2.2. Membranes and Accelerated Aging Procedure

A commercially available flat-sheet PES membrane (UP 150 P, Microdyn-Nadir, Germany) was
used in this study, and its main characteristics are listed in Table S1 in the Supplementary Information.
According to the manufacturer, the molecular weight cut-offs (MWCOs) of the membrane was 150 kDa.
To ensure the removal of preservatives before use, new membranes were soaked in ultrapure water for
36 h and the water was replaced every 12 h.

In the accelerated aging procedure, H2O2 and NaClO solutions with a concentration of 5000 mg/L
were used as aging solutions, and the membranes were soaked in the aging solutions at ambient
temperature (25 ± 2 ◦C) in the dark for 100 h to obtain an aging intensity (concentration × time, ct) of
500 g·h/L. Aging solutions at pH 9 and 11 were examined because oxidative cleaning agents are usually
combined with bases to achieve higher cleaning efficiencies [21,28,29]. The pH of H2O2 and NaClO
solutions were adjusted to 9 and 11 using HCl or NaOH. Meanwhile, to differentiate the influence of
H2O2 and NaClO aging from that of alkaline exposure, NaOH solutions with pH 9 and 11 were also
used as aging solutions, and the membrane samples aged in NaOH were denoted as control membrane.
To avoid the concentration decay of H2O2 and NaClO, aging solutions were replaced every 24 h during
the experiment. After 100 h soaking in aging solutions, the membranes were rinsed thoroughly and
soaked in ultrapure water for another 24 h before characterization and performance evaluation.

2.3. Evaluation of Membrane Performance

Pure water permeability, retention ability, and fouling propensity of pristine and aged membranes
were evaluated by filtration experiments conducted in a filtration cell (Amicon 8400, Millipore, MA,
USA) in dead-end mode at room temperature (25 ± 2 ◦C). The UF cell was operated in constant pressure
mode with nitrogen gas supplying the driving force, and the trans-membrane pressure (TMP) was
kept at 60 kPa. Permeate weight was quantified by an electronic balance connected to a computer and
the data were automatically recorded every five seconds.

Fouling propensity and retention ability of pristine and aged membranes were examined by using
HA solution as the feed water. The concentration of HA employed in this study was 10 mg/L, and the
pH was adjusted to 7.5 ± 0.1 with 0.1 mol/L HCl or NaOH. To simulate the solution chemistry of natural
waters, 1 mmol/L of NaHCO3, 1 mmol/L of CaCl2, and 6 mmol/L of NaCl was added [30]. In each
filtration test, 350 mL of HA solution was added to the filtration cell, and filtration was carried out
under a TMP of 60 kPa until the permeate volume reached 300mL. Based on initial and final permeate
flux as well as permeate volume per unit membrane surface area, the unified membrane fouling index
(UMFI) can be calculate to evaluate membrane fouling propensity [16,31]. With respect to retention
ability, HA concentrations of feed solution (Cf) and permeate (Cp) were measured in terms of UV
absorbance at 254 nm using a UV/Vis spectrophotometer (U-3900, Hitachi, Tokyo, Japan). Membrane
retention ability was quantified by the retention rate of HA (Equation (1)).

HA rejection rate =

(
1−

Cp

C f

)
× 100 (1)

2.4. Characterization of Membrane Properties

To monitor the changes in functional groups of the membranes, Fourier transform infrared (FTIR)
spectrum in the range of 400–4000 cm−1 was acquired using an infrared spectrometer (Nicolet iS50,
Thermo Scientific, MA, USA). The spectral resolution of the spectrometer was set to be 4 cm−1 and each
spectrum was an average of 32 scans. X-ray photoelectron spectroscopy (XPS) analysis was performed
with a XPS spectrometer (K-Alpha, Thermo Scientific, MA, USA). The deconvolution method of the
XPS spectrum was obtained by fitting a Gaussian function. Morphology of membrane surface was
observed using a scanning electron microscope (SEM, Quanta 600, FEI, OR, USA). Membrane samples
were coated with a thin gold film (3–5 nm) using a precision etching coating system (Model 682, Gatan,
USA) before observation.
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Membrane surface charge was measured by an electrokinetic analyzer (SurPASS, Anton Parr,
Austria). The electrolyte solution was 1 mM KCl and the channel height was adjusted to 100 ± 5 mm
before measurement. The pH of the solution was adjusted from 2.7 to 10.1 by an automatic titrator
with a test interval of 0.3. Water contact angle was quantified using a drop shape analyzer (JC2000D4A,
Zhongchen, Shanghai, China). 5 µL of ultrapure water was dropped on the membrane surface using a
50 µL glass syringe. After the ultrapure water droplets were dropped on the surface of the membrane
for five seconds, the contact angle image between the surface and the water droplets was measured by
a light microscope. For each condition, measurements were performed in triplicate using separate
pieces of membrane.

3. Results and Discussion

3.1. Filtration Performance of Pristine and Aged Membranes

Pure water permeability reflects the intrinsic resistance of membrane to water flow, and it has been
widely used as an indicator for the assessment of membrane aging [6,11,12]. In this study, pure water
permeability was determined by filtering ultrapure water under a TMP of 60 kPa, and permeability
of pristine and aged membranes were denoted as Lp0 and Lp, respectively. Permeability of aged
membranes normalized to that of pristine membrane (Lp/Lp0) are shown in Figure 1. It can be seen
that H2O2 aging at both pH 9 and 11 resulted in insignificant increase of membrane permeability (i.e.,
less than 10 %). However, permeability of membranes aged by NaClO at pH 9 and 11 were increased
to 5.75 and 3.84 times of that of the pristine membrane, respectively. Although the extent of increase
varied depending on exposure dose and aging conditions, permeability increase of PES membrane due
to NaClO aging has been reported in many studies [13,16,17,32–34], and it was commonly attributed to
the increase of pore size and porosity [11]. The similar permeability of pristine, control, and H2O2-aged
membranes suggested that pore structure of the PES membrane was not altered obviously by alkaline
or H2O2 under the aging conditions in this work.
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respectively. It can be seen that H2O2 aging resulted in much less increase of fouling propensity 
compared with NaClO aging.  

 
0.00

0.01

0.02

0.03
 Control membrane
 H2O2-aged membrane
 NaClO-aged membrane

U
M

FI
 (m

2 /L
)

Pristine membrane           pH 9                        pH 11

Figure 1. Effects of hydrogen peroxide (H2O2) and sodium hypochlorite (NaClO) aging on normalized
permeability of polyethersulfone (PES) membrane. Control membrane indicates membrane samples
aged in NaOH solution with pH 9 or 11, c(H2O2) = c(NaClO) = 5000 mg/L, t = 100 h, and error bars
indicate standard deviation of triplicate samples.

Fouling propensity and retention ability towards organic macromolecules are key performance
factors of UF membrane. In this work, HA was used as a model organic foulant to evaluate the
retention ability and fouling behavior of pristine and aged PES membranes because it was ubiquitous
in natural water and has been identified as a major foulant.
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UMFI of pristine and aged membranes for HA filtration are presented in Figure 2. UMFI is a
parameter for quantitative description of membrane fouling, and a higher value of UMFI means more
serious fouling [31]. Compared with control membrane, UMFI was increased by 33.7% due to H2O2

aging at pH 9, while the change of UMFI due to H2O2 aging at pH 11 was less than 10%. As for NaClO
aging, UMFI was increased by 55.7% and 109.1 % at pH 9 and 11, respectively. It can be seen that H2O2

aging resulted in much less increase of fouling propensity compared with NaClO aging.
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Figure 2. Effects of H2O2 and NaClO aging on fouling behavior of PES membrane during filtration of
humic acid (HA) solution. Control membrane indicates membrane samples aged in NaOH solution
with pH 9 or 11, c(H2O2) = c(NaClO) = 5000 mg/L, t = 100 h, and error bars indicate standard deviation
of triplicate samples.

Figure 3 shows HA retention rates of pristine and aged membranes. HA retention rate of
pristine membrane was 59.2%, and almost no change in HA retention ability was observed for control
membranes. For membranes aged by H2O2 at pH 9 and 11, the retention rates slightly decreased to
55.5% and 58.9%, respectively. In contrast, the retention rates of membranes aged by NaClO at pH 9
and 11 were significantly decreased to 19.9% and 37.2%, respectively.
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Figure 3. Effects of H2O2 and NaClO aging on HA retention rate of PES membrane. Control membrane
indicates membrane samples aged in NaOH solution with pH 9 or 11, c (H2O2) = c (NaClO) = 5000 mg/L,
t = 100 h, and error bars indicate standard deviation of triplicate samples.
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Combining Figures 1–3, it can be concluded that degradation of the PES membrane due to NaClO
exposure was much more serious than that by H2O2 exposure under the aging conditions in this work.
Considering the comparable efficiency of H2O2 cleaning with NaClO cleaning [18], H2O2 is a better
oxidative cleaning agent than NaClO because of the minimization of membrane degradation.

To elucidate the different influences of H2O2 and NaClO aging on membrane performance,
properties of pristine and aged membranes were investigated at both a molecular scale (i.e., functional
groups and elements composition) and a microscopic scale (i.e., surface morphology, hydrophilicity,
and surface charge).

3.2. Chemical Composition of Pristine and Aged Membranes

The ATR-FTIR spectra of pristine and aged membranes are shown in Figure 4, and the relative
absorbance strength at 1772, 1700, 1668, and 1032 cm−1 are listed in Table S2 in the Supplementary
Information. For pristine membrane, apart from several characteristic peaks of PES (i.e., 1580, 1486,
1320, 1292, 1241, 1150, 1105 cm−1) exhibiting high absorption intensity, an obvious band at 1668 cm−1

was observed. The band at 1668 cm−1 represents the stretching vibration of the amide unit in PVP,
and its intensity has been extensively used as an indicator of the content of PVP [16,34–37]. Similar
to previous studies, NaClO aging caused decrease of intensity of the peak at 1668 cm−1 due to PVP
oxidation /dislodgement, and new peaks at 1700 and 1772 cm−1 representing oxidation products of PVP
were observed. Meanwhile, a new peak appeared at 1032 cm−1 due to NaClO aging. Although there is
some controversy concerning the assignment of this peak, it can be ascribed to the formation of sulfonic
acid group due to PES chain scission based on the variation of membrane surface charge, which will
be discussed in Section 3.3. Compared with NaClO aging at pH 11, NaClO aging at pH 9 resulted
in more dramatic changes in peak intensities at 1772, 1700, 1668, and 1032 cm−1, suggesting a much
higher extent of PVP degradation and PES chain scission at pH 9 than that at pH 11. pH-dependent of
PES/PVP degradation by NaClO has been reported in several studies, and it was usually attributed
to the formation of hydroxyl radical in NaClO solution due to the coexistence of ClO− and HClO
under neutral to weak alkaline conditions [14,38,39]. In contrast, neither decrease of the peak intensity
at 1668 cm−1 nor appearance of new peaks at 1772, 1700, and 1032 cm−1 was observed for control
and H2O2-aged membranes, indicating that PVP oxidation/dislodgement and PES chain scission was
insignificant under the aging conditions here.

XPS analysis was conducted to further characterize membrane surface chemical composition of
pristine and aged membranes, and atomic percentages of carbon, nitrogen, oxygen, sulfur, and chloride
are listed in Table 1. The presence of 4.14% of nitrogen atom further proved the PES membrane used in
this study was blended with PVP because there is no nitrogen in pure PES. For membranes aged by
NaClO at pH 9 and 11, the atomic percentage of nitrogen decreased to 2.40% and 2.59%, respectively,
which was qualitatively consistent with the decrease of peak intensity at 1668 cm−1 and demonstrated
the dislodgement of PVP. Meanwhile, the incorporation of chloride was observed for NaClO aging,
and the atomic percentage of chloride for membrane aged at pH 9 was almost twice of that at 11.
Chloride was introduced onto the surface of NaClO-aged membranes in the form of a phenyl chloride
group along with the formation of sulfonic acid group during PES chain scission [13,14,40]. The higher
percentage of chloride for the membrane aged by NaClO at pH 9 indicated more serious PES chain
scission by NaClO aging at pH 9. With respect to H2O2 aging, although FTIR spectra indicated no peak
intensity decrease of the PVP characteristic band (i.e., 1668 cm−1), the percentage of nitrogen decreased
to 3.27% and 3.80% for pH 9 and 11, respectively. The seemingly contradictory results of ATR-FTIR
and XPS analysis can be explained by the different analysis depth of the two techniques, with XPS
providing chemical binding information for the top several nanometers of the surface while ATR-FTIR
penetrating to a great depth of several micrometers [17,33]. Overall, combining the results of ATR-FTIR
and XPS analysis, NaClO aging led to both chain scissions of PES and oxidation/dislodgement of PVP,
whereas H2O2 aging only resulted in partial dislodgement of PVP from a region of very small thickness
(Figure S1 in the Supplementary Information).
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Figure 4. ATR-FTIR spectra of pristine and aged PES membrane: (a) 1800–1000 cm−1, (b) partial
enlarged view of 1790–1760 cm−1, and (c) partial enlarged view of 1040–1020 cm−1. (I) pristine;
(II) control (pH 9); (III) H2O2-aged (pH 9); (IV) NaClO-aged (pH 9); (V) control (pH 11); (VI) H2O2-aged
(pH 11); and (VII) NaClO-aged (pH 11). Control membrane indicates membrane samples aged in
NaOH solution with pH 9 or 11, c(H2O2) = c(NaClO) = 5000 mg/L, t = 100 h.

Table 1. Atomic percentage of elements (at%) of pristine and aged PES membranes. Control membrane
indicates membrane samples aged in NaOH solution with pH 9 or 11, c(H2O2) = c(NaClO) = 5000 mg/L,
t = 100 h.

Element. Pristine
pH 9 pH 11

Control H2O2-Aged NaClO-Aged Control H2O2-Aged NaClO-Aged

C 73.72 74.47 73.66 71.15 74.57 74.51 72.49
N 4.14 4.57 3.27 2.40 4.30 3.80 2.59
O 17.65 16.65 17.71 18.88 16.35 16.65 18.51
S 4.50 4.31 5.35 6.26 4.79 5.03 5.72
Cl - - - 1.30 - - 0.69
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3.3. Morphology and Surface Properties of Pristine and Aged Membranes

SEM images of pristine and aged PES membranes are shown in Figure 5. It can be seen that
membrane surface morphology and pore structure was almost unchanged by alkaline and H2O2 aging
in this study. The partial dislodgement of PVP from membrane surface revealed by XPS analysis did
not resulted in visible change in membrane pore structure. This could explain why H2O2 aging did not
result in obvious change in membrane permeability and retention ability. In contrast, NaClO aging led
to significant increase of membrane pore size, especially at pH 9 (Figure 5d), which can be attributed to
the substantial PES chain scission and PVP degradation [16], and can explain the remarkable increase
in membrane permeability and decrease in HA retention rate.
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(Figure 4c) was assigned to sulfonic acid group [14,40]. At solution pH around 3, the negative 
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Figure 5. SEM images of pristine and aged PES membrane at the magnification of 200 000: (a) pristine;
(b) control (pH 9); (c) H2O2-aged (pH 9); (d) NaClO-aged (pH 9); (e) control (pH 11); (f) H2O2-aged
(pH 11); and (g) NaClO-aged (pH 11). Control membrane indicates membrane samples aged in NaOH
solution with pH 9 or 11, c(H2O2) = c(NaClO) = 5000 mg/L, t = 100 h.

Figure 6 shows the variation of zeta potentials of pristine and aged membranes in the pH range
from of 2.7–10.1. The pristine membrane exhibited an isoelectric point (IEP) of about 2.7, and the
negative charge increased with solution pH, indicating the presence of weak acid groups such as
carboxylic acid groups [14,40]. The zeta potentials of control and H2O2-aged membranes were similar
with that of pristine membrane, suggesting that alkaline and H2O2 aging did not alter ionizable
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functional groups on membrane surface, which was consistent with the result of ATR-FTIR. However,
the IEP of membranes aged by NaClO disappeared and negative charge at solution pH around 3
increased substantially, indicating the formation of strong acid functional groups. Therefore, the peak
formed at 1032 cm−1 in ATR-FTIR analysis (Figure 4c) was assigned to sulfonic acid group [14,40].
At solution pH around 3, the negative charge of the membrane aged by NaClO at pH 9 was higher
than that aged by NaClO at pH 11, which was consistent with the more serious PES chain scission
demonstrated by ATR-FTIR and XPS analysis. Moreover, compared with membrane aged by NaClO at
pH 9, the membrane aged by NaClO at pH 11 exhibited steeper increase of negative charge with the
increase of solution pH. The difference suggested that more carboxylic acid groups generated by PVP
oxidation present on membrane surface, which could be ascribed to less dislodgement of oxidation
products at pH 11.
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Figure 6. Effects of H2O2 and NaClO aging on pH dependence of the zeta potential of PES membrane.
Control membrane indicates membrane samples aged in NaOH solution with pH 9 or 11, c(H2O2) =

c(NaClO) = 5000 mg/L, t = 100 h, and error bars indicate standard deviation of triplicate samples.

The water contact angles of pristine and aged membranes are shown in Figure 7. Water contact
angle of pristine membrane was 44.7◦, which was lower than pure PES material probably due to
blending with PVP [33]. H2O2 aging resulted in some increase of water contact angle, which might be
ascribed to the dislodgement of some PVP from membrane surface as revealed by XPS analysis (Table 1).
The increase of water contact angle can explain the slight increase of fouling propensity of H2O2-aged
membrane (Figure 2). However, NaClO aging at pH 9 and 11 decreased the water contact angle to
36.9◦ and 41.2◦, respectively. Although dislodgement of hydrophilic additive (i.e., PVP) generally leads
to decrease of hydrophilicity and increase of water contact angle, the decrease of water contact angle
due to NaClO aging has been reported in several previous studies and was attributed to the increase of
membrane pore size and capillary effect [7,36]. In fact, the variation of water contact angle was decided
by several factors, including loss of hydrophilic additive, increase of pore size, and increase of negative
charge due to PES and PVP degradation. The decrease of water contact angle here did not lead to the
alleviation of hydrophobic interactions. Moreover, increase of membrane pore size might also result in
the change of fouling type and increase of fouling propensity [41]. Therefore, although NaClO aging
caused a decrease of water contact angle and increase of surface negative charge, fouling propensity of
membrane aged by NaClO was increased.
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4. Conclusions

In this study, effects of H2O2 and NaClO exposure under alkaline condition (pH 9 and 11) on
filtration performance and physicochemical properties of PES membrane were comprehensively
investigated. H2O2 aging did not result in obvious change in membrane permeability and retention
ability, whereas NaClO aging led to remarkable increase of permeability and substantial decrease of
retention ability. Meanwhile, H2O2 aging slightly increased fouling propensity during HA filtration,
while NaClO aging resulted in more serious fouling. ATR-FTIR and XPS analysis suggested that
H2O2 aging resulted in partial dislodgement of PVP from membrane surface, but the main polymer
was not degraded. Therefore, membrane hydrophilicity was slightly decreased, while membrane
morphology and surface charge remained unchanged. In contrast, NaClO aging not only resulted
in substantial oxidation and dislodgement of PVP, but also caused chain scission of PES, leading to
significant increase in membrane pore size and surface charge. Overall, the degree of membrane
degradation caused by H2O2 exposure was much lower than that by NaClO exposure, and aging of
PES membrane due to chemical cleaning can be minimized by using H2O2 as cleaning agent.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/16/20/3972/s1,
Figure S1. Schematic diagram of PES and PVP degradation by H2O2 and NaClO. For H2O2 aging, no PES
degradation was detected by FTIR, XPS or zeta potential measurement, while XPS indicated partial loss of PVP
from membrane surface with a very small thickness (several nm). For NaClO aging, the formation of sulfonic
acid group revealed by FTIR (1032 cm−1), the incorporation of chloride revealed by XPS, and the increase of
membrane surface negative charge suggested chain scission of part PES, while two degradation products of PVP,
i.e., succinimide and carboxyl group due to opening of the pyrrolidone ring, was proved by FTIR (1700/1772 cm−1)
and zeta potential measurement, respectively. Phenyl chloride and carboxyl group were not detected by FTIR
probably due to their relatively low abundance. Table S1: Characteristics of PES membrane (UP150 P) provided
by the manufacturer. Table S2: The relative absorbance strength of pristine and aged PES membranes at 1772,
1700, 1668 and 1032 cm−1 by normalizing to the absorbance at 1240 cm−1. Control membrane indicates membrane
samples aged in NaOH solution with pH 9 or 11, c(H2O2) = c(NaClO) = 5000 mg/L, t = 100 h.
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